Association of aPTT-Guided Anticoagulation Monitoring with Thromboembolic Events in Patients Receiving V-A ECMO Support: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Data Extraction and Synthesis
2.3. Quality Assessment
2.4. Statistical Assessment
3. Results
3.1. Search Results and Included Studies
3.2. Patient Population and Outcomes
3.3. Thromboembolic Events and aPTT
3.4. Thrombosis and Mortality
4. Discussion
4.1. ECMO Support and aPTT
4.2. Thromboembolic Events in Patients Receiving ECMO Support
4.3. Future Developments and Outlook
4.4. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Millar, J.E.; Fanning, J.P.; McDonald, C.I.; McAuley, D.F.; Fraser, J.F. The inflammatory response to extracorporeal membrane oxygenation (ECMO): A review of the pathophysiology. Crit. Care 2016, 20, 387. [Google Scholar] [CrossRef] [PubMed]
- Rajsic, S.; Breitkopf, R.; Oezpeker, U.C.; Bukumirić, Z.; Dobesberger, M.; Treml, B. The Role of Excessive Anticoagulation and Missing Hyperinflammation in ECMO-Associated Bleeding. J. Clin. Med. 2022, 11, 2314. [Google Scholar] [CrossRef] [PubMed]
- Rajsic, S.; Breitkopf, R.; Jadzic, D.; Popovic Krneta, M.; Tauber, H.; Treml, B. Anticoagulation Strategies during Extracorporeal Membrane Oxygenation: A Narrative Review. J. Clin. Med. 2022, 11, 5147. [Google Scholar] [CrossRef] [PubMed]
- Brogan, T.V.; Lequier, L.; Lorusso, R.; MacLaren, G.; Peek, G.J. Extracorporeal Life Support: The ELSO Red Book, 5th ed.; Extracorporeal Life Support Organization: Ann Arbor, MI, USA, 2017; p. 831. [Google Scholar]
- Aubron, C.; DePuydt, J.; Belon, F.; Bailey, M.; Schmidt, M.; Sheldrake, J.; Murphy, D.; Scheinkestel, C.; Cooper, D.J.; Capellier, G.; et al. Predictive factors of bleeding events in adults undergoing extracorporeal membrane oxygenation. Ann. Intensive Care 2016, 6, 97. [Google Scholar] [CrossRef]
- Treml, B.; Breitkopf, R.; Bukumirić, Z.; Bachler, M.; Boesch, J.; Rajsic, S. ECMO Predictors of Mortality: A 10-Year Referral Centre Experience. J. Clin. Med. 2022, 11, 1224. [Google Scholar] [CrossRef]
- Levy, J.H.; Staudinger, T.; Steiner, M.E. How to manage anticoagulation during extracorporeal membrane oxygenation. Intensive Care Med. 2022, 48, 1076–1079. [Google Scholar] [CrossRef]
- Jiritano, F.; Fina, D.; Lorusso, R.; ten Cate, H.; Kowalewski, M.; Matteucci, M.; Serra, R.; Mastroroberto, P.; Serraino, G.F. Systematic review and meta-analysis of the clinical effectiveness of point-of-care testing for anticoagulation management during ECMO. J. Clin. Anesth. 2021, 73, 110330. [Google Scholar] [CrossRef]
- Rajsic, S.; Treml, B.; Jadzic, D.; Breitkopf, R.; Oberleitner, C.; Popovic Krneta, M.; Bukumiric, Z. Extracorporeal membrane oxygenation for cardiogenic shock: A meta-analysis of mortality and complications. Ann. Intensive Care 2022, 12, 93. [Google Scholar] [CrossRef]
- Willems, A.; Roeleveld, P.P.; Labarinas, S.; Cyrus, J.W.; Muszynski, J.A.; Nellis, M.E.; Karam, O. Anti-Xa versus time-guided anticoagulation strategies in extracorporeal membrane oxygenation: A systematic review and meta-analysis. Perfusion 2021, 36, 501–512. [Google Scholar] [CrossRef]
- Saini, A.; Spinella, P.C. Management of anticoagulation and hemostasis for pediatric extracorporeal membrane oxygenation. Clin. Lab. Med. 2014, 34, 655–673. [Google Scholar] [CrossRef]
- Olson, S.R.; Murphree, C.R.; Zonies, D.; Meyer, A.D.; McCarty, O.J.T.; Deloughery, T.G.; Shatzel, J.J. Thrombosis and Bleeding in Extracorporeal Membrane Oxygenation (ECMO) Without Anticoagulation: A Systematic Review. ASAIO J. 2021, 67, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Laurance Lequier, G.A.; Al-Ibrahim, O.; Bembea, M.; Brodie, D.; Brogan, T.; Buckvold, S.; Chicoine, L.; Conrad, S.; Cooper, D.; Dalton, H.; et al. ELSO Anticoagulation Guideline; Extracorporeal Life Support Organization, Ed.; Extracorporeal Life Support Organization (ELSO): Ann Arbor MI, USA, 2014. [Google Scholar]
- McMichael, A.B.V.; Ryerson, L.M.; Ratano, D.; Fan, E.; Faraoni, D.; Annich, G.M. 2021 ELSO Adult and Pediatric Anticoagulation Guidelines. ASAIO J. 2022, 68, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Basu, D.; Gallus, A.; Hirsh, J.; Cade, J. A prospective study of the value of monitoring heparin treatment with the activated partial thromboplastin time. N. Engl. J. Med. 1972, 287, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.; Bello, A.; Ragan, M.; Flanagan, J. Anti-factor Xa vs aPTT for heparin monitoring in extracorporeal membrane oxygenation. Am. J. Health-Syst. Pharm. AJHP Off. J. Am. Soc. Health-Syst. Pharm. 2022, zxac351. [Google Scholar] [CrossRef]
- Chlebowski, M.M.; Baltagi, S.; Carlson, M.; Levy, J.H.; Spinella, P.C. Clinical controversies in anticoagulation monitoring and antithrombin supplementation for ECMO. Crit. Care 2020, 24, 19. [Google Scholar] [CrossRef]
- Colman, E.; Yin, E.B.; Laine, G.; Chatterjee, S.; Saatee, S.; Herlihy, J.P.; Reyes, M.A.; Bracey, A.W. Evaluation of a heparin monitoring protocol for extracorporeal membrane oxygenation and review of the literature. J. Thorac. Dis. 2019, 11, 3325–3335. [Google Scholar] [CrossRef]
- Fisser, C.; Reichenbächer, C.; Müller, T.; Schneckenpointner, R.; Malfertheiner, M.V.; Philipp, A.; Foltan, M.; Lunz, D.; Zeman, F.; Lubnow, M. Incidence and Risk Factors for Cannula-Related Venous Thrombosis After Venovenous Extracorporeal Membrane Oxygenation in Adult Patients With Acute Respiratory Failure. Crit. Care Med. 2019, 47, e332–e339. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef]
- Wells, G.A.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. In Proceedings of the 3rd Symposium on Systematic Reviews: Beyond the Basics, Oxford, UK, 3–5 July 2000. [Google Scholar]
- Bidar, F.; Lancelot, A.; Lebreton, G.; Pineton de Chambrun, M.; Schmidt, M.; Hékimian, G.; Juvin, C.; Bréchot, N.; Schoell, T.; Leprince, P.; et al. Venous or arterial thromboses after venoarterial extracorporeal membrane oxygenation support: Frequency and risk factors. J. Heart Lung Transplant. Off. Publ. Int. Soc. Heart Transplant. 2021, 40, 307–315. [Google Scholar] [CrossRef]
- Le Guennec, L.; Cholet, C.; Huang, F.; Schmidt, M.; Bréchot, N.; Hékimian, G.; Besset, S.; Lebreton, G.; Nieszkowska, A.; Leprince, P.; et al. Ischemic and hemorrhagic brain injury during venoarterial-extracorporeal membrane oxygenation. Ann. Intensive Care 2018, 8, 129. [Google Scholar] [CrossRef]
- Malfertheiner, M.V.; Koch, A.; Fisser, C.; Millar, J.E.; Maier, L.S.; Zeman, F.; Poschenrieder, F.; Lubnow, M.; Philipp, A.; Müller, T. Incidence of early intra-cranial bleeding and ischaemia in adult veno-arterial extracorporeal membrane oxygenation and extracorporeal cardiopulmonary resuscitation patients: A retrospective analysis of risk factors. Perfusion 2020, 35, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Melehy, A.; Ning, Y.; Kurlansky, P.; Kaku, Y.; Fried, J.; Hastie, J.; Ciolek, A.; Brodie, D.; Eisenberger, A.B.; Sayer, G.; et al. Bleeding and Thrombotic Events During Extracorporeal Membrane Oxygenation for Postcardiotomy Shock. Ann. Thorac. Surg. 2022, 113, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Moussa, M.D.; Soquet, J.; Lamer, A.; Labreuche, J.; Gantois, G.; Dupont, A.; Abou-Arab, O.; Rousse, N.; Liu, V.; Brandt, C.; et al. Evaluation of Anti-Activated Factor X Activity and Activated Partial Thromboplastin Time Relations and Their Association with Bleeding and Thrombosis during Veno-Arterial ECMO Support: A Retrospective Study. J. Clin. Med. 2021, 10, 2158. [Google Scholar] [CrossRef] [PubMed]
- Saeed, O.; Jakobleff, W.A.; Forest, S.J.; Chinnadurai, T.; Mellas, N.; Rangasamy, S.; Xia, Y.; Madan, S.; Acharya, P.; Algodi, M.; et al. Hemolysis and Nonhemorrhagic Stroke During Venoarterial Extracorporeal Membrane Oxygenation. Ann. Thorac. Surg. 2019, 108, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Esper, S.A.; Welsby, I.J.; Subramaniam, K.; John Wallisch, W.; Levy, J.H.; Waters, J.H.; Triulzi, D.J.; Hayanga, J.W.A.; Schears, G.J. Adult extracorporeal membrane oxygenation: An international survey of transfusion and anticoagulation techniques. Vox Sang. 2017, 112, 443–452. [Google Scholar] [CrossRef]
- Bembea, M.M.; Annich, G.; Rycus, P.; Oldenburg, G.; Berkowitz, I.; Pronovost, P. Variability in anticoagulation management of patients on extracorporeal membrane oxygenation: An international survey. Pediatr. Crit. Care Med. A J. Soc. Crit. Care Med. World Fed. Pediatr. Intensive Crit. Care Soc. 2013, 14, e77–e84. [Google Scholar] [CrossRef]
- Sy, E.; Sklar, M.C.; Lequier, L.; Fan, E.; Kanji, H.D. Anticoagulation practices and the prevalence of major bleeding, thromboembolic events, and mortality in venoarterial extracorporeal membrane oxygenation: A systematic review and meta-analysis. J. Crit. Care 2017, 39, 87–96. [Google Scholar] [CrossRef]
- Arachchillage, D.R.J.; Passariello, M.; Laffan, M.; Aw, T.C.; Owen, L.; Banya, W.; Trimlett, R.; Morgan, C.; Patel, B.V.; Pepper, J.; et al. Intracranial Hemorrhage and Early Mortality in Patients Receiving Extracorporeal Membrane Oxygenation for Severe Respiratory Failure. Semin. Thromb. Hemost. 2018, 44, 276–286. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Phan, X.T.; Nguyen, T.H.; Huynh, D.Q.; Tran, L.T.; Pham, H.M.; Nguyen, T.N.; Kieu, H.T.; Ngoc Pham, T.T. Major Bleeding in Adults Undergoing Peripheral Extracorporeal Membrane Oxygenation (ECMO): Prognosis and Predictors. Crit. Care Res. Pract. 2022, 2022, 5348835. [Google Scholar] [CrossRef]
- Rajsic, S.; Breitkopf, R.; Oezpeker, U.C.; Treml, B. ECMO in Cardiogenic Shock: Time Course of Blood Biomarkers and Associated Mortality. Diagnostics 2022, 12, 2963. [Google Scholar] [CrossRef]
- Guervil, D.J.; Rosenberg, A.F.; Winterstein, A.G.; Harris, N.S.; Johns, T.E.; Zumberg, M.S. Activated partial thromboplastin time versus antifactor Xa heparin assay in monitoring unfractionated heparin by continuous intravenous infusion. Ann. Pharmacother. 2011, 45, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Price, E.A.; Jin, J.; Nguyen, H.M.; Krishnan, G.; Bowen, R.; Zehnder, J.L. Discordant aPTT and anti-Xa values and outcomes in hospitalized patients treated with intravenous unfractionated heparin. Ann. Pharmacother. 2013, 47, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Marlar, R.A.; Clement, B.; Gausman, J. Activated Partial Thromboplastin Time Monitoring of Unfractionated Heparin Therapy: Issues and Recommendations. Semin. Thromb. Hemost. 2017, 43, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Bachler, M.; Niederwanger, C.; Hell, T.; Höfer, J.; Gerstmeyr, D.; Schenk, B.; Treml, B.; Fries, D. Influence of factor XII deficiency on activated partial thromboplastin time (aPTT) in critically ill patients. J. Thromb. Thrombolysis 2019, 48, 466–474. [Google Scholar] [CrossRef]
- van Veen, J.J.; Laidlaw, S.; Swanevelder, J.; Harvey, N.; Watson, C.; Kitchen, S.; Makris, M. Contact factor deficiencies and cardiopulmonary bypass surgery: Detection of the defect and monitoring of heparin. Eur. J. Haematol. 2009, 82, 208–212. [Google Scholar] [CrossRef]
- Buchtele, N.; Schwameis, M.; Schellongowski, P.; Quehenberger, P.; Knöbl, P.; Traby, L.; Schmid, M.; Schoergenhofer, C.; Herkner, H.; Jilma, B.; et al. Prevalence and Clinical Impact of Reduced Coagulation Factor XII Activity in Patients Receiving Extracorporeal Membrane Oxygenation. Crit. Care Med. 2021, 49, e1206–e1211. [Google Scholar] [CrossRef]
- Swayngim, R.; Preslaski, C.; Burlew, C.C.; Beyer, J. Comparison of clinical outcomes using activated partial thromboplastin time versus antifactor-Xa for monitoring therapeutic unfractionated heparin: A systematic review and meta-analysis. Thromb. Res. 2021, 208, 18–25. [Google Scholar] [CrossRef]
- Wu, T.; Xia, X.; Chen, W.; Fu, J.; Zhang, J. The effect of anti-Xa monitoring on the safety and efficacy of low-molecular-weight heparin anticoagulation therapy: A systematic review and meta-analysis. J. Clin. Pharm. Ther. 2020, 45, 602–608. [Google Scholar] [CrossRef]
- Levine, M.N.; Hirsh, J.; Gent, M.; Turpie, A.G.; Cruickshank, M.; Weitz, J.; Anderson, D.; Johnson, M. A randomized trial comparing activated thromboplastin time with heparin assay in patients with acute venous thromboembolism requiring large daily doses of heparin. Arch. Intern. Med. 1994, 154, 49–56. [Google Scholar] [CrossRef]
- Di Gregorio, G.; Sella, N.; Spiezia, L.; Menin, E.; Boscolo, A.; Pasin, L.; Pittarello, D.; Vida, V.; Simioni, P.; Navalesi, P. Cardiopulmonary bypass-induced coagulopathy in pediatric patients: The role of platelets in postoperative bleeding. A preliminary study. Artif. Organs 2021, 45, 852–860. [Google Scholar] [CrossRef]
- Boscolo, A.; Spiezia, L.; De Cassai, A.; Pasin, L.; Pesenti, E.; Zatta, M.; Zampirollo, S.; Andreatta, G.; Sella, N.; Pettenuzzo, T.; et al. Are thromboelastometric and thromboelastographic parameters associated with mortality in septic patients? A systematic review and meta-analysis. J. Crit. Care 2021, 61, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Hachamovitch, R.; Kittleson, M.; Patel, J.; Arabia, F.; Moriguchi, J.; Esmailian, F.; Azarbal, B. Complications of extracorporeal membrane oxygenation for treatment of cardiogenic shock and cardiac arrest: A meta-analysis of 1866 adult patients. Ann. Thorac. Surg. 2014, 97, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Zangrillo, A.; Landoni, G.; Biondi-Zoccai, G.; Greco, M.; Greco, T.; Frati, G.; Patroniti, N.; Antonelli, M.; Pesenti, A.; Pappalardo, F. A meta-analysis of complications and mortality of extracorporeal membrane oxygenation. Crit. Care Resusc. J. Australas. Acad. Crit. Care Med. 2013, 15, 172–178. [Google Scholar]
- Rajsic, S.; Breitkopf, R.; Rugg, C.; Bukumiric, Z.; Reitbauer, J.; Treml, B. Thrombotic Events Develop in 1 Out of 5 Patients Receiving ECMO Support: An 11-Year Referral Centre Experience. J. Clin. Med. 2023, 12, 1082. [Google Scholar] [CrossRef] [PubMed]
- Rastan, A.J.; Lachmann, N.; Walther, T.; Doll, N.; Gradistanac, T.; Gommert, J.F.; Lehmann, S.; Wittekind, C.; Mohr, F.W. Autopsy findings in patients on postcardiotomy extracorporeal membrane oxygenation (ECMO). Int. J. Artif. Organs 2006, 29, 1121–1131. [Google Scholar] [CrossRef]
- Lorusso, R.; Barili, F.; Mauro, M.D.; Gelsomino, S.; Parise, O.; Rycus, P.T.; Maessen, J.; Mueller, T.; Muellenbach, R.; Belohlavek, J.; et al. In-Hospital Neurologic Complications in Adult Patients Undergoing Venoarterial Extracorporeal Membrane Oxygenation: Results From the Extracorporeal Life Support Organization Registry. Crit. Care Med. 2016, 44, e964–e972. [Google Scholar] [CrossRef]
- Cho, S.-M.; Canner, J.; Chiarini, G.; Calligy, K.; Caturegli, G.; Rycus, P.; Barbaro, R.P.; Tonna, J.; Lorusso, R.; Kilic, A.; et al. Modifiable Risk Factors and Mortality From Ischemic and Hemorrhagic Strokes in Patients Receiving Venoarterial Extracorporeal Membrane Oxygenation: Results From the Extracorporeal Life Support Organization Registry. Crit. Care Med. 2020, 48, e897–e905. [Google Scholar] [CrossRef]
- Geli, J.; Capoccia, M.; Maybauer, D.M.; Maybauer, M.O. Argatroban Anticoagulation for Adult Extracorporeal Membrane Oxygenation: A Systematic Review. J. Intensive Care Med. 2022, 37, 459–471. [Google Scholar] [CrossRef]
- Ma, M.; Liang, S.; Zhu, J.; Dai, M.; Jia, Z.; Huang, H.; He, Y. The Efficacy and Safety of Bivalirudin Versus Heparin in the Anticoagulation Therapy of Extracorporeal Membrane Oxygenation: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2022, 13, 771563. [Google Scholar] [CrossRef]
- Jyoti, A.; Maheshwari, A.; Daniel, E.; Motihar, A.; Bhathiwal, R.S.; Sharma, D. Bivalirudin in venovenous extracorporeal membrane oxygenation. J. Extra-Corpor. Technol. 2014, 46, 94–97. [Google Scholar]
- Fisser, C.; Winkler, M.; Malfertheiner, M.V.; Philipp, A.; Foltan, M.; Lunz, D.; Zeman, F.; Maier, L.S.; Lubnow, M.; Müller, T. Argatroban versus heparin in patients without heparin-induced thrombocytopenia during venovenous extracorporeal membrane oxygenation: A propensity-score matched study. Crit. Care 2021, 25, 160. [Google Scholar] [CrossRef] [PubMed]
- Sattler, L.A.; Boster, J.M.; Ivins-O’Keefe, K.M.; Sobieszczyk, M.J.; Reel, B.A.; Mason, P.E.; Walter, R.J.; Sams, V.G. Argatroban for Anticoagulation in Patients Requiring Venovenous Extracorporeal Membrane Oxygenation in Coronavirus Disease 2019. Crit. Care Explor. 2021, 3, e0530. [Google Scholar] [CrossRef] [PubMed]
- Rajsic, S.; Breitkopf, R.; Bukumiric, Z.; Treml, B. ECMO Support in Refractory Cardiogenic Shock: Risk Factors for Mortality. J. Clin. Med. 2022, 11, 6821. [Google Scholar] [CrossRef] [PubMed]
- Extracorporeal Life Support Organization (ELSO). ELSO Live Registry Dashboard of ECMO Patient Data. Available online: https://www.elso.org/registry/elsoliveregistrydashboard.aspx (accessed on 23 January 2023).
- Fina, D.; Matteucci, M.; Jiritano, F.; Meani, P.; Kowalewski, M.; Ballotta, A.; Ranucci, M.; Lorusso, R. Extracorporeal membrane oxygenation without systemic anticoagulation: A case-series in challenging conditions. J. Thorac. Dis. 2020, 12, 2113–2119. [Google Scholar] [CrossRef] [PubMed]
- De Paulis, S.; Cavaliere, F. Anticoagulation Management in High Bleeding-Risk ECMO in Adults. Front. Cardiovasc. Med. 2022, 9, 884063. [Google Scholar] [CrossRef]
- Kurihara, C.; Walter, J.M.; Karim, A.; Thakkar, S.; Saine, M.; Odell, D.D.; Kim, S.; Tomic, R.; Wunderink, R.G.; Budinger, G.R.S.; et al. Feasibility of Venovenous Extracorporeal Membrane Oxygenation Without Systemic Anticoagulation. Ann. Thorac. Surg. 2020, 110, 1209–1215. [Google Scholar] [CrossRef]
- Descamps, R.; Moussa, M.D.; Besnier, E.; Fischer, M.-O.; Preau, S.; Tamion, F.; Daubin, C.; Cousin, N.; Vincentelli, A.; Goutay, J.; et al. Anti-Xa activity and hemorrhagic events under extracorporeal membrane oxygenation (ECMO): A multicenter cohort study. Crit. Care 2021, 25, 127. [Google Scholar] [CrossRef]
- Kulig, C.E.; Schomer, K.J.; Black, H.B.; Dager, W.E. Activated Partial Thromboplastin Time Versus Anti-Factor Xa Monitoring of Heparin Anticoagulation in Adult Venoarterial Extracorporeal Membrane Oxygenation Patients. ASAIO J. 2021, 67, 411–415. [Google Scholar] [CrossRef]
- Arnouk, S.; Altshuler, D.; Lewis, T.C.; Merchan, C.; Smith, D.E., 3rd; Toy, B.; Zakhary, B.; Papadopoulos, J. Evaluation of Anti-Xa and Activated Partial Thromboplastin Time Monitoring of Heparin in Adult Patients Receiving Extracorporeal Membrane Oxygenation Support. ASAIO J. 2020, 66, 300–306. [Google Scholar] [CrossRef]
- Rajsic, S.; Breitkopf, R.; Bachler, M.; Treml, B. Diagnostic Modalities in Critical Care: Point-of-Care Approach. Diagnostics 2021, 11, 2202. [Google Scholar] [CrossRef]
Author | Country, Study Period | Prospective Study | Sample Size | Age (Years) | ECMO Duration (Days) | Goal aPTT | Population | Comparison | NOS |
---|---|---|---|---|---|---|---|---|---|
Bidar et al. [22] | France, 2018–2019 | No | 107 | 54 | 8 | 1.5–2x normal | Acute on chronic cardiac failure, postcardiotomy, cardiac arrest, and acute coronary syndrome | Presence of cannula-associated deep-vein thrombosis | 8 |
Le Guennec et al. [23] | France, 2006–2014 | No | 878 | - | - | 1.5–2x baseline | Postcardiotomy, cardiac arrest, AMI, chronic dilated cardiomyopathy, and other | Presence of ischemic stroke | 7 |
Malfertheiner et al. [24] | Germany, 2011–2016 | No | 187 | 58.5 | 4 | 50–80 | ECPR, LCOS, and postcardiotomy | Presence of intracranial ischemia | 6 |
Melehy et al. [25] | USA, 2007–2019 | No | 141 | 65 | 5.2 | 45–60, and 60–80 | Postcardiotomy shock | Presence of thrombosis | 7 |
Moussa et al. [26] | France, 2015–2019 | No | 265 | 55 a | - | - | LCOS, primary graft dysfunction, and myocardial infarction | Association of anti-Xa and aPTT with thrombosis | 5 |
Saed et al. [27] | USA, 2012–2017 | No | 150 | 55 a | - | 50–70 | Postcardiotomy and AMI | Presence of nonhemorrhagic stroke | 7 |
Outcome | Number of Studies Reporting Data (Events) | Pooled Rate (95% CI) | I2% (p-Value) | Reported Range (%) | |
---|---|---|---|---|---|
Thrombosis | |||||
Any thrombosis | 3 (179) | 36.2 (21.7; 53.7) | 93 (<0.001) | 23.4–55.1 | |
Ischemic stroke | 4 (133) | 11.2 (5.7; 20.7) | 94 (<0.001) | 4.8–17.4 | |
Limb ischemia | 3 (29) | 5.7 (4.0; 8.1) | 0 (0.868) | 5.0–6.5 | |
ECMO circuit and membrane clot | 3 (52) | 10.6 (8.2; 13.7) | 66 (0.054) | 6.4–15.9 | |
HIT | 2 (8) | 4.0 (2.0; 7.8) | 60 (0.112) | 0.9–5.0 | |
Hemorrhage | |||||
Any bleeding | 3 (244) | 43.3 (28.4; 59.5) | 92 (<0.001) | 28.0–56.6 | |
Cerebral hemorrhage | 4 (39) | 2.8 (1.6; 5.1) | 64 (0.041) | 1.4–5.9 | |
Cannulation site bleeding | 7 (184) | 14.0 (10.7; 18.1) | 71 (0.002) | 7.1–17.4 | |
In-hospital mortality | 4 (765) | 54.4 (47.6; 61.0) | 81 (0.001) | 49.2–65.2 |
Author | Main Study Aim | Thrombotic Event | Association of Monitoring with Thrombosis | Other Factors Associated with Thrombosis/Author Comments |
---|---|---|---|---|
Bidar et al. [22] | Incidence and risk factors for thrombosis in VA-ECMO patients after decannulation | cannula-associated deep-vein thrombosis | No: The median aPTT ratio and percentage of days with aPTT in the therapeutic range did not differ between groups. | Multivariable model identified ECMO duration and concurrent infection as independent risk factors for cannula-associated deep-vein thrombosis. Older age and prior anticoagulation were protective factors. |
Le Guennec et al. [23] | Frequency and risk factors for structural brain injury | Ischemic stroke | No: No relevant association could be established between aPTT and ischemic stroke. | Platelets above 350 giga/L (OR 3.8, 95% CI 1.4–10.7) at ECMO start were associated with stroke. Ischemic stroke does not seem to be associated with higher mortality. |
Malfertheiner et al. [24] | Incidence of ischemia | Ischemic stroke | No: Atrial fibrillation, hypocapnia, lower aPTT, INR values or lower heparin doses at any time during ECMO support were not associated with the incidence of stroke. | Cardiac surgery prior to ECMO (OR 2.8, 95% CI 1.1–7.1), autoimmune disease (OR 4.2, 95% CI 1.2–15.0), age (OR 2.5, 95% CI 1.5–4.1), lactate (OR 1.1, 95% CI 1.0–1.2), delta D dimer (OR 1.4, 1.1–1.8), and cannulation of ascendence aorta were associated with stroke (OR 4.0, 95% CI 1.1–14.3). |
Melehy et al. [25] | Impact of anticoagulation thrombosis | Thrombosis | No: aPTT before event was not associated with thrombosis. | Predictors of thrombosis included anticoagulation before event (OR 0.4, 95% CI 0.2–0.8), surgical venting (OR 3.1, 95% CI 1.3–7.3), and central cannulation (OR 2.1, 95% CI 1.0–4.1) before event. |
Moussa et al. [26] | Association of anti-factor Xa and aPTT with thrombosis | Thrombosis | No: Daily maximum, minimum and mean anti-factor Xa and aPTT values were not associated with thrombosis. | The values of anti-factor Xa and aPTT were highly discordant. These results should favor the use of anti-factor Xa. |
Saeed et al. [27] | Identification of risk factors for nonhemorrhagic stroke | Ischemic stroke | No: At the time of the stroke, aPTT was in the therapeutic range. | Hemolysis at low levels is associated with nonhemorrhagic stroke (aHR 7.6, 95% CI 2.2–25.9). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajsic, S.; Breitkopf, R.; Treml, B.; Jadzic, D.; Oberleitner, C.; Oezpeker, U.C.; Innerhofer, N.; Bukumiric, Z. Association of aPTT-Guided Anticoagulation Monitoring with Thromboembolic Events in Patients Receiving V-A ECMO Support: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 3224. https://doi.org/10.3390/jcm12093224
Rajsic S, Breitkopf R, Treml B, Jadzic D, Oberleitner C, Oezpeker UC, Innerhofer N, Bukumiric Z. Association of aPTT-Guided Anticoagulation Monitoring with Thromboembolic Events in Patients Receiving V-A ECMO Support: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine. 2023; 12(9):3224. https://doi.org/10.3390/jcm12093224
Chicago/Turabian StyleRajsic, Sasa, Robert Breitkopf, Benedikt Treml, Dragana Jadzic, Christoph Oberleitner, Ulvi Cenk Oezpeker, Nicole Innerhofer, and Zoran Bukumiric. 2023. "Association of aPTT-Guided Anticoagulation Monitoring with Thromboembolic Events in Patients Receiving V-A ECMO Support: A Systematic Review and Meta-Analysis" Journal of Clinical Medicine 12, no. 9: 3224. https://doi.org/10.3390/jcm12093224
APA StyleRajsic, S., Breitkopf, R., Treml, B., Jadzic, D., Oberleitner, C., Oezpeker, U. C., Innerhofer, N., & Bukumiric, Z. (2023). Association of aPTT-Guided Anticoagulation Monitoring with Thromboembolic Events in Patients Receiving V-A ECMO Support: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 12(9), 3224. https://doi.org/10.3390/jcm12093224