Normothermic Ex Vivo Machine Perfusion for Liver Transplantation: A Systematic Review of Progress in Humans
Abstract
:1. Introduction
2. Aims
3. Materials and Methods
4. Results
Author | Year | Design | Location | LOE * [7] | RoB 2 [6] | Device | n | Intervention (NMP) | Control (SCS) |
---|---|---|---|---|---|---|---|---|---|
Markmann et al. [29] | 2022 | Multicentre RCT | USA | II | Low | OCS a | 293 | n = 151 | n = 142 |
Nasralla et al. [30] | 2018 | Multicentre RCT | UK | II | Low | OrganOx Metra b | 220 | n = 120 | n = 100 |
Ghinolfi et al. [31] | 2019 | Single centre RCT | Italy | II | Low | LiverAssist c | 20 | n = 10 | n = 10 |
Author | Year | Design | Location | LOE * [7] | ROBINS-I [5] | Device | n | NMP | SCS |
---|---|---|---|---|---|---|---|---|---|
Guo et al. [23] | 2021 | Prospective, non-randomised control trial | China | III-2 | Moderate | LiverAssist c | 168 | n = 38 | n = 130 |
Chen et al. [18] | 2022 | Retrospective, non-randomised control trial | China | III-2 | Moderate | LiverAssist c | 28 | n = 14 ‡ | n = 14 |
Quintini et al. [13] | 2022 | Prospective, non-randomised single arm trial | USA | IV | Moderate | Institutional Device | 21 | n = 21 | N/A |
Seidita et al. [19] | 2022 | Retrospective, non-randomised trial | Italy | III-2 | Moderate | Not specified | 202 | n = 19 | n = 183 |
Fodor et al. [21] | 2021 | Retrospective, non-randomised propensity-score matched trial | Austria | III-3 | Moderate | OrganOx Metra b | 118 | n = 59 | n = 59 Ω |
MacConmara et al. [32] | 2020 | Retrospective cohort study | USA | III-2 | Serious | Multiple | 30,596 | n = 228 | n = 30,368 |
Reiling et al. [14] | 2020 | Prospective, non-randomised single arm trial | Australia | IV | Moderate | OrganOx Metra b | 10 | n = 10 | N/A |
Mergental et al. [16] | 2020 | Prospective, non-randomised propensity-score matched trial | UK | IV | Moderate | OrganOx Metra b | 75 | n = 31 | n = 44 Ω |
Cardini et al. [22] | 2020 | Prospective, non-randomised single arm trial | Austria | IV | Moderate | OrganOx Metra b | 34 | n = 34 | N/A |
Zhang et al. [24] | 2020 | Prospective, non-randomised single arm trial | China | IV | Moderate | LiverAssist c | 28 | n = 28 | N/A |
Liu et al. [25] | 2020 | Prospective, non-randomised propensity-score matched trial | USA | III-3 | Moderate | Institutional Device | 105 | n =21 | n = 84 Ω |
Watson et al. [17] | 2017 | Prospective, non-randomised single arm trial | UK | IV | Serious | LiverAssist c | 36 | n = 12 | n = 24 † |
Bral et al. [33] | 2017 | Prospective, non-randomised propensity-score matched trial | Canada | III-3 | Moderate | OrganOx Metra b | 40 | n = 10 | n = 30 Ω |
Mergental et al. [15] | 2016 | Prospective, non-randomised single arm pilot series | UK | IV | Serious | LiverAssist c OrganOx Metra b | 6 | n = 6 | N/A |
Selzner et al. [26] | 2016 | Prospective, non-randomised propensity-score matched trial | Canada | III-3 | Moderate | OrganOx Metra b | 40 | n = 10 | n = 30 Ω |
Ravikumar et al. [34] | 2016 | Prospective, non-randomised propensity-score matched trial | UK | III-3 | Moderate | OrganOx Metra b | 60 | n = 20 | n = 40 Ω |
Jassem et al. [35] | 2019 | Retrospective, non-randomised propensity-score matched analysis | UK | III-2 | Moderate | Not specified | 39 | n = 12 | n = 27 Ω |
Gaurav et al. [20] | 2022 | Retrospective analysis of prospectively collected data | UK | III-2 | Moderate | LiverAssist-c OrganOx Metra b | 163 | n = 67 | n = 97 |
Ionescu et al. [36] | 2019 | Retrospective, non-randomised propensity-score matched analysis | UK | III-3 | Moderate | OrganOx Metra b | 144 | n = 72 | n = 72 Ω |
Author | Year | Design | Location | LOE * [7] | ROBINS-I [5] | Device | n | Intervention | Control |
---|---|---|---|---|---|---|---|---|---|
Ceresa et al. [28] | 2019 | Prospective, non-randomised propensity-score matched trial | UK | III-3 | Moderate | OrganOx Metra a | 31 | n = 31 (SCS/NMP) | n = 104 Ω (NMP) |
Liu et al. [37] | 2022 | Prospective, non-randomised trial | USA | III-2 | Moderate | Institutional Device | 15 | n = 6 (1 pump NMP system) | n = 9 (2 pump NMP system) |
Bral et al. [27] | 2019 | Prospective, non-randomised trial | Canada | III-2 | Moderate | OrganOx Metra a | 43 | n = 26 (Back-to-base) | N = 17 (Local NMP) |
Author | Randomisation | Deviation (Assignment) | Deviation (Adhering) | Missing Data | Measurement of Outcomes | Reported Results | Overall |
---|---|---|---|---|---|---|---|
Markmann et al. [29] | Low | Low | Low | Low | Some Concern | Low | Low |
Nasralla et al. [30] | Some concern | Low | Low | Low | Low | Low | Low |
Ghinolfi et al. [31] | Low | Low | Low | Low | Some concern | Low | Low |
Author | Confounding | Selection | Classification | Deviation | Missing Data | Measurement of Outcomes | Reported Result | Overall |
---|---|---|---|---|---|---|---|---|
Guo et al. [23] | Moderate | Low | Moderate | Low | Low | Moderate | Low | Low |
Chen et al. [18] | Serious | Low | Moderate | Low | Low | Moderate | Moderate | Moderate |
Quintini et al. [13] | Serious | Low | Moderate | Low | Low | Moderate | Low | Moderate |
Fodor et al. [21] | Serious | Low | Low | Low | Low | Moderate | Moderate | Moderate |
MacConmara et al. [32] | Critical | Low | Moderate | Low | Moderate | Serious | Low | Serious |
Seidita et al. [19] | Critical | Low | Moderate | Low | Low | Moderate | Low | Moderate |
Reiling et al. [14] | Serious | Low | Moderate | Low | Low | Moderate | Low | Moderate |
Mergental et al. [16] | Serious | Moderate | Moderate | Low | Low | Moderate | Low | Moderate |
Cardini et al. [22] | Serious | Moderate | Moderate | Low | Low | Moderate | Moderate | Moderate |
Zhang et al. [24] | Critical | Low | Moderate | Low | Low | Moderate | Moderate | Moderate |
Liu et al. [25] | Serious | Low | Moderate | Low | Low | Moderate | Moderate | Moderate |
Liu et al. [37] | Critical | Moderate | Moderate | Low | Low | Moderate | Low | Moderate |
Ceresa et al. [28] | Serious | Moderate | Moderate | Low | Low | Moderate | Low | Moderate |
Ionescu et al. [36] | Serious | Moderate | Moderate | Low | Low | Moderate | Moderate | Moderate |
Bral et al. [27] | Serious | Moderate | Moderate | Low | Low | Low | Moderate | Moderate |
Watson et al. [38] | Critical | Moderate | Moderate | Moderate | Moderate | Moderate | Moderate | Serious |
Bral et al. [33] | Serious | Moderate | Moderate | Low | Low | Moderate | Moderate | Moderate |
Mergental et al. [15] | Critical | Moderate | Moderate | Moderate | Low | Low | Moderate | Serious |
Selzner et al. [26] | Critical | Moderate | Moderate | Low | Low | Moderate | Moderate | Moderate |
Ravikumar et al. [34] | Critical | Moderate | Moderate | Moderate | Low | Moderate | Moderate | Moderate |
Jassem et al. [35] | Critical | Moderate | Moderate | Moderate | Low | Low | Moderate | Moderate |
Gaurav et al. [20] | Serious | Moderate | Moderate | Low | Low | Moderate | Moderate | Moderate |
4.1. Early Allograft Dysfunction
4.2. Graft and Patient Survival
4.3. Biliary Complications
4.4. Rate of Allograft Discard and Utilisation of DCD
4.5. Length of Stay
4.6. Intraoperative Coagulation Profiles and Blood Product Use
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tchilikidi, K.Y. Liver graft preservation methods during cold ischemia phase and normothermic machine perfusion. World J. Gastrointest. Surg. 2019, 11, 126–142. [Google Scholar] [CrossRef] [PubMed]
- Kwong, A.J.; Kim, W.R.; Lake, J.R.; Smith, J.M.; Schladt, D.P.; Skeans, M.A.; Noreen, S.M.; Foutz, J.; Booker, S.E.; Cafarella, M.; et al. OPTN/SRTR 2019 Annual Data Report: Liver. Am. J. Transplant. 2021, 21 (Suppl. 2), 208–315. [Google Scholar] [PubMed]
- Akateh, C.; Beal, E.W.; Whitson, B.A.; Black, S.M. Normothermic Ex-vivo Liver Perfusion and the Clinical Implications for Liver Transplantation. J. Clin. Transl. Hepatol. 2018, 6, 276. [Google Scholar] [CrossRef] [PubMed]
- Aufhauser, D.D., Jr.; Foley, D.P. Beyond Ice and the Cooler: Machine Perfusion Strategies in Liver Transplantation. Clin. Liver Dis. 2021, 25, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Merlin, T.; Weston, A.; Tooher, R.; Middleton, P.; Salisbury, J.; Coleman, K.; Norris, S.; Grimmer-Somers, K.; Hillier, S. NHMRC Levels of Evidence and Grades for Recommendations for Developers of Guidelines; Council NHaMR, Ed.; NHMRC: Canberra, Australia, 2009. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Rev. Esp. Cardiol. (Engl. Ed.) 2021, 74, 790–799. [Google Scholar] [CrossRef]
- Zhang, Z.; Ju, W.; Tang, Y.; Wang, L.; Zhu, C.; Gao, N.; Zhao, Q.; Huang, S.; Wang, D.; Yang, L.; et al. First Preliminary Experience with Preservation of Liver Grafts from Extended-Criteria Donors by Normothermic Machine Perfusion in Asia. Ann. Transplant. 2020, 25, e921529-1–e921529-11. [Google Scholar] [CrossRef]
- van Leeuwen, O.B.; Bodewes, S.B.; Lantinga, V.A.; Haring, M.P.; Thorne, A.M.; Brüggenwirth, I.M.; Berg, A.P.V.D.; de Boer, M.T.; de Jong, I.E.; de Kleine, R.H.; et al. Sequential hypothermic and normothermic machine perfusion enables safe transplantation of high-risk donor livers. Am. J. Transplant. 2022, 22, 1658–1670. [Google Scholar] [CrossRef]
- Gilbo, N.; Jacquemin, M.; Nasralla, D.; Lazzaro, S.; Libbrecht, L.; Lavend’homme, R.; Peerlinck, K.; Ploeg, R.J.; Friend, P.J.; Pirenne, J.; et al. Coagulation Factors Accumulate During Normothermic Liver Machine Perfusion Regardless of Donor Type and Severity of Ischemic Injury. Transplantation 2022, 106, 510–518. [Google Scholar] [CrossRef]
- Weissenbacher, A.; Bogensperger, C.; Oberhuber, R.; Meszaros, A.; Gasteiger, S.; Ulmer, H.; Berchtold, V.; Krendl, F.J.; Fodor, M.; Messner, F.; et al. Perfusate Enzymes and Platelets Indicate Early Allograft Dysfunction After Transplantation of Normothermically Preserved Livers. Transplantation 2022, 106, 792–805. [Google Scholar] [CrossRef]
- Quintini, C.; Del Prete, L.; Simioni, A.; Del Angel, L.; Uso, T.D.; D’amico, G.; Hashimoto, K.; Aucejo, F.; Fujiki, M.; Eghtesad, B.; et al. Transplantation of declined livers after normothermic perfusion. Surgery 2022, 171, 747–756. [Google Scholar] [CrossRef]
- Reiling, J.; Butler, N.; Simpson, A.; Hodgkinson, P.; Campbell, C.; Lockwood, D.; Bridle, K.; Santrampurwala, N.; Britton, L.; Crawford, D.; et al. Assessment and Transplantation of Orphan Donor Livers: A Back-to-Base Approach to Normothermic Machine Perfusion. Liver Transplant. 2020, 26, 1618–1628. [Google Scholar] [CrossRef]
- Mergental, H.; Perera, M.T.; Laing, R.W.; Muiesan, P.; Isaac, J.R.; Smith, A.; Stephenson, B.; Cilliers, H.; Neil, D.; Hübscher, S.; et al. Transplantation of Declined Liver Allografts Following Normothermic Ex-Situ Evaluation. Am. J. Transplant. 2016, 16, 3235–3245. [Google Scholar] [CrossRef]
- Mergental, H.; Laing, R.W.; Kirkham, A.J.; Perera, M.T.P.R.; Boteon, Y.L.; Attard, J.; Barton, D.; Curbishley, S.; Wilkhu, M.; Neil, D.A.H.; et al. Transplantation of discarded livers following viability testing with normothermic machine perfusion. Nat. Commun. 2020, 11, 2939. [Google Scholar] [CrossRef]
- Watson, C.J.E.; Kosmoliaptsis, V.; Randle, L.V.; Gimson, A.E.; Brais, R.; Klinck, J.R.; Hamed, M.; Hamed, M.; Tsyben, A.; Butler, A.J. Normothermic Perfusion in the Assessment and Preservation of Declined Livers Before Transplantation: Hyperoxia and Vasoplegia-Important Lessons From the First 12 Cases. Transplantation 2017, 101, 1084–1098. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, T.; Chen, C.; Zhao, Q.; Ma, Y.M.; Guo, Y.M.; Hong, X.M.; Yu, J.; Huang, C.; Ju, W.; et al. Transplantation of Extended Criteria Donor Livers Following Continuous Normothermic Machine Perfusion Without Recooling. Transplantation 2022, 106, 1193–1200. [Google Scholar] [CrossRef] [PubMed]
- Seidita, A.; Longo, R.; Di Francesco, F.; Tropea, A.; Calamia, S.; Panarello, G.; Barbara, M.; Gruttadauria, S. The use of normothermic machine perfusion to rescue liver allografts from expanded criteria donors. Updat. Surg. 2022, 74, 193–202. [Google Scholar] [CrossRef]
- Gaurav, R.; Butler, A.J.; Kosmoliaptsis, V.; Mumford, L.; Fear, C.; Swift, L.; Fedotovs, A.; Upponi, S.; Khwaja, S.; Richards, J.; et al. Liver Transplantation Outcomes From Controlled Circulatory Death Donors: SCS vs in situ NRP vs ex situ NMP. Ann Surg. 2022, 275, 1156–1164. [Google Scholar] [CrossRef]
- Fodor, M.; Cardini, B.; Peter, W.; Weissenbacher, A.; Oberhuber, R.; Hautz, T.; Otarashvili, G.; Margreiter, C.; Maglione, M.; Resch, T.; et al. Static cold storage compared with normothermic machine perfusion of the liver and effect on ischaemic-type biliary lesions after transplantation: A propensity score-matched study. Br. J. Surg. 2021, 108, 1082–1089. [Google Scholar] [CrossRef] [PubMed]
- Cardini, B.; Oberhuber, R.; Fodor, M.; Hautz, T.; Margreiter, C.; Resch, T.; Scheidl, S.; Maglione, M.; Bösmüller, C.; Mair, H.; et al. Clinical Implementation of Prolonged Liver Preservation and Monitoring Through Normothermic Machine Perfusion in Liver Transplantation. Transplantation 2020, 104, 1917–1928. [Google Scholar] [CrossRef]
- Guo, Z.; Zhao, Q.; Huang, S.; Huang, C.; Wang, D.; Yang, L.; Zhang, J.; Chen, M.; Wu, L.; Zhang, Z.; et al. Ischaemia-free liver transplantation in humans: A first-in-human trial. Lancet Reg. Health-West. Pac. 2021, 16, 100260. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, Y.; Zhao, Q.; Wang, L.; Zhu, C.; Ju, W.; Wang, D.; Yang, L.; Wu, L.; Chen, M.; et al. Association of Perfusion Characteristics and Posttransplant Liver Function in Ischemia-Free Liver Transplantation. Liver Transplant. 2020, 26, 1441–1454. [Google Scholar] [CrossRef]
- Liu, Q.; Hassan, A.; Pezzati, D.; Soliman, B.; Lomaglio, L.; Grady, P.; Diaz, L.D.A.; Simioni, A.; Maikhor, S.; Etterling, J.; et al. Ex Situ Liver Machine Perfusion: The Impact of Fresh Frozen Plasma. Liver Transplant. 2020, 26, 215–226. [Google Scholar] [CrossRef]
- Selzner, M.; Goldaracena, N.; Echeverri, J.; Kaths, J.M.; Linares, I.; Selzner, N.; Serrick, C.; Marquez, M.; Sapisochin, G.; Renner, E.L.; et al. Normothermic ex vivo liver perfusion using steen solution as perfusate for human liver transplantation: First North American results. Liver Transplant. 2016, 22, 1501–1508. [Google Scholar] [CrossRef] [PubMed]
- Bral, M.; Dajani, K.; Leon Izquierdo, D.; Bigam, D.; Kneteman, N.; Ceresa, C.D.L.; Friend, P.J.; Shapiro, A.M.; James, A. Back-to-Base Experience of Human Normothermic Ex Situ Liver Perfusion: Does the Chill Kill? Liver Transpl. 2019, 25, 848–858. [Google Scholar] [CrossRef]
- Ceresa, C.D.L.; Nasralla, D.; Watson, C.J.E.; Butler, A.J.; Coussios, C.C.; Crick, K.; Hodson, L.; Imber, C.; Jassem, W.; Knight, S.R.; et al. Transient Cold Storage Prior to Normothermic Liver Perfusion May Facilitate Adoption of a Novel Technology. Liver Transplant. 2019, 25, 1503–1513. [Google Scholar] [CrossRef]
- Markmann, J.F.; Abouljoud, M.S.; Ghobrial, R.M.; Bhati, C.S.; Pelletier, S.J.; Lu, A.D.; Ottmann, S.; Klair, T.; Eymard, C.; Roll, G.R.; et al. Impact of Portable Normothermic Blood-Based Machine Perfusion on Outcomes of Liver Transplant: The OCS Liver PROTECT Randomized Clinical Trial. JAMA Surg. 2022, 157, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Nasralla, D.; Coussios, C.C.; Mergental, H.; Akhtar, M.Z.; Butler, A.J.; Ceresa, C.D.L.; Chiocchia, V.; Dutton, S.J.; García-Valdecasas, J.C.; Heaton, N.; et al. A randomized trial of normothermic preservation in liver transplantation. Nature 2018, 557, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Ghinolfi, D.; Rreka, E.; De Tata, V.; Franzini, M.; Pezzati, D.; Fierabracci, V.; Masini, M.; Cacciatoinsilla, A.; Bindi, M.L.; Marselli, L.; et al. Pilot, Open, Randomized, Prospective Trial for Normothermic Machine Perfusion Evaluation in Liver Transplantation From Older Donors. Liver Transplant. 2019, 25, 436–449. [Google Scholar] [CrossRef]
- MacConmara, M.; Hanish, S.I.; Hwang, C.S.; De Gregorio, L.; Desai, D.M.; Feizpour, C.A.; Tanriover, B.; Markmann, J.F.; Zeh, H., III; Vagefi, P.A. Making Every Liver Count: Increased Transplant Yield of Donor Livers Through Normothermic Machine Perfusion. Ann. Surg. 2020, 272, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Bral, M.; Gala-Lopez, B.; Bigam, D.; Kneteman, N.; Malcolm, A.; Livingstone, S.; Andres, A.; Emamaullee, J.; Russell, L.; Coussios, C.; et al. Preliminary Single-Center Canadian Experience of Human Normothermic Ex Vivo Liver Perfusion: Results of a Clinical Trial. Am. J. Transplant. 2017, 17, 1071–1080. [Google Scholar] [CrossRef]
- Ravikumar, R.; Jassem, W.; Mergental, H.; Heaton, N.; Mirza, D.; Perera, M.T.P.R.; Quaglia, A.; Holroyd, D.; Vogel, T.; Coussios, C.C.; et al. Liver Transplantation After Ex Vivo Normothermic Machine Preservation: A Phase 1 (First-in-Man) Clinical Trial. Am. J. Transplant. 2016, 16, 1779–1787. [Google Scholar] [CrossRef]
- Jassem, W.; Xystrakis, E.; Ghnewa, Y.G.; Yuksel, M.; Pop, O.; Martinez-Llordella, M.; Jabri, Y.; Huang, X.; Lozano, J.J.; Quaglia, A.; et al. Normothermic Machine Perfusion (NMP) Inhibits Proinflammatory Responses in the Liver and Promotes Regeneration. Hepatology 2019, 70, 682–695. [Google Scholar] [CrossRef]
- Ionescu, M.-I.; Tillakaratne, S.; Hodson, J.; Gunson, B.; Nasralla, D.; Boteon, A.P.C.D.S.; Sermon, K.; Mergental, H.; Isaac, J.R.; Roberts, J.K.; et al. Normothermic Machine Perfusion Enhances Intraoperative Hepatocellular Synthetic Capacity: A Propensity Score-matched Analysis. Transplantation 2019, 103, e198–e207. [Google Scholar] [CrossRef]
- Liu, Q.; Del Prete, L.; Hassan, A.; Pezzati, D.; Bilancini, M.; D’amico, G.; Uso, T.D.; Hashimoto, K.; Aucejo, F.; Fujiki, M.; et al. Two pumps or one pump? A comparison of human liver normothermic machine perfusion devices for transplantation. Artif. Organs 2022, 46, 859–866. [Google Scholar] [CrossRef]
- Watson, C.J.E.; Kosmoliaptsis, V.; Randle, L.V.; Russell, N.K.; Griffiths, W.J.H.; Davies, S.; Mergental, H.; Butler, A.J. Preimplant Normothermic Liver Perfusion of a Suboptimal Liver Donated After Circulatory Death. Am. J. Transplant. 2016, 16, 353–357. [Google Scholar] [CrossRef]
- Olthoff, K.M.; Kulik, L.; Samstein, B.; Kaminski, M.; Abecassis, M.; Emond, J.; Shaked, A.; Christie, J.D. Validation of a current definition of early allograft dysfunction in liver transplant recipients and analysis of risk factors. Liver Transplant. 2010, 16, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Glanemann, M.; Langrehr, J.M.; Stange, B.J.; Neumann, U.; Settmacher, U.; Steinmüller, T.; Neuhaus, P. Clinical Implications of Hepatic Preservation Injury After Adult Liver Transplantation. Am. J. Transplant. 2003, 3, 1003–1009. [Google Scholar] [CrossRef]
- Eisenbach, C.; Encke, J.; Merle, U.; Gotthardt, D.; Weiss, K.; Schneider, L.; Latanowicz, S.; Spiegel, M.; Engelmann, G.; Stremmel, W.; et al. An Early Increase in Gamma Glutamyltranspeptidase And Low Aspartate Aminotransferase Peak Values Are Associated With Superior Outcomes After Orthotopic Liver Transplantation. Transplant. Proc. 2009, 41, 1727–1730. [Google Scholar] [CrossRef] [PubMed]
- Vogel, T.; Brockmann, J.G.; Quaglia, A.; Morovat, A.; Jassem, W.; Heaton, N.D.; Coussios, C.C.; Friend, P.J. The 24-hour normothermic machine perfusion of discarded human liver grafts. Liver Transplant. 2017, 23, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Mergental, H.; Stephenson, B.T.F.; Laing, R.W.; Kirkham, A.J.; Neil, D.A.H.; Wallace, L.L.; Boteon, Y.L.; Widmer, J.; Bhogal, R.H.; Perera, M.T.P.R.; et al. Development of Clinical Criteria for Functional Assessment to Predict Primary Nonfunction of High-Risk Livers Using Normothermic Machine Perfusion. Liver Transplant. 2018, 24, 1453–1469. [Google Scholar] [CrossRef] [PubMed]
- Eshmuminov, D.; Becker, D.; Bautista Borrego, L.; Hefti, M.; Schuler, M.J.; Hagedorn, C.; Muller, X.; Mueller, M.; Onder, C.; Graf, R.; et al. An integrated perfusion machine preserves injured human livers for 1 week. Nat. Biotechnol. 2020, 38, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Lau, N.; Ly, M.; Dennis, C.; Liu, K.; Kench, J.; Crawford, M.; Pulitano, C. Long-term normothermic perfusion of human livers for longer than 12 days. Artif. Organs 2022, 46, 2504–2510. [Google Scholar] [CrossRef] [PubMed]
- Lau, N.S.; Ly, M.; Jacques, A.; Ewenson, K.; Mestrovic, N.; Almoflihi, A.; Koutalistras, N.; Liu, K.; Kench, J.; McCaughan, G.; et al. Prolonged Ex Vivo Normothermic Perfusion of a Split Liver: An Innovative Approach to Increase the Number of Available Grafts. Transplant. Direct 2021, 7, e763. [Google Scholar] [CrossRef]
- Lau, N.-S.; Ly, M.; Dennis, C.; Ewenson, K.; Ly, H.; Huang, J.L.; Cabanes-Creus, M.; Chanda, S.; Wang, C.; Lisowski, L.; et al. Liver splitting during normothermic machine perfusion: A novel method to combine the advantages of both in-situ and ex-vivo techniques. HPB 2023, 25, 543–555. [Google Scholar] [CrossRef]
- Clavien, P.-A.; Dutkowski, P.; Mueller, M.; Eshmuminov, D.; Borrego, L.B.; Weber, A.; Muellhaupt, B.; Da Silva, R.X.S.; Burg, B.R.; von Rohr, P.R.; et al. Transplantation of a human liver following 3 days of ex situ normothermic preservation. Nat. Biotechnol. 2022, 40, 1610–1616. [Google Scholar] [CrossRef]
- Norton, W.G.; Pearson, R.; Devlin, J.; Nicholson, M.L.; Hosgood, S.A. Normothermic Machine Perfusion in Renal Transplantation. Curr. Transplant. Rep. 2022, 9, 308–317. [Google Scholar] [CrossRef]
- Warnecke, G.; Van Raemdonck, D.; A Smith, M.; Massard, G.; Kukreja, J.; Rea, F.; Loor, G.; De Robertis, F.; Nagendran, J.; Dhital, K.K.; et al. Normothermic ex-vivo preservation with the portable Organ Care System Lung device for bilateral lung transplantation (INSPIRE): A randomised, open-label, non-inferiority, phase 3 study. Lancet Respir. Med. 2018, 6, 357–367. [Google Scholar] [CrossRef]
- Slama, A.; Schillab, L.; Barta, M.; Benedek, A.; Mitterbauer, A.; Hoetzenecker, K.; Taghavi, S.; Lang, G.; Matilla, J.; Ankersmit, H.; et al. Standard donor lung procurement with normothermic ex vivo lung perfusion: A prospective randomized clinical trial. J. Heart Lung Transplant. 2017, 36, 744–753. [Google Scholar] [CrossRef]
- Mazilescu, L.I.; Parmentier, C.; Kalimuthu, S.N.; Ganesh, S.; Kawamura, M.; Goto, T.; Noguchi, Y.; Selzner, M.; Reichman, T.W. Normothermic ex situ pancreas perfusion for the preservation of porcine pancreas grafts. Am. J. Transplant. 2022, 22, 1339–1349. [Google Scholar] [CrossRef] [PubMed]
Author | NMP (%) | SCS (%) | p |
---|---|---|---|
Markmann et al. [29] | 18 | 31.5 | p = 0.01 |
Nasralla et al. [30] | 10.1 | 29.9 | p < 0.001 |
Ghinolfi et al. [31] | 20 | 10 | p = 1.00 |
Guo et al. [23] | 5.3 | 50.0 | p < 0.001 |
Chen et al. [18] | mNMP Ω: 0 NMP: 28.5 | 50 | p = 0.089 ‡ p = 0.022 † |
Quintini et al. [13] | 46.6 | N/A | N/A |
Fodor et al. [21] | 32 | 34 | p = 0.794 |
Reiling et al. [14] | 50 | N/A | N/A |
Mergental et al. [16] | 32 | 9.1 | p = 0.034 |
Cardini et al. [22] | 20 | N/A | N/A |
Zhang et al. [24] | 3.6 | N/A | N/A |
Liu et al. [25] | 19 | 46 | p = 0.02 |
Bral et al. [33] | 55.5 | 29.6 | p = 0.23 |
Mergental et al. [15] | 0 | N/A | N/A |
Ravikumar et al. [34] | 15 | 22.5 | p = 0.734 |
Gaurav et al. [20] | 11 | 21 | N/A |
Author | Graft Survival (%) | Patient Survival (%) | ||||
---|---|---|---|---|---|---|
NMP | SCS | p | NMP | SCS | p | |
Markmann et al. [29] | 99.3 (1 mth) 94 (12 mths) | 99.3 (1 mth) 93.7 (12 mths) | Noninferiority p < 0.001 | |||
Nasralla et al. [30] | 95 (12 mths) | 96 (12 mths) | p = 0.707 | 96 (12 mths) | 97 (12 mths) | p = 0.671 |
Ghinolfi et al. [31] | 90 (12 mths) | 100 (12 mths) | p = 1.000 | 100 (12 mths) | 90 (12 mths) | p = 1.000 |
Guo et al. [23] | 97.4 (1 mth) 89.5 (12 mths) | 90.0 (1 mth) 81.5 (12 mths) | p = 0.195 p = 0.326 | 97.4 (1 mth) 92.1 (12 mths) | 90.8 (1 mth) 82.3 (12 mths) | p = 0.302 p = 0.142 |
Chen et al. [18] | mNMP Ω 85.8 (30 dy) NMP 100 (30 dy) mNMP Ω 85.8 (90 dy) NMP 100 (90 dy) | 85.8 (30 dy) 85.8 (90 dy) | p = 0.571 p = 0.571 | |||
Fodor et al. [21] | 97 (1 mth) 89 (3 mths) 81 (1 yr) | 98 (1 mth) 93 (3 mths) 82 (1 yr) | p = 0.347 | 95 (1 mth) 89 (3 mths) 81 (1 yr) | 95 (1 mth) 91 (3 mths) 79 (1 yr) | p = 0.784 |
MacConmara et al. [32] | N/A | N/A | p = 0.11 | N/A | N/A | p = 0.20 |
Seidita et al. [19] | 88 (1 mth) 88 (3 mths) 88 (6 mths) 88 (1 yr) 76 (3 yrs) | 98 (1 mth) 95 (3 mths) 92 (6 mths) 90 (1 yr) 80 (3 yrs) | p = 0.577 | 94 (1 mth) 94 (3 mths) 94 (6 mths) 94 (1 yr) 82 (3 yrs) | 98 (1 mth) 96 (3 mths) 92 (6 mths) 90 (1 yr) 80 (3 yrs) | p = 0.697 |
Reiling et al. [14] | 100 (3 mths) 100 (6 mths) 100 (1 yr) | N/A | N/A | 100 (3 mths) 100 (6 mths) 100 (1 yr) | N/A | N/A |
Mergental et al. [16] | 100 (3 mth) 86.4 (1 yr) | 93.2 (3 mth) 86.4 (1 yr) | p = 0.545 p = 1.00 | 100 (3 mth) 100 (1 yr) | 100 (3 mth) 95.5 (1 yr) | p = 1.00 p = 0.55 |
Cardini et al. [22] | 88 (20 mths) | N/A | N/A | 88 (20 mths) | N/A | N/A |
Liu et al. [25] | 100 (6 mth) 95.2 (12 mth) | N/A | N/A | 100 (6 mth) 95.2 (12 mth) | N/A | N/A |
Watson et al. [17] | 83 (9 mths) | 88 (9 mths) | N/A | 92 (9 mths) | 96 (9 mths) | N/A |
Bral et al. [33] | 90 (1 mth) 80 (6 mth) | 100 (1 mth) 100 (1 mth) | p = 0.25 p = 0.06 | 100 (1 mth) 89 (6 mths) | 100 (1 mth) 100 (6 mths) | N/A p = 0.25 |
Mergental et al. [15] | 100 (3 mths) | N/A | N/A | 100 (3 mths) | N/A | N/A |
Selzner et al. [26] | 100 (3 mths) | 100 (3 mths) | N/A | 100 (3 mths) | 100 (3 mths) | N/A |
Ravikumar et al. [34] | 100 (1 mth) | 97.5 (1 mth) | p = 1.00 | 100 (1 mth) 100 (6 mths) | 97.5 (1 mth) 97.5 (6 mths) | p = 1.00 p = 1.00 |
Jassem et al. [35] | 100 | 100 | p = 1.00 | 91.7 | 100 | N/A |
Gaurav et al. [20] | 91 (6 mths) | 91 (6 mths) | N/A | 94 (6 mths) | 96 (6 mths) | p = 0.90 |
Author | NMP (%) | SCS (%) | p |
---|---|---|---|
Markmann et al. [29] | 11.1 ˆ 2.6 ‡ | 11.6 ˆ 9.6 ‡ | p = 1.0 p = 0.02 |
Nasralla et al. [30] | 8.6 * 43.2 ˆ 0.8 ‡ | 10.8 * 45.9 ˆ 1 ‡ | N/A |
Ghinolfi et al. [31] | 10 | 0 | p = 1.000 |
Guo et al. [23] | 10.5 0 * 7.9 ˆ | 18.5 3.8 * 12.3 ˆ | p = 0.326 |
Chen et al. [18] | mNMP Ω 0 ˆ NMP 7.1 ˆ | SCS 0ˆ | p = 0.211 |
Quintini et al. [13] | 6.7 ‡ | N/A | N/A |
Fodor et al. [21] | 50.8 35.6 * 8.5 ˆ 3.4 ‡ | 49.2 39.0 * 16.9 ˆ 13.6 ‡ | p = 0.854 p = 0.703 p = 0.167 p = 0.047 |
Reiling et al. [14] | 20 | N/A | N/A |
Mergental et al. [16] | 18.2 * 9.1 ˆ | 2.3 * 6.8 ˆ | p = 0.063 p = 0.725 |
Cardini et al. [22] | 36 | N/A | N/A |
Watson et al. [38] | 27 ‡ | 29 ‡ | N/A |
Bral et al. [33] | 0 | 14.8 | p = 0.55 |
Gaurav et al. [20] | 37 | 42 | N/A |
Author | Rate of Discard (%) | Utilisation of DCD (%) | ||||
---|---|---|---|---|---|---|
NMP | SCS | p | NMP | SCS | p | |
Markmann et al. [29] | 51 | 26 | p = 0.007 | |||
Nasralla et al. [30] | 11.7 | 24.1 | p = 0.008 | 54 | 35 | N/A |
Quintini et al. [13] | 28.5 ‡ | N/A | N/A | |||
MacConmara et al. [32] | 3.5 | 13.3 | p < 0.001 | 18.2 | 6.9 | p < 0.001 |
Seidita et al. [19] | 10.5 | N/A | N/A | |||
Reiling et al. [14] | 0 ‡ | N/A | N/A | 100 ‡ | N/A | N/A |
Mergental et al. [16] | 29 ‡ | N/A | N/A | 70.6 | N/A | N/A |
Cardini et al. [22] | 26.5 | N/A | N/A | 100 | N/A | N/A |
Mergental et al. [15] | 16.7 ‡ | N/A | N/A | |||
Selzner et al. [26] | 16.7 | N/A | N/A |
Author | ICU LOS (Days) | Hospital LOS (Days) | ||||
---|---|---|---|---|---|---|
NMP | SCS | p | NMP | SCS | p | |
Nasralla et al. [30] | 4 | 4 | p = 0.339 | 15 | 15 | p = 0.926 |
Ghinolfi et al. [31] | 17 | 12 | p = 0.119 | |||
Guo et al. [23] | 1.48 | 1.81 | p = 0.006 | 19.5 | 21.5 | p = 0.795 |
Fodor et al. [21] | 3 | 4 | p = 0.638 | 17 | 23 | p = 0.006 |
Reiling et al. [14] | 1.5 | N/A | N/A | 11.5 | N/A | N/A |
Mergental et al. [16] | 3.5 | 2 | p = 0.566 | 10 | 9 | p = 0.822 |
Liu et al. [25] | 2.5 | 2.7 | p = 0.27 | 13.4 | 15.7 | p = 0.49 |
Bral et al. [33] | 16 | 4 | p = 0.004 | 45 | 25 | p = 0.01 |
Mergental et al. [15] | 3.8 | N/A | N/A | 10 | N/A | N/A |
Selzner et al. [26] | 1 | 2 | p = 0.54 | 11 | 13 | 0.23 |
Ravikumar et al. [34] | 3 | 3 | p = 0.459 | 12 | 14 | p = 0.100 |
Jassem et al. [35] | 3 | 5 | NS • | |||
Gaurav et al. [20] | 2 | 2 | N/A | 19 | 18 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Risbey, C.W.G.; Pulitano, C. Normothermic Ex Vivo Machine Perfusion for Liver Transplantation: A Systematic Review of Progress in Humans. J. Clin. Med. 2023, 12, 3718. https://doi.org/10.3390/jcm12113718
Risbey CWG, Pulitano C. Normothermic Ex Vivo Machine Perfusion for Liver Transplantation: A Systematic Review of Progress in Humans. Journal of Clinical Medicine. 2023; 12(11):3718. https://doi.org/10.3390/jcm12113718
Chicago/Turabian StyleRisbey, Charles W. G., and Carlo Pulitano. 2023. "Normothermic Ex Vivo Machine Perfusion for Liver Transplantation: A Systematic Review of Progress in Humans" Journal of Clinical Medicine 12, no. 11: 3718. https://doi.org/10.3390/jcm12113718
APA StyleRisbey, C. W. G., & Pulitano, C. (2023). Normothermic Ex Vivo Machine Perfusion for Liver Transplantation: A Systematic Review of Progress in Humans. Journal of Clinical Medicine, 12(11), 3718. https://doi.org/10.3390/jcm12113718