Initial Tumor Necrosis Factor-Alpha and Endothelial Activation Are Associated with Hemorrhagic Complications during Extracorporeal Membrane Oxygenation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects and Study Design
2.2. Sample Collection
2.3. Luminex Assay and Enzyme-Linked Immunosorbent Assay
2.4. Heparin Protocol during ECMO
2.5. Statistical Analysis
3. Results
3.1. Baseline Clinical Characteristics according to Hemorrhagic Complications
3.2. Clinical Outcomes according to Hemorrhagic Complications
3.3. Days 1 and 7 Inflammation, Endothelial, and Platelet Activation Markers
3.4. Relationship between TNF-α and Thrombomodulin/APC System after ECMO Initiation
3.5. Associations of Initial TNF-α, Endothelial Markers, and Hemorrhagic Complications during ECMO
3.6. Predictive Performances of TNF-α and Endothelial Markers for Hemorrhagic Complications during ECMO
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brodie, D. The Evolution of Extracorporeal Membrane Oxygenation for Adult Respiratory Failure. Ann. Am. Thorac. Soc. 2018, 15, S57–S60. [Google Scholar] [CrossRef] [PubMed]
- Yeo, H.J.; Jeon, D.; Kim, Y.S.; Cho, W.H.; Kim, D. Veno–veno–arterial extracorporeal membrane oxygenation treatment in patients with severe acute respiratory distress syndrome and septic shock. Crit. Care 2016, 20, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajsic, S.; Treml, B.; Jadzic, D.; Breitkopf, R.; Oberleitner, C.; Krneta, M.P.; Bukumiric, Z. Extracorporeal membrane oxygenation for cardiogenic shock: A meta-analysis of mortality and complications. Ann. Intensiv. Care 2022, 12, 93. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.; Kostousov, V.; Teruya, J. Bleeding and Thrombotic Complications in the Use of Extracorporeal Membrane Oxygenation. Semin. Thromb. Hemost. 2018, 44, 020–029. [Google Scholar] [CrossRef]
- Villalba, C.A.F.; McMullan, D.M.; Reed, R.C.; Chandler, W.L. Thrombosis in Extracorporeal Membrane Oxygenation (ECMO) Circuits. ASAIO J. 2022, 68, 1083–1092. [Google Scholar] [CrossRef] [PubMed]
- Doyle, A.J.; Hunt, B.J. Current Understanding of How Extracorporeal Membrane Oxygenators Activate Haemostasis and Other Blood Components. Front. Med. 2018, 5, 352. [Google Scholar] [CrossRef]
- Murphy, D.A.; Hockings, L.E.; Andrews, R.K.; Aubron, C.; Gardiner, E.E.; Pellegrino, V.A.; Davis, A.K. Extracorporeal Membrane Oxygenation—Hemostatic Complications. Transfus. Med. Rev. 2015, 29, 90–101. [Google Scholar] [CrossRef]
- Millar, J.E.; Fanning, J.P.; McDonald, C.I.; McAuley, D.F.; Fraser, J.F. The inflammatory response to extracorporeal membrane oxygenation (ECMO): A review of the pathophysiology. Crit. Care 2016, 20, 387. [Google Scholar] [CrossRef] [Green Version]
- Panigada, M.; Meli, A.; Scotti, E.; Properzi, P.; Brioni, M.; Kamel, S.; Ghirardello, S.; Scudeller, L.; Dalton, H.J.; Grasselli, G. Viscoelastic Coagulation Monitor as a Novel Device to Assess Coagulation at the Bedside. A Single-Center Experience During the COVID-19 Pandemic. ASAIO J. 2021, 67, 254–262. [Google Scholar] [CrossRef]
- Chandel, A.; Patolia, S.; Looby, M.; Bade, N.; Khangoora, V.; King, C.S. Association of D-dimer and Fibrinogen With Hypercoagulability in COVID-19 Requiring Extracorporeal Membrane Oxygenation. J. Intensiv. Care Med. 2021, 36, 689–695. [Google Scholar] [CrossRef]
- Dornia, C.; Philipp, A.; Bauer, S.; Stroszczynski, C.; Schreyer, A.G.; Müller, T.; Koehl, G.E.; Lehle, K. D-dimers Are a Predictor of Clot Volume Inside Membrane Oxygenators During Extracorporeal Membrane Oxygenation. Artif. Organs 2015, 39, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Graulich, J.; Walzog, B.; Marcinkowski, M.; Bauer, K.; Kössel, H.; Fuhrmann, G.; Bührer, C.; Gaehtgens, P.; Versmold, H.T. Leukocyte and Endothelial Activation in a Laboratory Model of Extracorporeal Membrane Oxygenation (ECMO). Pediatr. Res. 2000, 48, 679–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Pauls, J.P.; Bartnikowski, N.; Haymet, A.B.; Chan, C.H.H.; Suen, J.Y.; Schneider, B.; Ki, K.K.; Whittaker, A.K.; Dargusch, M.S.; et al. Anti-thrombogenic Surface Coatings for Extracorporeal Membrane Oxygenation: A Narrative Review. ACS Biomater. Sci. Eng. 2021, 7, 4402–4419. [Google Scholar] [CrossRef] [PubMed]
- Ki, K.K.; Millar, J.E.; Langguth, D.; Passmore, M.R.; McDonald, C.I.; Shekar, K.; Shankar-Hari, M.; Cho, H.J.; Suen, J.Y.; Fraser, J.F. Current Understanding of Leukocyte Phenotypic and Functional Modulation During Extracorporeal Membrane Oxygenation: A Narrative Review. Front. Immunol. 2020, 11, 600684. [Google Scholar] [CrossRef] [PubMed]
- Al-Fares, A.; Pettenuzzo, T.; Del Sorbo, L. Extracorporeal life support and systemic inflammation. Intensiv. Care Med. Exp. 2019, 7, 46. [Google Scholar] [CrossRef]
- Dellinger, R.P. Inflammation and Coagulation: Implications for the Septic Patient. Clin. Infect. Dis. 2003, 36, 1259–1265. [Google Scholar] [CrossRef]
- Salat, C.; Boekstegers, P.; Holler, E.; Werdan, K.; Reinhardt, B.S.; Fateh-Moghadam, S.; Pihusch, R.; Kaul, M.; Beinert, T.; Hiller, E. Hemostatic Parameters in Sepsis Patients Treated with Anti-TNF±-Monoclonal Antibodies. Shock 1996, 6, 233–237. [Google Scholar] [CrossRef]
- Gao, X.; Belmadani, S.; Picchi, A.; Xu, X.; Potter, B.J.; Tewari-Singh, N.; Capobianco, S.; Chilian, W.M.; Zhang, C. Tumor Necrosis Factor-α Induces Endothelial Dysfunction in Lepr(db) Mice. Circulation 2007, 115, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Kirchhofer, D.; Tschopp, T.B.; Hadváry, P.; Baumgartner, H.R. Endothelial cells stimulated with tumor necrosis factor-alpha express varying amounts of tissue factor resulting in inhomogenous fibrin deposition in a native blood flow system. Effects of thrombin inhibitors. J. Clin. Investig. 1994, 93, 2073–2083. [Google Scholar] [CrossRef] [Green Version]
- Lentz, S.R.; Tsiang, M.; Sadler, J.E. Regulation of thrombomodulin by tumor necrosis factor-alpha: Comparison of tran-scriptional and posttranscriptional mechanisms. Blood 1991, 77, 542–550. [Google Scholar] [CrossRef] [Green Version]
- Ikezoe, T. Thrombomodulin/activated protein C system in septic disseminated intravascular coagulation. J. Intensiv. Care 2015, 3, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nan, B.; Lin, P.; Lumsden, A.B.; Yao, Q.; Chen, C. Effects of TNF-α and curcumin on the expression of thrombomodulin and endothelial protein C receptor in human endothelial cells. Thromb. Res. 2005, 115, 417–426. [Google Scholar] [CrossRef]
- Sohn, R.H.; Deming, C.B.; Johns, D.C.; Champion, H.C.; Bian, C.; Gardner, K.; Rade, J.J. Regulation of endothelial thrombomodulin expression by inflammatory cytokines is mediated by activation of nuclear factor-kappa B. Blood 2005, 105, 3910–3917. [Google Scholar] [CrossRef] [Green Version]
- Conway, E.M.; Rosenberg, R.D. Tumor necrosis factor suppresses transcription of the thrombomodulin gene in endothelial cells. Mol. Cell Biol. 1988, 8, 5588–5592. [Google Scholar] [CrossRef] [PubMed]
- Karagiannidis, C.; Brodie, D.; Strassmann, S.; Stoelben, E.; Philipp, A.; Bein, T.; Müller, T.; Windisch, W. Extracorporeal membrane oxygenation: Evolving epidemiology and mortality. Intensiv. Care Med. 2016, 42, 889–896. [Google Scholar] [CrossRef]
- Delong, E.R.; Delong, D.M.; Clarke-Pearson, D.L. Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics 1988, 44, 837–845. [Google Scholar] [CrossRef]
- Frantzeskaki, F.; Armaganidis, A.; Orfanos, S.E. Immunothrombosis in Acute Respiratory Distress Syndrome: Cross Talks between Inflammation and Coagulation. Respiration 2017, 93, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Delabranche, X.; Helms, J.; Meziani, F. Immunohaemostasis: A new view on haemostasis during sepsis. Ann. Intensiv. Care 2017, 7, 117. [Google Scholar] [CrossRef] [Green Version]
- Vassiliou, A.G.; Kotanidou, A.; Dimopoulou, I.; Orfanos, S.E. Endothelial Damage in Acute Respiratory Distress Syndrome. Int. J. Mol. Sci. 2020, 21, 8793. [Google Scholar] [CrossRef]
- Birnhuber, A.; Fliesser, E.; Gorkiewicz, G.; Zacharias, M.; Seeliger, B.; David, S.; Welte, T.; Schmidt, J.; Olschewski, H.; Wygrecka, M.; et al. Between inflammation and thrombosis: Endothelial cells in COVID-19. Eur. Respir. J. 2021, 58, 2100377. [Google Scholar] [CrossRef]
- Tabit, C.; Coplan, M.; Chen, P.; Jeevanandam, V.; Uriel, N.; Liao, J. Increased Tumor Necrosis Factor-α Levels in Patients with Continuous-Flow Left Ventricular Assist Devices Mediate Vascular Instability and Are Associated with Higher Non-Surgical Bleeding. J. Heart Lung Transplant. 2017, 36, S121–S122. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Phan, X.T.; Nguyen, T.H.; Huynh, D.Q.; Tran, L.T.; Pham, H.M.; Nguyen, T.N.; Kieu, H.T.; Pham, T.T.N. Major Bleeding in Adults Undergoing Peripheral Extracorporeal Membrane Oxygenation (ECMO): Prognosis and Predictors. Crit. Care Res. Pract. 2022, 2022, 5348835. [Google Scholar] [CrossRef] [PubMed]
- Otani, T.; Sawano, H.; Natsukawa, T.; Matsuoka, R.; Nakashima, T.; Takahagi, M.; Hayashi, Y. D-dimer predicts bleeding complication in out-of-hospital cardiac arrest resuscitated with ECMO. Am. J. Emerg. Med. 2018, 36, 1003–1008. [Google Scholar] [CrossRef]
- Le Guennec, L.; Cholet, C.; Huang, F.; Schmidt, M.; Bréchot, N.; Hékimian, G.; Besset, S.; Lebreton, G.; Nieszkowska, A.; Leprince, P.; et al. Ischemic and hemorrhagic brain injury during venoarterial-extracorporeal membrane oxygenation. Ann. Intensiv. Care 2018, 8, 129. [Google Scholar] [CrossRef] [Green Version]
- Aubron, C.; DePuydt, J.; Belon, F.; Bailey, M.; Schmidt, M.; Sheldrake, J.; Murphy, D.; Scheinkestel, C.; Cooper, D.J.; Capellier, G.; et al. Predictive factors of bleeding events in adults undergoing extracorporeal membrane oxygenation. Ann. Intensiv. Care 2016, 6, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Extracorporeal Life Support Organization (ELSO) General Guidelines for all ECLS Cases. Version 1.4. 2017. Available online: http://wwwelsoorg/resources/guidelinesaspx (accessed on 22 April 2022).
- Yeo, H.J.; Cho, W.H.; Kim, D. Learning curve for multidisciplinary team setup in veno-venous extracorporeal membrane oxygenation for acute respiratory failure. Perfusion 2019, 34, 30–38. [Google Scholar] [CrossRef]
Variables | Total (n = 132) | H Group (n = 23) | N Group (n = 109) | p-Value |
---|---|---|---|---|
Age, years | 57 (50–63) | 54 (51–66) | 57 (49–62) | 0.759 |
Male sex | 77 (58.3%) | 12 (52.2%) | 65 (59.6%) | 0.510 |
BMI, kg/m2 | 22.7 ± 4.5 | 23.6 ± 4.6 | 22.5 ± 4.5 | 0.295 |
Diagnosis | 0.386 | |||
Viral pneumonia | 11 (8.3%) | 2 (8.7%) | 9 (8.3%) | |
Bacterial pneumonia | 26 (19.7%) | 2 (8.7%) | 24 (22.0%) | |
Asthma | 1 (0.8%) | 0 (0.0%) | 1 (0.9%) | |
ILD | 68 (51.5%) | 11 (47.8%) | 57 (52.3%) | |
Sepsis | 20 (15.2%) | 6 (26.1%) | 14 (12.8%) | |
Others a | 6 (4.5%) | 2 (8.7%) | 4 (3.7%) | |
ECMO modalities | 0.580 | |||
VV | 112 (84.8%) | 19 (82.6%) | 93 (85.3%) | |
VA | 17 (12.9%) | 4 (17.4%) | 13 (11.9%) | |
VAV | 3 (2.3%) | 0 (0.0%) | 3 (2.8%) | |
Mean blood flow on 1st day of ECMO (L/min) | 3.1 ± 0.9 | 3.0 ± 1.4 | 3.2 ± 0.7 | 0.548 |
Mean sweep gas on 1st day of ECMO (L/min) | 4.2 ± 1.4 | 4.1 ± 1.6 | 4.2 ± 1.4 | 0.926 |
SOFA score before ECMO initiation | 10.6 ± 2.8 | 11.5 ± 1.9 | 10.4 ± 3.0 | 0.028 |
APACHE II | 13.4 ± 6.4 | 13.0 ± 3.6 | 13.5 ± 6.9 | 0.590 |
CCI | 1.7 ± 1.5 | 1.8 ± 1.1 | 1.7 ± 1.6 | 0.828 |
Baseline laboratory findings | ||||
Plasma Hb (mg/dL) | 16.3 ± 13.4 | 14.9 ± 8.3 | 16.5 ± 14.0 | 0.703 |
WBC (×103/μL) | 12.1 ± 7.4 | 12.7 ± 8.1 | 12.0 ± 7.3 | 0.664 |
PLT (×103/mm3) | 173.6 ± 91.4 | 186.3 ± 122.5 | 171.0 ± 84.2 | 0.478 |
CRP (mg/dL) | 12.8 ± 9.5 | 13.1 ± 10.8 | 12.7 ± 9.44 | 0.896 |
D-dimer (ng/mL) | 6986.6 (5539–7874.6) | 7906 (6967–7906) | 6900 (5539–7787) | 0.005 |
Fibrinogen (mg/dL) | 412.1 ± 134.9 | 383.0 ± 158.0 | 417.4 ± 130.5 | 0.336 |
PT/INR | 1.3 ± 0.3 | 1.3 ± 0.1 | 1.3 ± 0.4 | 0.972 |
aPTT (s) | 74.9 ± 33.0 | 73.6 ± 40.5 | 75.2 ± 31.5 | 0.846 |
Anticoagulation | 0.316 | |||
Heparin | 117 (88.6%) | 19 (82.6%) | 98 (89.9%) | |
Argatroban | 15 (11.4%) | 4 (17.4%) | 11 (10.1%) | |
RRT | 43 (32.6%) | 12 (52.2%) | 31 (28.4%) | 0.027 |
ECMO duration, days | 16.6 ± 12.6 | 26.0 ± 13.9 | 14.6 ± 11.4 | <0.001 |
Long-term ECMO b | 67 (50.8%) | 18 (78.3%) | 49 (45.0%) | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, J.H.; Shin, K.-H.; Lee, H.R.; Son, E.; Lee, S.E.; Seol, H.Y.; Yoon, S.H.; Kim, T.; Cho, W.H.; Jeon, D.; et al. Initial Tumor Necrosis Factor-Alpha and Endothelial Activation Are Associated with Hemorrhagic Complications during Extracorporeal Membrane Oxygenation. J. Clin. Med. 2023, 12, 4520. https://doi.org/10.3390/jcm12134520
Jang JH, Shin K-H, Lee HR, Son E, Lee SE, Seol HY, Yoon SH, Kim T, Cho WH, Jeon D, et al. Initial Tumor Necrosis Factor-Alpha and Endothelial Activation Are Associated with Hemorrhagic Complications during Extracorporeal Membrane Oxygenation. Journal of Clinical Medicine. 2023; 12(13):4520. https://doi.org/10.3390/jcm12134520
Chicago/Turabian StyleJang, Jin Ho, Kyung-Hwa Shin, Hye Rin Lee, Eunjeong Son, Seung Eun Lee, Hee Yun Seol, Seong Hoon Yoon, Taehwa Kim, Woo Hyun Cho, Doosoo Jeon, and et al. 2023. "Initial Tumor Necrosis Factor-Alpha and Endothelial Activation Are Associated with Hemorrhagic Complications during Extracorporeal Membrane Oxygenation" Journal of Clinical Medicine 12, no. 13: 4520. https://doi.org/10.3390/jcm12134520
APA StyleJang, J. H., Shin, K. -H., Lee, H. R., Son, E., Lee, S. E., Seol, H. Y., Yoon, S. H., Kim, T., Cho, W. H., Jeon, D., Kim, Y. S., & Yeo, H. J. (2023). Initial Tumor Necrosis Factor-Alpha and Endothelial Activation Are Associated with Hemorrhagic Complications during Extracorporeal Membrane Oxygenation. Journal of Clinical Medicine, 12(13), 4520. https://doi.org/10.3390/jcm12134520