The Impact of Physical Activity and Inactivity on Cardiovascular Risk across Women’s Lifespan: An Updated Review
Abstract
:1. Introduction
2. Physical Activity and Inactivity in Infancy and Adolescence
2.1. Benefits of Physical Activity
2.2. Sedentary Behavior and Physical Inactivity Disadvantages
2.3. Proposal for Intervention
3. Physical Activity and Inactivity in Pre-Pregnancy, Pregnancy, and Post-Pregnancy Period
3.1. Benefits of Physical Activity
3.2. Sedentary Behavior and Physical Inactivity Disadvantages
3.3. Proposal for Intervention
4. Physical Activity and Inactivity in Perimenopause and Beyond
4.1. Benefits of Physical Activity
4.2. Sedentary Behavior and Physical Inactivity Disadvantages
4.3. Proposal for Intervention
5. Physical Activity and Inactivity in CVD
5.1. Benefits of Physical Activity
5.2. Sedentary Behavior and Physical Inactivity Disadvantages
5.3. Proposal for Intervention
6. Current Evidence on Physical Activity and Inactivity in the COVID-19 Pandemic
7. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Beaton, A.Z.; Boehme, A.K.; Buxton, A.E.; et al. Heart Disease and Stroke Statistics—2023 Update: A Report From the American Heart Association. Circulation 2023, 147, e93–e621. [Google Scholar] [CrossRef] [PubMed]
- Salerni, S.; Di Francescomarino, S.; Cadeddu, C.; Acquistapace, F.; Maffei, S.; Gallina, S. The different role of sex hormones on female cardiovascular physiology and function: Not only oestrogens. Eur. J. Clin. Investig. 2015, 45, 634–645. [Google Scholar] [CrossRef]
- Garcia, M.; Mulvagh, S.L.; Bairey Merz, C.N.; Buring, J.E.; Manson, J.E. Cardiovascular Disease in Women: Clinical Perspectives. Circ. Res. 2016, 118, 1273–1293. [Google Scholar] [CrossRef] [Green Version]
- Cho, L.; Davis, M.; Elgendy, I.; Epps, K.; Lindley, K.J.; Mehta, P.K.; Michos, E.D.; Minissian, M.; Pepine, C.; Vaccarino, V.; et al. Summary of Updated Recommendations for Primary Prevention of Cardiovascular Disease in Women: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 2602–2618. [Google Scholar] [CrossRef]
- Soto-Lagos, R.; Cortes-Varas, C.; Freire-Arancibia, S.; Energici, M.-A.; McDonald, B. How Can Physical Inactivity in Girls Be Explained? A Socioecological Study in Public, Subsidized, and Private Schools. Int. J. Environ. Res. Public Health 2022, 19, 9304. [Google Scholar] [CrossRef]
- Kohl, H.W., 3rd; Craig, C.L.; Lambert, E.V.; Inoue, S.; Alkandari, J.R.; Leetongin, G.; Kahlmeier, S. The pandemic of physical inactivity: Global action for public health. Lancet 2012, 380, 294–305. [Google Scholar] [CrossRef] [Green Version]
- Tremblay, M.S.; Aubert, S.; Barnes, J.D.; Saunders, T.J.; Carson, V.; Latimer-Cheung, A.E.; Chastin, S.F.; Altenburg, T.M.; Chinapaw, M.J. Sedentary Behavior Research Network (SBRN)—Terminology Consensus Project process and outcome. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riccioni, G.; Scotti, L.; Guagnano, M.T.; Bosco, G.; Bucciarelli, V.; Di Ilio, E.; Speranza, L.; Martini, F.; Bucciarelli, T. Physical exercise reduces synthesis of ADMA, SDMA, and L-Arg. Front. Biosci. (Elite Ed.) 2015, 7, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Pan, X.; Li, G.; Chatterjee, E.; Xiao, J. Physical Exercise Protects Against Endothelial Dysfunction in Cardiovascular and Metabolic Diseases. J. Cardiovasc. Transl. Res. 2022, 15, 604–620. [Google Scholar] [CrossRef]
- Falone, S.; Mirabilio, A.; Passerini, A.; Izzicupo, P.; Cacchio, M.; Gallina, S.; Baldassarre, A.D.; Amicarelli, F. Aerobic Performance and Antioxidant Protection in Runners. Int. J. Sports Med. 2009, 30, 782–788. [Google Scholar] [CrossRef] [PubMed]
- Reiner, M.; Niermann, C.; Jekauc, D.; Woll, A. Long-term health benefits of physical activity—A systematic review of longitudinal studies. BMC Public Health 2013, 13, 813. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.H.; Rezende, L.F.; Joh, H.-K.; Keum, N.; Ferrari, G.; Rey-Lopez, J.P.; Rimm, E.B.; Tabung, F.K.; Giovannucci, E.L. Long-Term Leisure-Time Physical Activity Intensity and All-Cause and Cause-Specific Mortality: A Prospective Cohort of US Adults. Circulation 2022, 146, 523–534. [Google Scholar] [CrossRef]
- Singh, B.; Olds, T.; Curtis, R.; Dumuid, D.; Virgara, R.; Watson, A.; Szeto, K.; O’Connor, E.; Ferguson, T.; Eglitis, E.; et al. Effectiveness of physical activity interventions for improving depression, anxiety and distress: An overview of systematic reviews. Br. J. Sports Med. 2023; Online ahead of print. [Google Scholar] [CrossRef]
- De Cocker, K.; Biddle, S.J.H.; Teychenne, M.J.; Bennie, J.A. Is all activity equal? Associations between different domains of physical activity and depressive symptom severity among 261,121 European adults. Depress. Anxiety 2021, 38, 950–960. [Google Scholar] [CrossRef]
- Dugan, S.A.; Bromberger, J.; Segawa, E.; Avery, E.; Sternfeld, B. Association between Physical Activity and Depressive Symptoms: Midlife Women in SWAN. Med. Sci. Sports Exerc. 2015, 47, 335–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azar, D.; Ball, K.; Salmon, J.; Cleland, V.J. Physical activity correlates in young women with depressive symptoms: A qualitative study. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.; Luo, Y.; Qin, S.; Xu, C.; Yue, J.; Nie, M.; Fan, L. The effects of leisure time physical activity on depression among older women depend on intensity and frequency. J. Affect. Disord. 2021, 295, 822–830. [Google Scholar] [CrossRef]
- World Health Organization. World Health Organization Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Santos, A.C.; Willumsen, J.; Meheus, F.; Ilbawi, A.; Bull, F.C. The cost of inaction on physical inactivity to public health-care systems: A population-attributable fraction analysis. Lancet Glob. Health 2023, 11, e32–e39. [Google Scholar] [CrossRef] [PubMed]
- Katzmarzyk, P.T.; Friedenreich, C.; Shiroma, E.J.; Lee, I.-M. Physical inactivity and non-communicable disease burden in low-income, middle-income and high-income countries. Br. J. Sports Med. 2022, 56, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.J.; Pavey, T.; Bauman, A.E. Comparing population attributable risks for heart disease across the adult lifespan in women. Br. J. Sports Med. 2015, 49, 1069–1076. [Google Scholar] [CrossRef] [Green Version]
- Milton, K.; Gomersall, S.R.; Schipperijn, J. Let’s get moving: The Global Status Report on Physical Activity 2022 calls for urgent action. J. Sport Health Sci. 2023, 12, 5–6. [Google Scholar] [CrossRef]
- Shiroma, E.J.; Lee, I.M. Physical activity and cardiovascular health: Lessons learned from epidemiological studies across age, gender, and race/ethnicity. Circulation 2010, 122, 743–752. [Google Scholar] [CrossRef] [Green Version]
- Chomistek, A.K.; Cook, N.R.; Rimm, E.B.; Ridker, P.M.; Buring, J.E.; Lee, I.M. Physical Activity and Incident Cardiovascular Disease in Women: Is the Relation Modified by Level of Global Cardiovascular Risk? J. Am. Heart Assoc. 2018, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Sandborg, J.; Migueles, J.H.; Söderström, E.; Blomberg, M.; Henriksson, P.; Löf, M. Physical Activity, Body Composition, and Cardiometabolic Health during Pregnancy: A Compositional Data Approach. Med. Sci. Sports Exerc. 2022, 54, 2054–2063. [Google Scholar] [CrossRef]
- Di Giuseppe, D.; Bottai, M.; Askling, J.; Wolk, A. Physical activity and risk of rheumatoid arthritis in women: A population-based prospective study. Thromb. Haemost. 2015, 17, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Y.; Rogers, C.J. Physical Activity and Breast Cancer Prevention: Possible Role of Immune Mediators. Front. Nutr. 2020, 7, 557997. [Google Scholar] [CrossRef] [PubMed]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob. Health 2018, 6, e1077–e1086. [Google Scholar] [CrossRef] [Green Version]
- Whitfield, G.P.; Hyde, E.T.; Carlson, S.A. Participation in Leisure-Time Aerobic Physical Activity Among Adults, National Health Interview Survey, 1998–2018. J. Phys. Act. Health 2021, 18, S25–S36. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Special Eurobarometer SP525: Sport and Physical Activity. 2022. Available online: https://europa.eu/eurobarometer/surveys/detail/2668 (accessed on 21 September 2022).
- Donoso, B.; Reina, A.; Alvarez-Sotomayor, A. Women and competitive sport: Perceived barriers to equality. Cult. Cienc. Deporte 2022, 17, 54. [Google Scholar]
- Moreno-Llamas, A.; García-Mayor, J.; De la Cruz-Sánchez, E. Gender inequality is associated with gender differences and women participation in physical activity. J. Public Health 2022, 44, e519–e526. [Google Scholar] [CrossRef]
- Cla, T. Time to tackle the physical activity gender gap. Lancet Public Health 2019, 4, e360. [Google Scholar]
- Boreham, C.; Riddoch, C. The physical activity, fitness and health of children. J. Sports Sci. 2001, 19, 915–929. [Google Scholar] [CrossRef]
- Loprinzi, P.D.; Cardinal, B.J.; Loprinzi, K.L.; Lee, H. Benefits and Environmental Determinants of Physical Activity in Children and Adolescents. Obes. Facts 2012, 5, 597–610. [Google Scholar] [CrossRef]
- van Sluijs, E.M.; Ekelund, U.; Crochemore-Silva, I.; Guthold, R.; Ha, A.; Lubans, D.; Oyeyemi, A.L.; Ding, D.; Katzmarzyk, P.T. Physical activity behaviours in adolescence: Current evidence and opportunities for intervention. Lancet 2021, 398, 429–442. [Google Scholar] [CrossRef]
- Blair, S.N. Exercise and Fitness in Childhood: Implications for a Lifetime of Health. In Perspectives in Exercise Science and Sports Medicine, vol.2: Youth, Exercise and Sport; Gisolfi, C.V., Lamb, D.R., Eds.; Benchmark Press: Indianapolis, IN, USA, 1989; pp. 401–430. [Google Scholar]
- Janssen, I.; LeBlanc, A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, J.R.; Huybrechts, I.; Cuenca-García, M.; Artero, E.G.; Labayen, I.; Meirhaeghe, A.; Vicente-Rodriguez, G.; Polito, A.; Manios, Y.; González-Gross, M.; et al. Cardiorespiratory fitness and ideal cardiovascular health in European adolescents. Heart 2015, 101, 766–773. [Google Scholar] [CrossRef] [Green Version]
- Moliner-Urdiales, D.; on behalf of the HELENA Study Group; Ruiz, J.R.; Ortega, F.B.; Rey-Lopez, J.P.; Vicente-Rodriguez, G.; España-Romero, V.; Munguía-Izquierdo, D.; Castillo, M.J.; Sjöström, M.; et al. Association of objectively assessed physical activity with total and central body fat in Spanish adolescents; The HELENA Study. Int. J. Obes. 2009, 33, 1126–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez-Pavón, D.; Fernández-Vázquez, A.; Alexy, U.; Pedrero, R.; Cuenca-García, M.; Polito, A.; Vanhelst, J.; Manios, Y.; Kafatos, A.; Molnar, D.; et al. Association of objectively measured physical activity with body components in European adolescents. BMC Public Health 2013, 13, 667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rendo-Urteaga, T.; de Moraes, A.C.F.; Collese, T.S.; Manios, Y.; Hagströmer, M.; Sjöström, M.; Kafatos, A.; Widhalm, K.; Vanhelst, J.; Marcos, A.; et al. The combined effect of physical activity and sedentary behaviors on a clustered cardio-metabolic risk score: The Helena study. Int. J. Cardiol. 2015, 186, 186–195. [Google Scholar] [CrossRef]
- Jiménez-Pavón, D.; Ruiz, J.R.; Ortega, F.B.; Martínez-Gómez, D.; Moreno, S.; Urzanqui, A.; Gottrand, F.; Molnár, D.; Castillo, M.J.; Sjöström, M.; et al. Physical activity and markers of insulin resistance in adolescents: Role of cardiorespiratory fitness levels—The HELENA study. Pediatr. Diabetes 2013, 14, 249–258. [Google Scholar] [CrossRef]
- Absil, H.; Baudet, L.; Robert, A.; Lysy, P.A. Benefits of physical activity in children and adolescents with type 1 diabetes: A systematic review. Diabetes Res. Clin. Pract. 2019, 156, 107810. [Google Scholar] [CrossRef]
- Saunders, T.J.; Gray, C.E.; Poitras, V.J.; Chaput, J.-P.; Janssen, I.; Katzmarzyk, P.T.; Olds, T.; Gorber, S.C.; Kho, M.E.; Sampson, M.; et al. Combinations of physical activity, sedentary behaviour and sleep: Relationships with health indicators in school-aged children and youth. Appl. Physiol. Nutr. Metab. 2016, 41, S283–S293. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, A.P.L.M.; de Azevedo, C.V.M.; Santos, R.M.R. Sleep and health-related physical fitness in children and adolescents: A systematic review. Sleep Sci. 2021, 14, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Ekstedt, M.; Nyberg, G.; Ingre, M.; Marcus, C. Sleep, physical activity and BMI in six to ten-year-old children measured by accelerometry: A cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Tanha, T.; Wollmer, P.; Thorsson, O.; Karlsson, M.K.; Lindén, C.; Andersen, L.B.; Dencker, M. Lack of physical activity in young children is related to higher composite risk factor score for cardiovascular disease. Acta Paediatr. 2011, 100, 717–721. [Google Scholar] [CrossRef]
- Gooding, H.C.; Ning, H.; Perak, A.M.; Allen, N.; Lloyd-Jones, D.; Moore, L.L.; Singer, M.R.; de Ferranti, S.D. Cardiovascular health decline in adolescent girls in the NGHS cohort, 1987–1997. Prev. Med. Rep. 2020, 20, 101276. [Google Scholar] [CrossRef]
- Wilson, D. Is Atherosclerosis a Pediatric Disease? Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com Inc.: South Dartmouth, MA, USA, 2020. [Google Scholar]
- Ortega, F.B.; Ruiz, J.R.; Castillo, M.J. Physical activity, physical fitness, and overweight in children and adolescents: Evidence from epidemiologic studies. Endocrinol. Nutr. (Engl. Ed.) 2013, 60, 458–469. [Google Scholar] [CrossRef] [PubMed]
- Raitakari, O.T.; Porkka, K.V.; Taimela, S.; Telama, R.; Räsänen, L.; Viikari, J.S. Effects of persistent physical activity and inactivity on coronary risk factors in children and young adults. The Cardiovascular Risk in Young Finns Study. Am. J. Epidemiol. 1994, 140, 195–205. [Google Scholar] [CrossRef]
- Aatola, H.; Hutri-Kähönen, N.; Juonala, M.; Viikari, J.S.; Hulkkonen, J.; Laitinen, T.; Taittonen, L.; Lehtimäki, T.; Raitakari, O.T.; Kahonen, M. Lifetime risk factors and arterial pulse wave velocity in adulthood: The cardiovascular risk in young Finns study. Hypertension 2010, 55, 806–811. [Google Scholar] [CrossRef] [Green Version]
- Raitakari, O.T.; Juonala, M.; Kähönen, M.; Taittonen, L.; Laitinen, T.; Mäki-Torkko, N.; Järvisalo, M.J.; Uhari, M.; Jokinen, E.; Rönnemaa, T.; et al. Cardiovascular risk factors in childhood and carotid artery intima-media thickness in adulthood: The Cardiovascular Risk in Young Finns Study. JAMA 2003, 290, 2277–2283. [Google Scholar] [CrossRef]
- Lounassalo, I.; Hirvensalo, M.; Palomäki, S.; Salin, K.; Tolvanen, A.; Pahkala, K.; Rovio, S.; Fogelholm, M.; Yang, X.; Hutri-Kähönen, N.; et al. Life-course leisure-time physical activity trajectories in relation to health-related behaviors in adulthood: The Cardiovascular Risk in Young Finns study. BMC Public Health 2021, 21, 533. [Google Scholar] [CrossRef]
- Reilly, J.J.; Barnes, J.; Gonzalez, S.; Huang, W.Y.; Manyanga, T.; Tanaka, C.; Tremblay, M.S. Recent Secular Trends in Child and Adolescent Physical Activity and Sedentary Behavior Internationally: Analyses of Active Healthy Kids Global Alliance Global Matrices 1.0 to 4.0. J. Phys. Act. Health 2022, 19, 729–736. [Google Scholar] [CrossRef]
- Inchley, J.; Currie, D.; Budisavljevic, S.; Torsheim, T.; Jastad, A.; Cosma, A. Spotlight on Adolescent Health and Well-Being. Findings from the 2017/2018 Health Behaviour in School-Aged Children (HBSC) Survey in Europe and Canada; International Report. Key findings; WHO Regional Office for Europe: Copenhagen, Danmark, 2020; Volume 1. [Google Scholar]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Global trends in insufficient physical activity among adolescents: A pooled analysis of 298 population-based surveys with 1.6 million participants. Lancet Child. Adolesc. Health 2020, 4, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.F.; Bull, F.; Guthold, R.; Heath, G.W.; Inoue, S.; Kelly, P.; Oyeyemi, A.L.; Perez, L.G.; Richards, J.; Hallal, P.C. Progress in physical activity over the Olympic quadrennium. Lancet 2016, 388, 1325–1336. [Google Scholar] [CrossRef]
- Dumith, S.C.; Gigante, D.P.; Domingues, M.R.; Kohl, H.W., III. Physical activity change during adolescence: A systematic review and a pooled analysis. Int. J. Epidemiol. 2011, 40, 685–698. [Google Scholar] [CrossRef] [Green Version]
- Kwan, M.Y.; Cairney, J.; Faulkner, G.; Pullenayegum, E. Physical Activity and Other Health-Risk Behaviors During the Transition Into Early Adulthood: A Longitudinal Cohort Study. Am. J. Prev. Med. 2012, 42, 14–20. [Google Scholar] [CrossRef]
- Wenthe, P.J.; Janz, K.F.; Levy, S.M. Gender similarities and differences in factors associated with adolescent moderate-vigorous physical activity. Pediatr. Exerc. Sci. 2009, 21, 291–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onagbiye, S.O.; Tshwaro, R.M.T.; Barry, A.; Marie, Y. Physical Activity and Non-communicable Disease Risk Factors: Knowledge and Perceptions of Youth in a Low Resourced Community in the Western Cape. Open Public Health J. 2019, 12, 558–566. [Google Scholar] [CrossRef] [Green Version]
- Ricardo, L.I.C.; Wendt, A.; Costa, C.D.S.; Mielke, G.I.; Brazo-Sayavera, J.; Khan, A.; Kolbe-Alexander, T.L.; Crochemore-Silva, I. Gender inequalities in physical activity among adolescents from 64 Global South countries. J. Sport Health Sci. 2022, 11, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Chaput, J.-P.; Willumsen, J.; Bull, F.; Chou, R.; Ekelund, U.; Firth, J.; Jago, R.; Ortega, F.B.; Katzmarzyk, P.T. 2020 WHO guidelines on physical activity and sedentary behaviour for children and adolescents aged 5–17 years: Summary of the evidence. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 141. [Google Scholar] [CrossRef]
- Andriyani, F.D.; Biddle, S.J.; Priambadha, A.A.; Thomas, G.; De Cocker, K. Physical activity and sedentary behaviour of female adolescents in Indonesia: A multi-method study on duration, pattern and context. J. Exerc. Sci. Fit. 2022, 20, 128–139. [Google Scholar] [CrossRef]
- Mavrovouniotis, F. Inactivity in Childhood and Adolescence: A Modern Lifestyle Associated with Adverse Health Consequences. Sport Sci. Rev. 2012, 21, 75–99. [Google Scholar] [CrossRef]
- Guerrero, M.A.; Puerta, L.G. Advancing Gender Equality in Schools through Inclusive Physical Education and Teaching Training: A Systematic Review. Societies 2023, 13, 64. [Google Scholar] [CrossRef]
- Shackleton, N.; Jamal, F.; Viner, R.M.; Dickson, K.; Patton, G.; Bonell, C. School-Based Interventions Going Beyond Health Education to Promote Adolescent Health: Systematic Review of Reviews. J. Adolesc. Health 2016, 58, 382–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenhart, C.M.; Hanlon, A.; Kang, Y.; Daly, B.P.; Brown, M.D.; Patterson, F. Gender Disparity in Structured Physical Activity and Overall Activity Level in Adolescence: Evaluation of Youth Risk Behavior Surveillance Data. ISRN Public Health 2012, 2012, 674936. [Google Scholar] [CrossRef] [Green Version]
- van Sluijs, E.M.F.; McMinn, A.M.; Griffin, S.J. Effectiveness of interventions to promote physical activity in children and adolescents: Systematic review of controlled trials. BMJ 2007, 335, 703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okely, A.D.; Lubans, D.R.; Morgan, P.J.; Cotton, W.; Peralta, L.; Miller, J.; Batterham, M.; Janssen, X. Promoting physical activity among adolescent girls: The Girls in Sport group randomized trial. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 81. [Google Scholar] [CrossRef] [Green Version]
- James, M.; Todd, C.; Scott, S.; Stratton, G.; McCoubrey, S.; Christian, D.; Halcox, J.; Audrey, S.; Ellins, E.; Anderson, S.; et al. Teenage recommendations to improve physical activity for their age group: A qualitative study. BMC Public Health 2018, 18, 372. [Google Scholar] [CrossRef]
- Lloyd-Jones, D.M.; Allen, N.B.; Anderson, C.A.; Black, T.; Brewer, L.C.; Foraker, R.E.; Grandner, M.A.; Lavretsky, H.; Perak, A.M.; Sharma, G.; et al. Life’s Essential 8: Updating and Enhancing the American Heart Association’s Construct of Cardiovascular Health: A Presidential Advisory From the American Heart Association. Circulation 2022, 146, e18–e43. [Google Scholar] [CrossRef]
- Nagpal, S.T.; Mottola, M.F. Physical activity throughout pregnancy is key to preventing chronic disease. Reproduction 2020, 160, R111–R118. [Google Scholar] [CrossRef]
- Truzzi, M.L.; Ballerini Puviani, M.; Tripodi, A.; Toni, S.; Farinetti, A.; Nasi, M.; Mattioli, A.V. Mediterranean Diet as a model of sustainable, resilient and healthy diet. Prog. Nutr. 2020, 22, 388–394. [Google Scholar]
- Sutton, E.F.; Gilmore, L.A.; Dunger, D.B.; Heijmans, B.T.; Hivert, M.F.; Ling, C.; Martinez, J.A.; Ozanne, S.E.; Simmons, R.A.; Szyf, M.; et al. Developmental programming: State-of-the-science and future directions-Summary from a Pennington Biomedical symposium. Obesity (Silver Spring) 2016, 24, 1018–1026. [Google Scholar] [CrossRef] [Green Version]
- Palinski, W. Effect of Maternal Cardiovascular Conditions and Risk Factors on Offspring Cardiovascular Disease. Circulation 2014, 129, 2066–2077. [Google Scholar] [CrossRef] [Green Version]
- Alexander, B.T.; Dasinger, J.H.; Intapad, S. Fetal Programming and Cardiovascular Pathology. Compr. Physiol. 2015, 5, 997–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benschop, L.; Schalekamp-Timmermans, S.; van Lennep, J.E.R.; Jaddoe, V.W.; Steegers, E.A.; Ikram, M.K. Cardiovascular Risk Factors Track From Mother to Child. J. Am. Heart Assoc. 2018, 7, e009536. [Google Scholar] [CrossRef] [Green Version]
- Witvrouwen, I.; Mannaerts, D.; Van Berendoncks, A.M.; Jacquemyn, Y.; Van Craenenbroeck, E.M. The Effect of Exercise Training During Pregnancy to Improve Maternal Vascular Health: Focus on Gestational Hypertensive Disorders. Front. Physiol. 2020, 11, 450. [Google Scholar] [CrossRef]
- Cai, C.; Busch, S.; Wang, R.; Sivak, A.; Davenport, M.H. Physical activity before and during pregnancy and maternal mental health: A systematic review and meta-analysis of observational studies. J. Affect. Disord. 2022, 309, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Catov, J.M.; Parker, C.B.; Gibbs, B.B.; Bann, C.M.; Carper, B.; Silver, R.M.; Simhan, H.N.; Parry, S.; Chung, J.H.; Haas, D.M.; et al. Patterns of leisure-time physical activity across pregnancy and adverse pregnancy outcomes. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 68. [Google Scholar] [CrossRef] [Green Version]
- Clapp, J.F. Long-term outcome after exercising throughout pregnancy: Fitness and cardiovascular risk. Am. J. Obstet. Gynecol. 2008, 199, 489.e1–489.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rich-Edwards, J.W.; Stuart, J.; Skurnik, G.; Roche, A.T.; Tsigas, E.; Fitzmaurice, G.M.; Wilkins-Haug, L.E.; Levkoff, S.E.; Seely, E.W. Randomized Trial to Reduce Cardiovascular Risk in Women with Recent Preeclampsia. J. Women’s Health 2019, 28, 1493–1504. [Google Scholar] [CrossRef] [PubMed]
- Jowell, A.R.; Sarma, A.A.; Michos, M.G.E.D.; Vaught, A.J.; Natarajan, P.; Powe, C.E.; Honigberg, M.C. Interventions to mitigate cardiovascular disease risk after adverse pregnancy outcomes: A review. JAMA Cardiol. 2022, 7, 346–355. [Google Scholar] [CrossRef]
- Hamann, V.; Deruelle, P.; Enaux, C.; Deguen, S.; Kihal-Talantikite, W. Physical activity and gestational weight gain: A systematic review of observational studies. BMC Public Health 2022, 22, 1951. [Google Scholar] [CrossRef] [PubMed]
- Ackerman-Banks, C.M.; Lipkind, H.S.; Palmsten, K.; Pfeiffer, M.; Gelsinger, C.; Ahrens, K.A. Association of Prenatal Depression With New Cardiovascular Disease Within 24 Months Postpartum. J. Am. Hearth Assoc. 2023, 12, e028133. [Google Scholar] [CrossRef] [PubMed]
- Cattane, N.; Räikkönen, K.; Anniverno, R.; Mencacci, C.; Riva, M.A.; Pariante, C.M.; Cattaneo, A. Depression, obesity and their comorbidity during pregnancy: Effects on the offspring’s mental and physical health. Mol. Psychiatry 2021, 26, 462–481. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.J.; Hayman, M.; Moran, L.J.; Redman, L.M.; Harrison, C.L. The Role of Physical Activity in Preconception, Pregnancy and Postpartum Health. Semin. Reprod. Med. 2016, 34, e28–e37. [Google Scholar] [CrossRef]
- Moholdt, T.; Hawley, J.A. Maternal Lifestyle Interventions: Targeting Preconception Health. Trends Endocrinol. Metab. 2020, 31, 561–569. [Google Scholar] [CrossRef]
- Khan, S.S.; Brewer, L.C.; Canobbio, M.M.; Cipolla, M.J.; Grobman, W.A.; Lewey, J.; Michos, E.D.; Miller, E.C.; Perak, A.M.; Wei, G.S.; et al. Optimizing Prepregnancy Cardiovascular Health to Improve Outcomes in Pregnant and Postpartum Individuals and Offspring: A Scientific Statement From the American Heart Association. Circulation 2023, 147, e76–e91. [Google Scholar] [CrossRef]
- Freaney, P.M.; Harrington, K.; Molsberry, R.; Perak, A.M.; Wang, M.C.; Grobman, W.; Greenland, P.; Allen, N.B.; Capewell, S.; O’flaherty, M.; et al. Temporal Trends in Adverse Pregnancy Outcomes in Birthing Individuals Aged 15 to 44 Years in the United States, 2007 to 2019. J. Am. Heart Assoc. 2022, 11, e025050. [Google Scholar] [CrossRef]
- Perak, A.M.; Ning, H.; Khan, S.S.; Van Horn, L.V.; Grobman, W.A.; Lloyd-Jones, D.M. Cardiovascular Health Among Pregnant Women, Aged 20 to 44 Years, in the United States. J. Am. Heart Assoc. 2020, 9, e015123. [Google Scholar] [CrossRef]
- Silva-Jose, C.; Sánchez-Polán, M.; Barakat, R.; Gil-Ares, J.; Refoyo, I. Level of Physical Activity in Pregnant Populations from Different Geographic Regions: A Systematic Review. J. Clin. Med. 2022, 11, 4638. [Google Scholar] [CrossRef]
- Kuhrt, K.; Hezelgrave, N.L.; Shennan, A.H. Exercise in pregnancy. Obstet. Gynaecol. 2015, 17, 281–287. [Google Scholar] [CrossRef]
- Meander, L.; Lindqvist, M.; Mogren, I.; Sandlund, J.; West, C.E.; Domellöf, M. Physical activity and sedentary time during pregnancy and associations with maternal and fetal health outcomes: An epidemiological study. BMC Pregnancy Childbirth 2021, 21, 166. [Google Scholar] [CrossRef] [PubMed]
- Parikh, N.I.; Gonzalez, J.M.; Anderson, C.A.; Judd, S.E.; Rexrode, K.M.; Hlatky, M.A.; Gunderson, E.P.; Stuart, J.J.; Vaidya, D. Adverse Pregnancy Outcomes and Cardiovascular Disease Risk: Unique Opportunities for Cardiovascular Disease Prevention in Women: A Scientific Statement from the American Heart Association. Circulation 2021, 143, e902–e916. [Google Scholar] [CrossRef] [PubMed]
- Leskinen, T.; Stenholm, S.; Heinonen, O.J.; Pulakka, A.; Aalto, V.; Kivimäki, M.; Vahtera, J. Change in physical activity and accumulation of cardiometabolic risk factors. Prev. Med. 2018, 112, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Barrett, P.M.; McCarthy, F.P.; Kublickiene, K.; Cormican, S.; Judge, C.; Evans, M.; Kublickas, M.; Perry, I.J.; Stenvinkel, P.; Khashan, A.S. Faculty Opinions recommendation of Adverse Pregnancy Outcomes and Long-term Maternal Kidney Disease: A Systematic Review and Meta-analysis. JAMA Netw. Open 2020, 3, e1920964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ACOG Practice Bulletin No. 190: Gestational Diabetes Mellitus. Obstet. Gynecol. 2018, 131, e49–e64.
- Duckitt, K.; Harrington, D. Risk factors for pre-eclampsia at antenatal booking: Systematic review of controlled studies. BMJ 2005, 330, 565. [Google Scholar] [CrossRef] [Green Version]
- Mosca, L.; Benjamin, E.J.; Berra, K.; Bezanson, J.L.; Dolor, R.J.; Lloyd-Jones, D.M.; Newby, L.K.; Piña, I.L.; Roger, V.L.; Shaw, L.J.; et al. Effectiveness-Based Guidelines for the Prevention of Cardiovascular Disease in Women—2011 Update: A Guideline From the American Heart Association. Circulation 2011, 123, 1243–1262. [Google Scholar] [CrossRef] [Green Version]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; De Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e1082–e1143. [Google Scholar]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Savvaki, D.; Taousani, E.; Goulis, D.G.; Tsirou, E.; Voziki, E.; Douda, H.; Nikolettos, N.; Tokmakidis, S.P. Guidelines for exercise during normal pregnancy and gestational diabetes: A review of international recommendations. Hormones 2018, 17, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Hayman, M.; Brown, W.J.; Brinson, A.; Budzynski-Seymour, E.; Bruce, T.; Evenson, K.R. Public health guidelines for physical activity during pregnancy from around the world: A scoping review. Br. J. Sports Med. 2022. [Google Scholar] [CrossRef] [PubMed]
- Sternfeld, B.; Dugan, S. Physical Activity and Health During the Menopausal Transition. Obstet. Gynecol. Clin. N. Am. 2011, 38, 537–566. [Google Scholar] [CrossRef] [Green Version]
- Mattioli, A.V.; Moscucci, F.; Sciomer, S.; Maffei, S.; Nasi, M.; Pinti, M.; Bucciarelli, V.; Dei Cas, A.; Parati, G.; Ciccone, M.M.; et al. Cardiovascular prevention in women: An update by the Italian Society of Cardiology working group on ‘Prevention, hypertension and peripheral disease’. J. Cardiovasc. Med. (Hagerstown) 2023, 24 (Suppl. S2), e147–e155. [Google Scholar] [CrossRef]
- Centers for Disease, C. and Prevention, Trends in leisure-time physical inactivity by age, sex, and race/ethnicity--United States, 1994-2004. MMWR Morb. Mortal Wkly. Rep. 2005, 54, 991–994. [Google Scholar]
- Bucciarelli, V.; Bianco, F.; Mucedola, F.; Di Blasio, A.; Izzicupo, P.; Tuosto, D.; Ghinassi, B.; Bucci, I.; Napolitano, G.; Di Baldassarre, A.; et al. Effect of Adherence to Physical Exercise on Cardiometabolic Profile in Postmenopausal Women. Int. J. Environ. Res. Public Health 2021, 18, 656. [Google Scholar] [CrossRef]
- Izzicupo, P.; D’Amico, M.A.; Bascelli, A.; Di Fonso, A.; D’angelo, E.; Di Blasio, A.; Bucci, I.; Napolitano, G.; Gallina, S.; Di Baldassarre, A. Walking training affects dehydroepiandrosterone sulfate and inflammation independent of changes in spontaneous physical activity. Menopause 2013, 20, 455–463. [Google Scholar] [CrossRef]
- Izzicupo, P.; Ghinassi, B.; D’Amico, M.A.; Di Blasio, A.; Gesi, M.; Napolitano, G.; Gallina, S.; Di Baldassarre, A. Effects of ACE I/D Polymorphism and Aerobic Training on the Immune–Endocrine Network and Cardiovascular Parameters of Postmenopausal Women. J. Clin. Endocrinol. Metab. 2013, 98, 4187–4194. [Google Scholar] [CrossRef] [Green Version]
- Izzicupo, P.; D’amico, M.A.; Di Blasio, A.; Napolitano, G.; Nakamura, F.Y.; Di Baldassarre, A.; Ghinassi, B. Aerobic Training Improves Angiogenic Potential Independently of Vascular Endothelial Growth Factor Modifications in Postmenopausal Women. Front. Endocrinol. 2017, 8, 363. [Google Scholar] [CrossRef] [Green Version]
- Di Blasio, A.; Izzicupo, P.; Di Baldassarre, A.; Gallina, S.; Bucci, I.; Giuliani, C.; Di Santo, S.; Di Iorio, A.; Ripari, P.; Napolitano, G. Walking training and cortisol to DHEA-S ratio in postmenopause: An intervention study. Women Health 2018, 58, 387–402. [Google Scholar] [CrossRef]
- Di Blasio, A.; Izzicupo, P.; D’angelo, E.; Melanzi, S.; Bucci, I.; Gallina, S.; Di Baldassarre, A.; Napolitano, G. Effects of Patterns of Walking Training on Metabolic Health of Untrained Postmenopausal Women. J. Aging Phys. Act. 2014, 22, 482–489. [Google Scholar] [CrossRef]
- Gudmundsdottir, S.L.; Flanders, W.D.; Augestad, L.B. Physical activity and cardiovascular risk factors at menopause: The Nord-Trøndelag health study. Climacteric 2013, 16, 438–446. [Google Scholar] [CrossRef]
- Hyvarinen, M.; Juppi, H.K.; Taskinen, S.; Karppinen, J.E.; Karvinen, S.; Tammelin, T.H.; Kovanen, V.; Aukee, P.; Kujala, U.M.; Rantalainen, T.; et al. Metabolic health, menopause, and physical activity-a 4-year follow-up study. Int. J. Obes. (Lond.) 2022, 46, 544–554. [Google Scholar] [CrossRef]
- Juppi, H.-K.; Sipilä, S.; Cronin, N.J.; Karvinen, S.; Karppinen, J.E.; Tammelin, T.H.; Aukee, P.; Kovanen, V.; Kujala, U.M.; Laakkonen, E.K. Role of Menopausal Transition and Physical Activity in Loss of Lean and Muscle Mass: A Follow-Up Study in Middle-Aged Finnish Women. J. Clin. Med. 2020, 9, 1588. [Google Scholar] [CrossRef]
- Khalafi, M.; Sakhaei, M.H.; Maleki, A.H.; Rosenkranz, S.K.; Pourvaghar, M.J.; Fang, Y.; Korivi, M. Influence of exercise type and duration on cardiorespiratory fitness and muscular strength in post-menopausal women: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2023, 10, 1190187. [Google Scholar] [CrossRef] [PubMed]
- Di Blasio, A.; Bucci, I.; Napolitano, G.; Melanzi, S.; Izzicupo, P.; Di Donato, F.; Tonizzo, C.; D’Angelo, E.; Ricci, G.; Ripari, P. Characteristics of spontaneous physical activity and executive functions in postmenopause. Minerva Med. 2013, 104, 61–74. [Google Scholar] [PubMed]
- Wu, S.; Shi, Y.; Zhao, Q.; Men, K. The relationship between physical activity and the severity of menopausal symptoms: A cross-sectional study. BMC Women’s Health 2023, 23, 212. [Google Scholar] [CrossRef] [PubMed]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; et al. Heart Disease and Stroke Statistics—2022 Update: A Report From the American Heart Association. Circulation 2022, 145, e153–e639. [Google Scholar] [CrossRef]
- Lee, Y.-S. Gender Differences in Physical Activity and Walking Among Older Adults. J. Women Aging 2005, 17, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Izzicupo, P.; Di Blasio, A.; Di Credico, A.; Gaggi, G.; Vamvakis, A.; Napolitano, G.; Ricci, F.; Gallina, S.; Ghinassi, B.; Di Baldassarre, A. The Length and Number of Sedentary Bouts Predict Fibrinogen Levels in Postmenopausal Women. Int. J. Environ. Res. Public Health 2020, 17, 3051. [Google Scholar] [CrossRef]
- Bellettiere, J.; LaMonte, M.J.; Evenson, K.R.; Rillamas-Sun, E.; Kerr, J.; Lee, I.M.; Di, C.; Rosenberg, D.E.; Stefanick, M.L.; Buchner, D.M.; et al. Sedentary behavior and cardiovascular disease in older women: The Objective Physical Activity and Cardiovascular Health (OPACH) Study. Circulation 2019, 139, 1036–1046. [Google Scholar] [CrossRef]
- Dogra, S.; Ashe, M.C.; Biddle, S.J.H.; Brown, W.J.; Buman, M.P.; Chastin, S.; Gardiner, P.A.; Inoue, S.; Jefferis, B.J.; Oka, K.; et al. Sedentary time in older men and women: An international consensus statement and research priorities. Br. J. Sports Med. 2017, 51, 1526–1532. [Google Scholar] [CrossRef] [Green Version]
- Paolisso, P.; Bergamaschi, L.; Saturi, G.; D’Angelo, E.C.; Magnani, I.; Toniolo, S.; Stefanizzi, A.; Rinaldi, A.; Bartoli, L.; Angeli, F.; et al. Secondary Prevention Medical Therapy and Outcomes in Patients With Myocardial Infarction With Non-Obstructive Coronary Artery Disease. Front. Pharmacol. 2019, 10, 1606. [Google Scholar] [CrossRef] [Green Version]
- Di Blasio, A.; Ripari, P.; Bucci, I.; Di Donato, F.; Izzicupo, P.; D’Angelo, E.; Di Nenno, B.; Taglieri, M.; Napolitano, G. Walking training in postmenopause: Effects on both spontaneous physical activity and training-induced body adaptations. Menopause 2012, 19, 23–32. [Google Scholar] [CrossRef]
- Di Blasio, A.; Bucci, I.; Ripari, P.; Giuliani, C.; Izzicupo, P.; Di Donato, F.; D’angelo, E.; Napolitano, G. Lifestyle and high density lipoprotein cholesterol in postmenopause. Climacteric 2014, 17, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Di Blasio, A.; Di Donato, F.; Di Santo, S.; Bucci, I.; Izzicupo, P.; Di Baldassarre, A.; Gallina, S.; Bergamin, M.; Ripari, P.; Napolitano, G. Aerobic physical exercise and negative compensation of non-exercise physical activity in post-menopause: A pilot study. J. Sports Med. Phys. Fit. 2018, 58, 1497–1508. [Google Scholar] [CrossRef]
- Cugusi, L.; Manca, A.; Serpe, R.; Romita, G.; Bergamin, M.; Cadeddu, C.; Solla, P.; Mercuro, G. Effects of a mini-trampoline rebounding exercise program on functional parameters, body composition and quality of life in overweight women. J. Sports Med. Phys. Fit. 2018, 58, 287–294. [Google Scholar] [CrossRef]
- Cugusi, L.; Manca, A.; Bergamin, M.; Di Blasio, A.; Yeo, T.J.; Crisafulli, A.; Mercuro, G. Zumba Fitness and Women’s Cardiovascular Health: A systematic review. J. Cardiopulm. Rehabil. Prev. 2019, 39, 153–160. [Google Scholar] [CrossRef]
- Thomas, A.; Daley, A.J. Women’s views about physical activity as a treatment for vasomotor menopausal symptoms: A qualitative study. BMC Women’s Health 2020, 20, 203. [Google Scholar] [CrossRef] [PubMed]
- Fricke, A.; Rauff, E.; Fink, P.W.; Lark, S.D.; Rowlands, D.S.; Shultz, S.P. Perceptions of a 12-week mini-trampoline exercise intervention for postmenopausal women. J. Sport Exerc. Sci. 2023, 1, 53–59. [Google Scholar]
- Di Blasio, A.; Di Donato, F.; Mastrodicasa, M.; Fabrizio, N.; Di Renzo, D.; Napolitano, G.; Petrella, V.; Gallina, S.; Ripari, P. Effects of the time of day of walking on dietary behaviour, body composition and aerobic fitness in post-menopausal women. J. Sports Med. Phys. Fit. 2010, 50, 196–201. [Google Scholar]
- Paynter, N.P.; LaMonte, M.J.; Manson, J.E.; Martin, L.W.; Phillips, L.S.; Ridker, P.M.; Robinson, J.G.; Cook, N.R. Comparison of Lifestyle-Based and Traditional Cardiovascular Disease Prediction in a Multiethnic Cohort of Nonsmoking Women. Circulation 2014, 130, 1466–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, I.M. Physical activity and coronary heart disease in women: Is “no pain, no gain” passe? JAMA 2001, 285, 1447–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akgöz, A.D.; Ozer, Z.; Gözüm, S. The effect of lifestyle physical activity in reducing cardiovascular disease risk factors (blood pressure and cholesterol) in women: A systematic review. Health Care Women Int. 2021, 42, 4–27. [Google Scholar] [CrossRef]
- Seguin, R.; Buchner, D.M.; Liu, J.; Allison, M.; Manini, T.; Wang, C.Y.; Manson, J.E.; Messina, C.R.; Patel, M.J.; Moreland, L.; et al. Sedentary behavior and mortality in older women: The Women’s Health Initiative. Am. J. Prev. Med. 2014, 46, 122–135. [Google Scholar] [CrossRef] [Green Version]
- Chomistek, A.K.; Manson, J.E.; Stefanick, M.L.; Lu, B.; Sands-Lincoln, M.; Going, S.B.; Garcia, L.; Allison, M.A.; Sims, S.T.; LaMonte, M.J.; et al. Relationship of Sedentary Behavior and Physical Activity to Incident Cardiovascular Disease. JACC 2013, 61, 2346–2354. [Google Scholar] [CrossRef] [Green Version]
- Ekelund, U.; Steene-Johannessen, J.; Brown, W.J.; Fagerland, M.W.; Owen, N.; Powell, K.E.; Bauman, A.; Lee, I.-M. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet 2016, 388, 1302–1310. [Google Scholar] [CrossRef] [Green Version]
- Ekelund, U.; Tarp, J.; Steene-Johannessen, J.; Hansen, B.H.; Jefferis, B.; Fagerland, M.W.; Whincup, P.; Diaz, K.M.; Hooker, S.P.; Chernofsky, A.; et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: Systematic review and harmonised meta-analysis. BMJ 2019, 366, l4570. [Google Scholar] [CrossRef] [Green Version]
- Länsitie, M.; Kangas, M.; Jokelainen, J.; Venojärvi, M.; Timonen, M.; Keinänen-Kiukaanniemi, S.; Korpelainen, R. Cardiovascular disease risk and all-cause mortality associated with accelerometer-measured physical activity and sedentary time—A prospective population-based study in older adults. BMC Geriatr. 2022, 22, 729. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Li, G.; Ren, P.; He, Q.; Pan, Y.; Chen, S.; Zhang, X. Associations between objectively measured patterns of sedentary behaviour and arterial stiffness in Chinese community-dwelling older women. Eur. J. Cardiovasc. Nurs. 2023, 22, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Bakker, E.A.; van Bakel, B.M.; Aengevaeren, W.R.; Meindersma, E.P.; Snoek, J.A.; Waskowsky, W.M.; van Kuijk, A.A.; Jacobs, M.M.; Hopman, M.T.; Thijssen, D.H.; et al. Sedentary behaviour in cardiovascular disease patients: Risk group identification and the impact of cardiac rehabilitation. Int. J. Cardiol. 2021, 326, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Duran, A.T.; Garber, C.E.; Cornelius, T.; Schwartz, J.E.; Diaz, K.M. Patterns of Sedentary Behavior in the First Month After Acute Coronary Syndrome. J. Am. Heart Assoc. 2019, 8, e011585. [Google Scholar] [CrossRef] [Green Version]
- Vasankari, V.; Halonen, J.; Vasankari, T.; Anttila, V.; Airaksinen, J.; Sievänen, H.; Hartikainen, J. Physical activity and sedentary behaviour in secondary prevention of coronary artery disease: A review. Am. J. Prev. Cardiol. 2021, 5, 100146. [Google Scholar] [CrossRef] [PubMed]
- LaMonte, M.J.; Larson, J.C.; Manson, J.E.; Bellettiere, J.; Lewis, C.E.; LaCroix, A.Z.; Bea, J.W.; Johnson, K.C.; Klein, L.; Noel, C.A.; et al. Association of Sedentary Time and Incident Heart Failure Hospitalization in Postmenopausal Women. Circ. Heart Fail. 2020, 13, e007508. [Google Scholar] [CrossRef]
- Visseren, F.L.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Abreu, A.; Frederix, I.; Dendale, P.; Janssen, A.; Doherty, P.; Piepoli, M.F.; Völler, H.; on behalf of the Secondary Prevention and Rehabilitation Section of EAPC Reviewers: Marco Ambrosetti; Davos, C.H. Standardization and quality improvement of secondary prevention through cardiovascular rehabilitation programmes in Europe: The avenue towards EAPC accreditation programme: A position statement of the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology (EAPC). Eur. J. Prev. Cardiol. 2021, 28, 496–509. [Google Scholar] [CrossRef]
- Bjarnason-Wehrens, B.; McGee, H.; Zwisler, A.-D.; Piepoli, M.F.; Benzer, W.; Schmid, J.-P.; Dendale, P.; Pogosova, N.-G.V.; Zdrenghea, D.; Niebauer, J.; et al. Cardiac rehabilitation in Europe: Results from the European Cardiac Rehabilitation Inventory Survey. Eur. J. Prev. Cardiol. 2010, 17, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Hansen, D.; Dendale, P.; Coninx, K.; Vanhees, L.; Piepoli, M.F.; Niebauer, J.; Cornelissen, V.; Pedretti, R.; Geurts, E.; Ruiz, G.R.; et al. The European Association of Preventive Cardiology Exercise Prescription in Everyday Practice and Rehabilitative Training (EXPERT) tool: A digital training and decision support system for optimized exercise prescription in cardiovascular disease. Concept, definitions and construction methodology. Eur. J. Prev. Cardiol. 2017, 24, 1017–1031. [Google Scholar] [CrossRef]
- Resurreccion, D.; Moreno-Peral, P.; Gómez-Herranz, M.; Rubio-Valera, M.; Pastor, L.; De Almeida, J.M.C.; Motrico, E. Factors associated with non-participation in and dropout from cardiac rehabilitation programmes: A systematic review of prospective cohort studies. Eur. J. Cardiovasc. Nurs. 2019, 18, 38–47. [Google Scholar] [CrossRef]
- Hamilton, S.J.; Mills, B.; Birch, E.M.; Thompson, S.C. Smartphones in the secondary prevention of cardiovascular disease: A systematic review. BMC Cardiovasc. Disord. 2018, 18, 25. [Google Scholar] [CrossRef]
- Bucciarelli, V.; Nasi, M.; Bianco, F.; Seferovic, J.; Ivkovic, V.; Gallina, S.; Mattioli, A.V. Depression pandemic and cardiovascular risk in the COVID-19 era and long COVID syndrome: Gender makes a difference. Trends Cardiovasc. Med. 2022, 32, 12–17. [Google Scholar] [CrossRef]
- Nienhuis, C.P.; Lesser, I.A. The Impact of COVID-19 on Women’s Physical Activity Behavior and Mental Well-Being. Int. J. Environ. Res. Public Health 2020, 17, 9036. [Google Scholar] [CrossRef]
- Okuyama, J.; Seto, S.; Fukuda, Y.; Funakoshi, S.; Amae, S.; Onobe, J.; Izumi, S.; Ito, K.; Imamura, F. Mental Health and Physical Activity among Children and Adolescents during the COVID-19 Pandemic. Tohoku J. Exp. Med. 2021, 253, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Coronado, P.J.; Fasero, M.; Otero, B.; Sanchez, S.; de la Viuda, E.; Ramirez-Polo, I.; Llaneza, P.; Mendoza, N.; Baquedano, L. Health-related quality of life and resilience in peri- and postmenopausal women during COVID-19 confinement. Maturitas 2021, 144, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Kaygısız, B.B.; Topcu, Z.G.; Meriç, A.; Gözgen, H.; Çoban, F. Determination of exercise habits, physical activity level and anxiety level of postmenopausal women during COVID-19 pandemic. Health Care Women Int. 2020, 41, 1240–1254. [Google Scholar] [CrossRef] [PubMed]
- Ricci, F.; Izzicupo, P.; Moscucci, F.; Sciomer, S.; Maffei, S.; Di Baldassarre, A.; Mattioli, A.V.; Gallina, S. Recommendations for Physical Inactivity and Sedentary Behavior During the Coronavirus Disease (COVID-19) Pandemic. Front. Public Health 2020, 8, 199. [Google Scholar] [CrossRef]
- Mattioli, A.V.; Sciomer, S.; Maffei, S.; Gallina, S. Lifestyle and Stress Management in Women During COVID-19 Pandemic: Impact on Cardiovascular Risk Burden. Am. J. Lifestyle Med. 2021, 15, 356–359. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, A.V.; Coppi, F.; Gallina, S. Importance of physical activity during and after the SARS-CoV-2/COVID-19 pandemic: A strategy for women to cope with stress. Eur. J. Neurol. 2021, 28, e78–e79. [Google Scholar] [CrossRef]
- Davenport, M.H.; Meyer, S.; Meah, V.L.; Strynadka, M.C.; Khurana, R. Moms Are Not OK: COVID-19 and Maternal Mental Health. Front. Glob. Women’s Health 2020, 1, 1. [Google Scholar] [CrossRef]
- Moscucci, F.; Gallina, S.; Bucciarelli, V.; Aimo, A.; Pelà, G.; Cadeddu-Dessalvi, C.; Nodari, S.; Maffei, S.; Meloni, A.; Deidda, M.; et al. Impact of COVID-19 on the cardiovascular health of women: A review by the Italian Society of Cardiology Working Group on ‘gender cardiovascular diseases’. J. Cardiovasc. Med. 2023, 24 (Suppl. S1), e15–e23. [Google Scholar] [CrossRef]
- De Gaetano, A.; Solodka, K.; Zanini, G.; Selleri, V.; Mattioli, A.V.; Nasi, M.; Pinti, M. Molecular Mechanisms of mtDNA-Mediated Inflammation. Cells 2021, 10, 2898. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, A.V.; Selleri, V.; Zanini, G.; Nasi, M.; Pinti, M.; Stefanelli, C.; Fedele, F.; Gallina, S. Physical Activity and Diet in Older Women: A Narrative Review. J. Clin. Med. 2022, 12, 81. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, N. Long covid: How to define it and how to manage it. BMJ 2020, 370, m3489. [Google Scholar] [CrossRef]
- Mattioli, A.V.; Coppi, F.; Nasi, M.; Pinti, M.; Gallina, S. Long COVID: A New Challenge for Prevention of Obesity in Women. Am. J. Lifestyle Med. 2023, 17, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Yelin, D.; Wirtheim, E.; Vetter, P.; Kalil, A.C.; Bruchfeld, J.; Runold, M.; Guaraldi, G.; Mussini, C.; Gudiol, C.; Pujol, M.; et al. Long-term consequences of COVID-19: Research needs. Lancet Infect. Dis. 2020, 20, 1115–1117. [Google Scholar] [CrossRef]
- World Health Organization. Post COVID-19 Condition (Long COVID). 2022. Available online: https://www.who.int/europe/news-room/fact-sheets/item/post-covid-19-condition (accessed on 28 March 2022).
- Hanson, S.W.; Abbafati, C.; Aerts, J.G.; Al-Aly, Z.; Ashbaugh, C.; Ballouz, T.; Blyuss, O.; Bobkova, P.; Bonsel, G.; Borzakova, S.; et al. Estimated Global Proportions of Individuals With Persistent Fatigue, Cognitive, and Respiratory Symptom Clusters Following Symptomatic COVID-19 in 2020 and 2021. JAMA 2022, 328, 1604–1615. [Google Scholar]
- Carter, S.J.; Baranauskas, M.N.; Raglin, J.S.; Pescosolido, B.A.; Perry, B.L. Functional Status, Mood State, and Physical Activity Among Women With Post-Acute COVID-19 Syndrome. Int. J. Public Health 2022, 67, 1604589. [Google Scholar] [CrossRef]
- Gil, S.; Gualano, B.; de Araújo, A.L.; de Oliveira Júnior, G.N.; Damiano, R.F.; Pinna, F.; Imamura, M.; Rocha, V.; Kallas, E.; Batistella, L.R.; et al. Post-acute sequelae of SARS-CoV-2 associates with physical inactivity in a cohort of COVID-19 survivors. Sci. Rep. 2023, 13, 215. [Google Scholar] [CrossRef]
- Wright, J.; Astill, S.L.; Sivan, M. The Relationship between Physical Activity and Long COVID: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 5093. [Google Scholar] [CrossRef]
- Hayes, L.D.; Ingram, J.; Sculthorpe, N.F. More Than 100 Persistent Symptoms of SARS-CoV-2 (Long COVID): A Scoping Review. Front. Med. (Lausanne) 2021, 8, 750378. [Google Scholar] [CrossRef]
- Nandadeva, D.; Skow, R.J.; Stephens, B.Y.; Grotle, A.-K.; Georgoudiou, S.; Barshikar, S.; Seo, Y.; Fadel, P.J. Cardiovascular and Cerebral Vascular Health in Females with Post-Acute Sequelae of COVID-19 (PASC). Am. J. Physiol. Circ. Physiol. 2023, 324, H713–H720. [Google Scholar] [CrossRef] [PubMed]
- Whiteson, J.H.; Azola, A.; Barry, J.T.; Bartels, M.N.; Blitshteyn, S.; Fleming, T.K.; McCauley, M.D.; Neal, J.D.; Pillarisetti, J.; Sampsel, S.; et al. Multi-disciplinary collaborative consensus guidance statement on the assessment and treatment of cardiovascular complications in patients with post-acute sequelae of SARS-CoV-2 infection (PASC). PM R 2022, 14, 855–878. [Google Scholar] [CrossRef] [PubMed]
- Tabacof, L.; Tosto-Mancuso, J.; Wood, J.; Cortes, M.; Kontorovich, A.; McCarthy, D.; Rizk, D.; Rozanski, G.; Breyman, E.; Nasr, L.; et al. Post-acute COVID-19 Syndrome Negatively Impacts Physical Function, Cognitive Function, Health-Related Quality of Life, and Participation. Am. J. Phys. Med. Rehabil. 2022, 101, 48–52. [Google Scholar] [CrossRef]
- Bellan, M.; Soddu, D.; Balbo, P.E.; Baricich, A.; Zeppegno, P.; Avanzi, G.C.; Baldon, G.; Bartolomei, G.; Battaglia, M.; Battistini, S.; et al. Respiratory and Psychophysical Sequelae Among Patients With COVID-19 Four Months After Hospital Discharge. JAMA Netw. Open 2021, 4, e2036142. [Google Scholar] [CrossRef] [PubMed]
- Fugazzaro, S.; Contri, A.; Esseroukh, O.; Kaleci, S.; Croci, S.; Massari, M.; Facciolongo, N.C.; Besutti, G.; Iori, M.; Salvarani, C.; et al. Rehabilitation Interventions for Post-Acute COVID-19 Syndrome: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 5185. [Google Scholar] [CrossRef]
- Schwendinger, F. Exercise as medicine in post-COVID-19: A call to action. Sport. Exerc. Med. 2022, 70. [Google Scholar] [CrossRef]
- Twomey, R.; DeMars, J.; Franklin, K.; Culos-Reed, S.N.; Weatherald, J.; Wrightson, J.G. Chronic Fatigue and Postexertional Malaise in People Living With Long COVID: An Observational Study. Phys. Ther. 2022, 102, pzac005. [Google Scholar] [CrossRef]
- Hafner, M.; Yerushalmi, E.; Stepanek, M.; Phillips, W.; Pollard, J.; Deshpande, A.; Whitmore, M.; Millard, F.; Subel, S.; Van Stolk, C. Estimating the global economic benefits of physically active populations over 30 years (2020–2050). Br. J. Sports Med. 2020, 54, 1482–1487. [Google Scholar] [CrossRef]
- Climie, R.; Fuster, V.; Empana, J.-P. Health Literacy and Primordial Prevention in Childhood—An Opportunity to Reduce the Burden of Cardiovascular Disease. JAMA Cardiol. 2020, 5, 1323. [Google Scholar] [CrossRef]
- Guthold, R.; Willumsen, J.; Bull, F.C. What is driving gender inequalities in physical activity among adolescents? J. Sport Health Sci. 2022, 11, 424–426. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bucciarelli, V.; Mattioli, A.V.; Sciomer, S.; Moscucci, F.; Renda, G.; Gallina, S. The Impact of Physical Activity and Inactivity on Cardiovascular Risk across Women’s Lifespan: An Updated Review. J. Clin. Med. 2023, 12, 4347. https://doi.org/10.3390/jcm12134347
Bucciarelli V, Mattioli AV, Sciomer S, Moscucci F, Renda G, Gallina S. The Impact of Physical Activity and Inactivity on Cardiovascular Risk across Women’s Lifespan: An Updated Review. Journal of Clinical Medicine. 2023; 12(13):4347. https://doi.org/10.3390/jcm12134347
Chicago/Turabian StyleBucciarelli, Valentina, Anna Vittoria Mattioli, Susanna Sciomer, Federica Moscucci, Giulia Renda, and Sabina Gallina. 2023. "The Impact of Physical Activity and Inactivity on Cardiovascular Risk across Women’s Lifespan: An Updated Review" Journal of Clinical Medicine 12, no. 13: 4347. https://doi.org/10.3390/jcm12134347
APA StyleBucciarelli, V., Mattioli, A. V., Sciomer, S., Moscucci, F., Renda, G., & Gallina, S. (2023). The Impact of Physical Activity and Inactivity on Cardiovascular Risk across Women’s Lifespan: An Updated Review. Journal of Clinical Medicine, 12(13), 4347. https://doi.org/10.3390/jcm12134347