Performance of Fully Automated Algorithm Detecting Bone Marrow Edema in Sacroiliac Joints
Abstract
:1. Introduction
- Bone marrow edema (collection of fluid between bone marrow cells due to inflammation) visible on “fluid-sensitive” STIR sequence (Short Tau Inversion Recovery) (also known as T2-weighted sensitive to water sequence) as areas hyperintense to the sacral interforaminal bone marrow (brighter areas).
2. Materials and Methods
2.1. Material
- For T1-weighted turbo spin echo (TSE) sequence—TR 500 ms, TE 14 ms, flip angle 90, NEX 1, slice thickness 3 mm, matrix 560 × 560, FOV 240 × 240 × 71,
- For STIR TSE sequence—TR 5239 ms, TE 30 ms, inversion time 190 ms, flip angle 90, NEX 2, slice thickness 3 mm, matrix 400 × 400, FOV 240 × 240 × 71.
2.2. Methods
- Assessment of the correctness of the alignment of the MRI sections of the SIJs.
- Enhancement of the pre-existing algorithm in the form of post-processing adjustments.
- Manual and automatic segmentation of the sacrum and iliac bones.
- Evaluation of BME using the SPARCC scale.
- Manual and automatic segmentation of BME.
- Statistical analysis of the results.
2.2.1. Assessment of the Correctness of the Alignment of the MRI Section of the SIJs
- Angle dimensions [0; 2.2].
- Angle dimensions (2.2; 5.7].
- Angle dimensions (5.7; 10].
- Angle dimensions (10; 29.2].
2.2.2. Enhancement of the Pre-Existing Algorithm in the Form of Post-Processing Adjustments
2.2.3. Manual and Automatic Segmentation of the Sacrum and Iliac Bones
2.2.4. Evaluation of BME Using the SPARCC Scale
- Presence of bone marrow edema = 48.
- Presence of intense edema = 12.
- Presence of deep edema = 12.
2.2.5. Manual and Automatic Segmentation of BME
2.2.6. Statistical Analysis of the Results
3. Results
3.1. Assessment of the Correctness of the Alignment of the MRI Section of the SIJs
3.2. Manual and Automatic Segmentation of the Sacrum and Iliac Bones
3.3. Evaluation of BME Using the SPARCC Scale
3.4. Manual and Automatic Segmentation of BME
3.5. Summary of the Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sieper, J.; Poddubnyy, D. Axial Spondyloarthritis. Lancet 2017, 390, 73–84. [Google Scholar] [CrossRef]
- Wang, R.; Ward, M.M. Epidemiology of Axial Spondyloarthritis: An Update. Curr. Opin. Rheumatol. 2018, 30, 137–143. [Google Scholar] [CrossRef]
- Wright, G.C.; Kaine, J.; Deodhar, A. Understanding Differences between Men and Women with Axial Spondyloarthritis. Semin. Arthritis Rheum. 2020, 50, 687–694. [Google Scholar] [CrossRef]
- Dean, L.E.; Jones, G.T.; MacDonald, A.G.; Downham, C.; Sturrock, R.D.; Macfarlane, G.J. Global Prevalence of Ankylosing Spondylitis. Rheumatology 2014, 53, 650–657. [Google Scholar] [CrossRef] [Green Version]
- Rudwaleit, M.; van der Heijde, D.; Landewé, R.; Listing, J.; Akkoc, N.; Brandt, J.; Braun, J.; Chou, C.T.; Collantes-Estevez, E.; Dougados, M.; et al. The Development of Assessment of SpondyloArthritis International Society Classification Criteria for Axial Spondyloarthritis (Part II): Validation and Final Selection. Ann. Rheum. Dis. 2009, 68, 777–783. [Google Scholar] [CrossRef]
- Strand, V.; Singh, J.A. Patient Burden of Axial Spondyloarthritis. J. Clin. Rheumatol. 2017, 23, 383–391. [Google Scholar] [CrossRef]
- Reijnierse, M. Axial Skeleton Bone Marrow Changes in Inflammatory Rheumatologic Disorders. Semin. Musculoskelet. Radiol. 2023, 27, 091–102. [Google Scholar] [CrossRef]
- Obuchowicz, R.; Bonczar, M. Ultrasonographic Differentiation of Lateral Elbow Pain. Ultrasound Int. Open 2016, 2, E38–E46. [Google Scholar] [CrossRef] [Green Version]
- Sieper, J.; Rudwaleit, M.; Baraliakos, X.; Brandt, J.; Braun, J.; Burgos-Vargas, R.; Dougados, M.; Hermann, K.-G.; Landewé, R.; Maksymowych, W.; et al. The Assessment of SpondyloArthritis International Society (ASAS) Handbook: A Guide to Assess Spondyloarthritis. Ann. Rheum. Dis. 2009, 68 (Suppl. 2), ii1–ii44. [Google Scholar] [CrossRef]
- Rudwaleit, M.; Jurik, A.G.; Hermann, K.-G.A.; Landewe, R.; van der Heijde, D.; Baraliakos, X.; Marzo-Ortega, H.; Ostergaard, M.; Braun, J.; Sieper, J. Defining Active Sacroiliitis on Magnetic Resonance Imaging (MRI) for Classification of Axial Spondyloarthritis: A Consensual Approach by the ASAS/OMERACT MRI Group. Ann. Rheum. Dis. 2009, 68, 1520–1527. [Google Scholar] [CrossRef]
- Jurik, A.G. Diagnostics of Sacroiliac Joint Differentials to Axial Spondyloarthritis Changes by Magnetic Resonance Imaging. J. Clin. Med. 2023, 12, 1039. [Google Scholar] [CrossRef]
- Kucybała, I.; Tabor, Z.; Polak, J.; Urbanik, A.; Wojciechowski, W. The Semi-Automated Algorithm for the Detection of Bone Marrow Oedema Lesions in Patients with Axial Spondyloarthritis. Rheumatol. Int. 2020, 40, 625–633. [Google Scholar] [CrossRef] [Green Version]
- Tsoi, C.; Griffith, J.F.; Lee, R.K.L.; Wong, P.C.H.; Tam, L.S. Imaging of Sacroiliitis: Current Status, Limitations and Pitfalls. Quant. Imaging Med. Surg. 2019, 9, 318–335. [Google Scholar] [CrossRef]
- Maksymowych, W.P.; Lambert, R.G.; Baraliakos, X.; Weber, U.; Machado, P.M.; Pedersen, S.J.; de Hooge, M.; Sieper, J.; Wichuk, S.; Poddubnyy, D.; et al. Data-Driven Definitions for Active and Structural MRI Lesions in the Sacroiliac Joint in Spondyloarthritis and Their Predictive Utility. Rheumatology 2021, 60, 4778–4789. [Google Scholar] [CrossRef]
- Maksymowych, W.P.; Inman, R.D.; Salonen, D.; Dhillon, S.S.; Williams, M.; Stone, M.; Conner-Spady, B.; Palsat, J.; Lambert, R.G.W. Spondyloarthritis Research Consortium of Canada Magnetic Resonance Imaging Index for Assessment of Sacroiliac Joint Inflammation in Ankylosing Spondylitis. Arthritis Rheum. 2005, 53, 703–709. [Google Scholar] [CrossRef]
- Wendling, D.; Claudepierre, P.; Prati, C. Early Diagnosis and Management Are Crucial in Spondyloarthritis. Jt. Bone Spine 2013, 80, 582–585. [Google Scholar] [CrossRef]
- Lambert, R.G.W.; Bakker, P.A.C.; van der Heijde, D.; Weber, U.; Rudwaleit, M.; Hermann, K.-G.A.; Sieper, J.; Baraliakos, X.; Bennett, A.; Braun, J.; et al. Defining Active Sacroiliitis on MRI for Classification of Axial Spondyloarthritis: Update by the ASAS MRI Working Group. Ann. Rheum. Dis. 2016, 75, 1958–1963. [Google Scholar] [CrossRef]
- Lapane, K.L.; Dubé, C.; Ferrucci, K.; Khan, S.; Kuhn, K.A.; Yi, E.; Kay, J.; Liu, S.-H. Patient Perspectives on Health Care Provider Practices Leading to an Axial Spondyloarthritis Diagnosis: An Exploratory Qualitative Research Study. BMC Fam. Pract. 2021, 22, 251. [Google Scholar] [CrossRef]
- Hay, C.A.; Packham, J.; Ryan, S.; Mallen, C.D.; Chatzixenitidis, A.; Prior, J.A. Diagnostic Delay in Axial Spondyloarthritis: A Systematic Review. Clin. Rheumatol. 2022, 41, 1939–1950. [Google Scholar] [CrossRef]
- Akgul, O. Classification Criteria for Spondyloarthropathies. World J. Orthop. 2011, 2, 107. [Google Scholar] [CrossRef]
- Colbert, R.A. Early Axial Spondyloarthritis. Curr. Opin. Rheumatol. 2010, 22, 603–607. [Google Scholar] [CrossRef] [Green Version]
- Maksymowych, W.P. The Role of Imaging in the Diagnosis and Management of Axial Spondyloarthritis. Nat. Rev. Rheumatol. 2019, 15, 657–672. [Google Scholar] [CrossRef]
- Ramiro, S.; Nikiphorou, E.; Sepriano, A.; Ortolan, A.; Webers, C.; Baraliakos, X.; Landewé, R.B.M.; Van den Bosch, F.E.; Boteva, B.; Bremander, A.; et al. ASAS-EULAR Recommendations for the Management of Axial Spondyloarthritis: 2022 Update. Ann. Rheum. Dis. 2023, 82, 19–34. [Google Scholar] [CrossRef]
- Tam, L.S.; Wei, J.C.-C.; Aggarwal, A.; Baek, H.J.; Cheung, P.P.; Chiowchanwisawakit, P.; Dans, L.; Gu, J.; Hagino, N.; Kishimoto, M.; et al. 2018 APLAR Axial Spondyloarthritis Treatment Recommendations. Int. J. Rheum. Dis. 2019, 22, 340–356. [Google Scholar] [CrossRef] [Green Version]
- Aouad, K.; Ziade, N.; Baraliakos, X. Structural Progression in Axial Spondyloarthritis. Jt. Bone Spine 2020, 87, 131–136. [Google Scholar] [CrossRef]
- Stoel, B. Use of Artificial Intelligence in Imaging in Rheumatology—Current Status and Future Perspectives. RMD Open 2020, 6, e001063. [Google Scholar] [CrossRef] [Green Version]
- Erickson, B.J.; Korfiatis, P.; Akkus, Z.; Kline, T.L. Machine Learning for Medical Imaging. Radiographics 2017, 37, 505–515. [Google Scholar] [CrossRef] [Green Version]
- Chartrand, G.; Cheng, P.M.; Vorontsov, E.; Drozdzal, M.; Turcotte, S.; Pal, C.J.; Kadoury, S.; Tang, A. Deep Learning: A Primer for Radiologists. Radiographics 2017, 37, 2113–2131. [Google Scholar] [CrossRef] [Green Version]
- Faleiros, M.C.; Nogueira-Barbosa, M.H.; Dalto, V.F.; Júnior, J.R.F.; Tenório, A.P.M.; Luppino-Assad, R.; Louzada-Junior, P.; Rangayyan, R.M.; de Azevedo-Marques, P.M. Machine Learning Techniques for Computer-Aided Classification of Active Inflammatory Sacroiliitis in Magnetic Resonance Imaging. Adv. Rheumatol. 2020, 60, 25. [Google Scholar] [CrossRef]
- Rzecki, K.; Kucybała, I.; Gut, D.; Jarosz, A.; Nabagło, T.; Tabor, Z.; Wojciechowski, W. Fully Automated Algorithm for the Detection of Bone Marrow Oedema Lesions in Patients with Axial Spondyloarthritis—Feasibility Study. Biocybern. Biomed. Eng. 2021, 41, 833–853. [Google Scholar] [CrossRef]
- Zarco, P.; Almodóvar, R.; Bueno, Á.; Molinero, L.M.; SCAISS Study Group. Development and Validation of SCAISS, a Tool for Semi-Automated Quantification of Sacroilitis by Magnetic Resonance in Spondyloarthritis. Rheumatol. Int. 2018, 38, 1919–1926. [Google Scholar] [CrossRef]
- Garrido-González, C.; Pineda, M.L.; Garrido-Castro, J.L.; Tabor, Z.; Kucybała, I.; Wojciechowski, W.; Zarco-Montejo, P.; Almodovar, R. Collantes Estevez POS0958 Responsiveness of conventional, semi-automatic and full-automatic methods to quantify marrow bone edema lesions in MRI of axial spondyloarthritis patients: A pilot study. Ann. Rheum. Dis. 2021, 80, 743–744. [Google Scholar] [CrossRef]
- Bressem, K.K.; Adams, L.C.; Proft, F.; Hermann, K.G.A.; Diekhoff, T.; Spiller, L.; Niehues, S.M.; Makowski, M.R.; Hamm, B.; Protopopov, M.; et al. Deep Learning Detects Changes Indicative of Axial Spondyloarthritis at MRI of Sacroiliac Joints. Radiology 2022, 305, 655–665. [Google Scholar] [CrossRef]
- Reinke, A.; Tizabi, M.D.; Sudre, C.H.; Eisenmann, M.; Rädsch, T.; Baumgartner, M.; Acion, L.; Antonelli, M.; Arbel, T.; Bakas, S.; et al. Common Limitations of Image Processing Metrics: A Picture Story. arXiv 2021, arXiv:2104.05642. [Google Scholar]
- Szegedy, C.; Wei, L.; Yangqing, J.; Sermanet, P.; Reed, S.; Anguelov, D. Going Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
Age | Deviation Angle (Degrees) | ||||||
---|---|---|---|---|---|---|---|
Median (IQR) | Min | Max | Median (IQR) | Min | Max | ||
Total | Females (n = 91) | 33 (18) | 10 | 86 | 5.9 (9.8) | 0 | 25.9 |
Males (n = 82) | 29 (22) | 8 | 64 | 5.65 (6.6) | 0 | 29.2 | |
n = 173 | 31 (23) | 8 | 86 | 5.7 (7.8) | 0 | 29.2 | |
Group 1 | Females (n = 25) | 36 (18) | 10 | 86 | 0 (0) | 0 | 2.1 |
Males (n = 19) | 36 (28) | 8 | 63 | 0 (0) | 0 | 2.2 | |
n = 44 | 36 (20) | 8 | 86 | 0 (0) | 0 | 2.2 | |
Group 2 | Females (n = 19) | 41 (22) | 15 | 67 | 4.1 (1) | 2.7 | 5.7 |
Males (n = 24) | 28 (16.5) | 10 | 57 | 4.9 (1.8) | 2.6 | 5.7 | |
n = 43 | 30 (25) | 10 | 67 | 4.4 (1.8) | 2.6 | 5.7 | |
Group 3 | Females (n = 20) | 29.5 (19.5) | 12 | 55 | 7.85 (2.7) | 5.8 | 9.9 |
Males (n = 23) | 29 (22) | 11 | 64 | 8.4 (2.4) | 6.0 | 10.0 | |
n = 43 | 29 (21) | 11 | 64 | 8.4 (2.6) | 5.8 | 10.0 | |
Group 4 | Females (n = 27) | 30 (21) | 13 | 68 | 14.9 (5.5) | 10.5 | 25.9 |
Males (n = 16) | 27 (26) | 11 | 52 | 14.45 (8.35) | 11.2 | 29.2 | |
n = 43 | 28 (22) | 11 | 68 | 14.8 (6.9) | 10.5 | 29.2 |
Groups Based on Deviation Angle | Visual Scale | Dice Similarity Coefficient | |||||
---|---|---|---|---|---|---|---|
Median (IQR) | Min | Max | Mean (SEM) | 95% CI | Min | Max | |
Total | 47 (5) | 26 | 48 | 0.9820 (0.0008) | [0.9804, 0.9835] | 0.9277 | 0.9968 |
Group 1 [0; 2.2] | 47 (4) | 34 | 48 | 0.9839 (0.0016) | [0.9807, 0.9871] | 0.9340 | 0.9968 |
Group 2 (2.2; 5.7] | 47 (4) | 26 | 48 | 0.9825 (0.0012) | [0.9801, 0.9848) | 0.9564 | 0.9962 |
Group 3 (5.7; 10] | 46 (5) | 32 | 48 | 0.9795 (0.0019) | [0.9758, 0.9832] | 0.9277 | 0.9958 |
Group 4 (10; 29.2] | 47 (5) | 32 | 48 | 0.9819 (0.0014) | [0.9793, 0.9846] | 0.9584 | 0.9960 |
Groups Based on Deviation Angle | SPARCC Scale | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Median (IQR) | Minimal Value | Maximal Value | SPARCC = 0 | SPARCC > 0 | SPARCC DEPTH = 0 | SPARCC DEPTH > 0 | SPARCC INTENSITIVITY = 0 | SPARCC INTENSITIVITY > 0 | ||
Total | Females (n = 91) | 0 (5) | 0 | 49 | 54 | 37 | 80 | 11 | 61 | 30 |
Males (n = 82) | 0 (6) | 0 | 56 | 51 | 31 | 70 | 12 | 52 | 30 | |
n = 173 | 0 (5) | 0 | 56 | 105 | 68 | 150 | 23 | 113 | 60 | |
Group 1 [0; 2.2] | Females (n = 25) | 0 (3) | 0 | 48 | 14 | 11 | 21 | 4 | 15 | 10 |
Males (n = 19) | 0 (4) | 0 | 20 | 10 | 9 | 15 | 4 | 11 | 8 | |
n = 44 | 0 (6.5) | 0 | 48 | 24 | 20 | 36 | 8 | 26 | 18 | |
Group 2 (2.2; 5.7] | Females (n = 19) | 1 (6) | 0 | 45 | 9 | 10 | 17 | 2 | 12 | 7 |
Males (n = 24) | 0 (6.5) | 0 | 51 | 17 | 7 | 19 | 5 | 17 | 7 | |
n = 43 | 0 (6) | 0 | 51 | 26 | 17 | 36 | 7 | 29 | 14 | |
Group 3 (5.7; 10] | Females (n = 20) | 0 (4) | 0 | 49 | 13 | 7 | 16 | 4 | 14 | 6 |
Males (n = 23) | 0 (10) | 0 | 56 | 15 | 8 | 20 | 3 | 15 | 8 | |
n = 43 | 0 (9) | 0 | 56 | 28 | 15 | 36 | 7 | 29 | 14 | |
Group 4 (10; 29.2] | Females (n = 27) | 0 (5) | 0 | 25 | 18 | 9 | 26 | 1 | 20 | 7 |
Males (n = 16) | 0 (4) | 0 | 31 | 9 | 7 | 16 | 0 | 9 | 7 | |
n = 43 | 0 (4) | 0 | 31 | 27 | 16 | 42 | 1 | 29 | 14 |
Visual Scale | |||
---|---|---|---|
Groups Based on Deviation Angle | Median (IQR) | Min | Max |
Total | 43 (7) | 22 | 48 |
Group 1 [0; 2.2] | 42.5 (9) | 22 | 48 |
Group 2 (2.2; 5.7] | 43 (8) | 23 | 48 |
Group 3 (5.7; 10] | 43 (8) | 25 | 48 |
Group 4 (10; 29.2] | 45 (7) | 18 | 48 |
Groups Based on Deviation Angle | Median for the Sum of Points Scored on Six Slices in Each Quadrant | |||
---|---|---|---|---|
(IQR—Interquartile Range) | ||||
Total | Right Joint | Left Joint | ||
Upper iliac quadrant | Upper sacrum quadrant | Upper sacrum quadrant | Upper iliac quadrant | |
6 (0) | 6 (1) | 5 (2) | 6 (0) | |
6 (0) | 6 (1) | 5 (3) | 6 (1) | |
Lower iliac quadrant | Lower sacrum quadrant | Lower sacrum quadrant | Lower iliac quadrant | |
Group 1 [0; 2.2] | Right joint | Left joint | ||
Upper iliac quadrant | Upper sacrum quadrant | Upper sacrum quadrant | Upper iliac quadrant | |
6 (0) | 6 (1) | 4.5 (2) | 6 (0) | |
6 (0) | 6 (1.5) | 5 (3) | 6 (1) | |
Lower iliac quadrant | Lower sacrum quadrant | Lower sacrum quadrant | Lower iliac quadrant | |
Group 2 (2.2; 5.7] | Right joint | Left joint | ||
Upper iliac quadrant | Upper sacrum quadrant | Upper sacrum quadrant | Upper iliac quadrant | |
6 (0) | 6 (2) | 5 (2) | 6 (0) | |
6 (1) | 6 (2) | 5 (3) | 6 (2) | |
Lower iliac quadrant | Lower sacrum quadrant | Lower sacrum quadrant | Lower iliac quadrant | |
Group 3 (5.7; 10] | Right joint | Left joint | ||
Upper iliac quadrant | Upper sacrum quadrant | Upper sacrum quadrant | Upper iliac quadrant | |
6 (0) | 6 (1) | 5 (2) | 6 (1) | |
6 (1) | 6 (1) | 6 (3) | 6 (1) | |
Lower iliac quadrant | Lower sacrum quadrant | Lower sacrum quadrant | Lower iliac quadrant | |
Group 4 (10; 29.2] | Right joint | Left joint | ||
Upper iliac quadrant | Upper sacrum quadrant | Upper sacrum quadrant | Upper iliac quadrant | |
6 (0) | 6 (1) | 6 (2) | 6 (0) | |
6 (0) | 6 (2) | 5 (3) | 6 (1) | |
Lower iliac quadrant | Lower sacrum quadrant | Lower sacrum quadrant | Lower iliac quadrant |
Groups Based on Deviation Angle | Total Number of Pixels | Total Number of Lesions | |
---|---|---|---|
Total | Sensitivity | 0.76 | 0.75 |
Specificity | 0.97 | - | |
Accuracy | 0.97 | - | |
Group 1 [0; 2.2] | Sensitivity | 0.58 | 0.80 |
Specificity | 0.97 | - | |
Accuracy | 0.96 | - | |
Group 2 (2.2; 5.7] | Sensitivity | 0.83 | 0.78 |
Specificity | 0.97 | - | |
Accuracy | 0.96 | - | |
Group 3 (5.7; 10] | Sensitivity | 0.83 | 0.77 |
Specificity | 0.97 | - | |
Accuracy | 0.97 | - | |
Group 4 (10; 29.2] | Sensitivity | 0.70 | 0.66 |
Specificity | 0.97 | - | |
Accuracy | 0.97 | - |
Group 1 | Group 2 | Group 3 | Group 4 | Differences between Groups | ||
---|---|---|---|---|---|---|
Bone segmentation | Visual scale [Median (IQR)] | 47 (4) | 47 (4) | 46 (5) | 47 (5) | No |
Dice similarity coefficient | 0.9839 (0.0016) | 0.9825 (0.0012) | 0.9795 (0.0019) | 0.9819 (0.0014) | Yes 2 | |
BME segmentation | Visual scale [Median (IQR)] | 42.5 (9) | 43 (8) | 43 (8) | 45 (7) | No |
SPARCC [Median (IQR)] | 0 (6.5) | 0 (6) | 0 (9) | 0 (4) | No | |
AUC [Value] | 0.823 | 0.917 | 0.923 | 0.917 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ożga, J.; Wyka, M.; Raczko, A.; Tabor, Z.; Oleniacz, Z.; Korman, M.; Wojciechowski, W. Performance of Fully Automated Algorithm Detecting Bone Marrow Edema in Sacroiliac Joints. J. Clin. Med. 2023, 12, 4852. https://doi.org/10.3390/jcm12144852
Ożga J, Wyka M, Raczko A, Tabor Z, Oleniacz Z, Korman M, Wojciechowski W. Performance of Fully Automated Algorithm Detecting Bone Marrow Edema in Sacroiliac Joints. Journal of Clinical Medicine. 2023; 12(14):4852. https://doi.org/10.3390/jcm12144852
Chicago/Turabian StyleOżga, Joanna, Michał Wyka, Agata Raczko, Zbisław Tabor, Zuzanna Oleniacz, Michał Korman, and Wadim Wojciechowski. 2023. "Performance of Fully Automated Algorithm Detecting Bone Marrow Edema in Sacroiliac Joints" Journal of Clinical Medicine 12, no. 14: 4852. https://doi.org/10.3390/jcm12144852
APA StyleOżga, J., Wyka, M., Raczko, A., Tabor, Z., Oleniacz, Z., Korman, M., & Wojciechowski, W. (2023). Performance of Fully Automated Algorithm Detecting Bone Marrow Edema in Sacroiliac Joints. Journal of Clinical Medicine, 12(14), 4852. https://doi.org/10.3390/jcm12144852