Myocardial Work in Middle-Aged Adults with Overweight and Obesity: Associations with Sex and Central Arterial Stiffness
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Cardiovascular Risk Factor Assessment
2.3. Central Arterial Stiffness and Pulse Wave Analysis
2.4. Conventional Echocardiography
2.5. Myocardial Work Analysis
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Echocardiographic Findings
3.3. Covariables of Global Work Index
3.4. Sex-Specific Analyses
4. Discussion
Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Halland, H.; Lonnebakken, M.T.; Pristaj, N.; Saeed, S.; Midtbo, H.; Einarsen, E.; Gerdts, E. Sex differences in subclinical cardiac disease in overweight and obesity (the FATCOR study). Nutr. Metab. Cardiovasc. Dis. 2018, 28, 1054–1060. [Google Scholar] [CrossRef]
- Herfindal, B.; Gerdts, E.; Kringeland, E.A.; Saeed, S.; Midtbo, H.; Halland, H. Concomitant hypertension is associated with abnormal left ventricular geometry and lower systolic myocardial function in overweight participants: The FAT associated CardiOvasculaR dysfunction study. J. Hypertens. 2020, 38, 1158–1164. [Google Scholar] [CrossRef]
- Lu, Y.; Pechlaner, R.; Cai, J.; Yuan, H.; Huang, Z.; Yang, G.; Wang, J.; Chen, Z.; Kiechl, S.; Xu, Q. Trajectories of Age-Related Arterial Stiffness in Chinese Men and Women. J. Am. Coll. Cardiol. 2020, 75, 870–880. [Google Scholar] [CrossRef]
- Tadic, M.; Cuspidi, C.; Majstorovic, A.; Pencic, B.; Backovic, S.; Ivanovic, B.; Scepanovic, R.; Martinov, J.; Kocijancic, V.; Celic, V. Does the metabolic syndrome impact left-ventricular mechanics? A two-dimensional speckle tracking study. J. Hypertens. 2014, 32, 1870–1878. [Google Scholar] [CrossRef]
- Pristaj, N.; Saeed, S.; Midtbo, H.; Halland, H.; Matre, K.; Gerdts, E. Covariables of Myocardial Function in Women and Men with Increased Body Mass Index. High. Blood Press. Cardiovasc. Prev. 2020, 27, 579–586. [Google Scholar] [CrossRef]
- Dalen, H.; Thorstensen, A.; Aase, S.A.; Ingul, C.B.; Torp, H.; Vatten, L.J.; Stoylen, A. Segmental and global longitudinal strain and strain rate based on echocardiography of 1266 healthy individuals: The HUNT study in Norway. Eur. J. Echocardiogr. 2010, 11, 176–183. [Google Scholar] [CrossRef]
- Sugimoto, T.; Dulgheru, R.; Bernard, A.; Ilardi, F.; Contu, L.; Addetia, K.; Caballero, L.; Akhaladze, N.; Athanassopoulos, G.D.; Barone, D.; et al. Echocardiographic reference ranges for normal left ventricular 2D strain: Results from the EACVI NORRE study. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 833–840. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef]
- Biering-Sorensen, T.; Biering-Sorensen, S.R.; Olsen, F.J.; Sengelov, M.; Jorgensen, P.G.; Mogelvang, R.; Shah, A.M.; Jensen, J.S. Global Longitudinal Strain by Echocardiography Predicts Long-Term Risk of Cardiovascular Morbidity and Mortality in a Low-Risk General Population: The Copenhagen City Heart Study. Circ. Cardiovasc. Imaging 2017, 10, e005521. [Google Scholar] [CrossRef]
- Donal, E.; Bergerot, C.; Thibault, H.; Ernande, L.; Loufoua, J.; Augeul, L.; Ovize, M.; Derumeaux, G. Influence of afterload on left ventricular radial and longitudinal systolic functions: A two-dimensional strain imaging study. Eur. J. Echocardiogr. 2009, 10, 914–921. [Google Scholar] [CrossRef]
- Chirinos, J.A.; Segers, P.; Hughes, T.; Townsend, R. Large-Artery Stiffness in Health and Disease: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2019, 74, 1237–1263. [Google Scholar] [CrossRef] [PubMed]
- Russell, K.; Eriksen, M.; Aaberge, L.; Wilhelmsen, N.; Skulstad, H.; Remme, E.W.; Haugaa, K.H.; Opdahl, A.; Fjeld, J.G.; Gjesdal, O.; et al. A novel clinical method for quantification of regional left ventricular pressure-strain loop area: A non-invasive index of myocardial work. Eur. Heart J. 2012, 33, 724–733. [Google Scholar] [CrossRef] [PubMed]
- Olsen, F.J.; Skaarup, K.G.; Lassen, M.C.H.; Johansen, N.D.; Sengelov, M.; Jensen, G.B.; Schnohr, P.; Marott, J.L.; Sogaard, P.; Gislason, G.; et al. Normal Values for Myocardial Work Indices Derived From Pressure-Strain Loop Analyses: From the CCHS. Circ. Cardiovasc. Imaging 2022, 15, e013712. [Google Scholar] [CrossRef]
- Sahiti, F.; Morbach, C.; Cejka, V.; Tiffe, T.; Wagner, M.; Eichner, F.A.; Gelbrich, G.; Heuschmann, P.U.; Stork, S. Impact of cardiovascular risk factors on myocardial work-insights from the STAAB cohort study. J. Hum. Hypertens. 2022, 36, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Chao, H.; Tang, B.; Avolio, A.P.; Schlaich, M.P.; Nolde, J.M.; Adji, A.; Carnagarin, R. Female Gender Is Associated with Higher Susceptibility of Weight Induced Arterial Stiffening and Rise in Blood Pressure. J. Clin. Med. 2021, 10, 3479. [Google Scholar] [CrossRef] [PubMed]
- McEniery, C.M.; Yasmin; Hall, I.R.; Qasem, A.; Wilkinson, I.B.; Cockcroft, J.R.; ACCT Investigators. Normal vascular aging: Differential effects on wave reflection and aortic pulse wave velocity: The Anglo-Cardiff Collaborative Trial (ACCT). J. Am. Coll. Cardiol. 2005, 46, 1753–1760. [Google Scholar] [CrossRef]
- Halland, H.; Lonnebakken, M.T.; Saeed, S.; Midtbo, H.; Cramariuc, D.; Gerdts, E. Does fitness improve the cardiovascular risk profile in obese subjects? Nutr. Metab. Cardiovasc. Dis. 2017, 27, 518–524. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Gerdts, E.; Izzo, R.; Mancusi, C.; Losi, M.A.; Manzi, M.V.; Canciello, G.; De Luca, N.; Trimarco, B.; de Simone, G. Left ventricular hypertrophy offsets the sex difference in cardiovascular risk (the Campania Salute Network). Int. J. Cardiol. 2018, 258, 257–261. [Google Scholar] [CrossRef]
- de Simone, G.; Devereux, R.B.; Daniels, S.R.; Mureddu, G.; Roman, M.J.; Kimball, T.R.; Greco, R.; Witt, S.; Contaldo, F. Stroke volume and cardiac output in normotensive children and adults. Assessment of relations with body size and impact of overweight. Circulation 1997, 95, 1837–1843. [Google Scholar] [CrossRef]
- de Simone, G.; Devereux, R.B.; Roman, M.J.; Ganau, A.; Saba, P.S.; Alderman, M.H.; Laragh, J.H. Assessment of left ventricular function by the midwall fractional shortening/end-systolic stress relation in human hypertension. J. Am. Coll. Cardiol. 1994, 23, 1444–1451. [Google Scholar] [CrossRef] [PubMed]
- Einarsen, E.; Cramariuc, D.; Bahlmann, E.; Midtbo, H.; Chambers, J.B.; Gerdts, E. Higher Acceleration/Ejection Time Ratio Predicts Impaired Outcome in Aortic Valve Stenosis. Circ. Cardiovasc. Imaging 2021, 14, e011467. [Google Scholar] [CrossRef]
- Smiseth, O.A.; Donal, E.; Penicka, M.; Sletten, O.J. How to measure left ventricular myocardial work by pressure-strain loops. Eur. Heart J. Cardiovasc. Imaging 2021, 22, 259–261. [Google Scholar] [CrossRef]
- Janner, J.H.; Godtfredsen, N.S.; Ladelund, S.; Vestbo, J.; Prescott, E. Aortic augmentation index: Reference values in a large unselected population by means of the SphygmoCor device. Am. J. Hypertens. 2010, 23, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Cecelja, M.; Jiang, B.; McNeill, K.; Kato, B.; Ritter, J.; Spector, T.; Chowienczyk, P. Increased wave reflection rather than central arterial stiffness is the main determinant of raised pulse pressure in women and relates to mismatch in arterial dimensions: A twin study. J. Am. Coll. Cardiol. 2009, 54, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jiang, B.; Keehn, L.; Gu, H.; Boguslavskyi, A.; Cecelja, M.; Vennin, S.; Spector, T.; Alastruey, J.; Chowienczyk, P. Hemodynamic Mechanism of the Age-Related Increase in Pulse Pressure in Women. Hypertension 2019, 73, 1018–1024. [Google Scholar] [CrossRef]
- Wang, K.L.; Cheng, H.M.; Sung, S.H.; Chuang, S.Y.; Li, C.H.; Spurgeon, H.A.; Ting, C.T.; Najjar, S.S.; Lakatta, E.G.; Yin, F.C.; et al. Wave reflection and arterial stiffness in the prediction of 15-year all-cause and cardiovascular mortalities: A community-based study. Hypertension 2010, 55, 799–805. [Google Scholar] [CrossRef]
- Gatzka, C.D.; Kingwell, B.A.; Cameron, J.D.; Berry, K.L.; Liang, Y.L.; Dewar, E.M.; Reid, C.M.; Jennings, G.L.; Dart, A.M.; ANBO2 Investigators. Gender differences in the timing of arterial wave reflection beyond differences in body height. J. Hypertens. 2001, 19, 2197–2203. [Google Scholar] [CrossRef]
- Weber, T.; Auer, J.; O’Rourke, M.F.; Punzengruber, C.; Kvas, E.; Eber, B. Prolonged mechanical systole and increased arterial wave reflections in diastolic dysfunction. Heart 2006, 92, 1616–1622. [Google Scholar] [CrossRef]
- Torjesen, A.A.; Wang, N.; Larson, M.G.; Hamburg, N.M.; Vita, J.A.; Levy, D.; Benjamin, E.J.; Vasan, R.S.; Mitchell, G.F. Forward and backward wave morphology and central pressure augmentation in men and women in the Framingham Heart Study. Hypertension 2014, 64, 259–265. [Google Scholar] [CrossRef]
- Mitchell, G.F.; Rong, J.; Larson, M.G.; Cooper, L.L.; Xanthakis, V.; Benjamin, E.J.; Hamburg, N.M.; Vasan, R.S. Longitudinal Hemodynamic Correlates of and Sex Differences in the Evolution of Blood Pressure Across the Adult Lifespan: The Framingham Heart Study. J. Am. Heart Assoc. 2023, 12, e027329. [Google Scholar] [CrossRef] [PubMed]
- Peterson, L.R.; Soto, P.F.; Herrero, P.; Mohammed, B.S.; Avidan, M.S.; Schechtman, K.B.; Dence, C.; Gropler, R.J. Impact of gender on the myocardial metabolic response to obesity. JACC Cardiovasc. Imaging 2008, 1, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Manganaro, R.; Marchetta, S.; Dulgheru, R.; Ilardi, F.; Sugimoto, T.; Robinet, S.; Cimino, S.; Go, Y.Y.; Bernard, A.; Kacharava, G.; et al. Echocardiographic reference ranges for normal non-invasive myocardial work indices: Results from the EACVI NORRE study. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, T.; D’Hooge, J.; Kloch-Badelek, M.; Sakiewicz, W.; Thijs, L.; Staessen, J.A. Impact of hypertension on ventricular-arterial coupling and regional myocardial work at rest and during isometric exercise. J. Am. Soc. Echocardiogr. 2012, 25, 882–890. [Google Scholar] [CrossRef]
- Ji, H.; Kim, A.; Ebinger, J.E.; Niiranen, T.J.; Claggett, B.L.; Bairey Merz, C.N.; Cheng, S. Sex Differences in Blood Pressure Trajectories Over the Life Course. JAMA Cardiol. 2020, 5, 19–26. [Google Scholar] [CrossRef]
- Campos-Arias, D.; De Buyzere, M.L.; Chirinos, J.A.; Rietzschel, E.R.; Segers, P. Longitudinal Changes of Input Impedance, Pulse Wave Velocity, and Wave Reflection in a Middle-Aged Population: The Asklepios Study. Hypertension 2021, 77, 1154–1165. [Google Scholar] [CrossRef]
Variables | Total Study Population (n = 467) | Women (n = 284) | Men (n = 183) | p Value |
---|---|---|---|---|
Age (years) | 47 ± 9 | 48 ± 9 | 47 ± 9 | 0.373 |
Height (cm) | 173 ± 9 | 167 ± 6 | 180 ± 7 | <0.001 |
Weight (kg) | 95 ± 15 | 90 ± 14 | 102 ± 13 | <0.001 |
Waist circumference (cm) | 107 ± 11 | 106 ± 12 | 110 ± 10 | <0.001 |
BMI (kg/m2) | 31.2 (28.9–33.8) | 31.4 (29.0–34.3) | 31.0 (28.7–33.2) | 0.046 |
Obesity (%) | 62 | 63 | 61 | 0.606 |
Clinic systolic BP (mmHg) | 129 ± 17 | 127 ± 17 | 134 ± 14 | <0.001 |
Clinic diastolic BP (mmHg) | 82 ± 9 | 80 ± 9 | 84 ± 10 | <0.001 |
Clinic heart rate (beats/min) | 67 ± 10 | 69 ± 10 | 65 ± 11 | <0.001 |
Echocardiography systolic BP | 131 ± 16 | 129 ± 16 | 136 ± 16 | <0.001 |
24 h systolic BP (mmHg) | 121 ± 13 | 119 ± 12 | 125 ± 12 | <0.001 |
24 h diastolic BP (mmHg) | 79 ± 8 | 78 ± 8 | 82 ± 8 | <0.001 |
24 h heart rate (beats/min) | 75 ± 9 | 76 ± 9 | 73 ± 9 | 0.001 |
Hypertension (%) | 63 | 60 | 69 | 0.047 |
Hypertension treatment (%) | 22 | 23 | 22 | 0.790 |
HbA1c (%) | 5.6 ± 0.5 | 5.6 ± 0.4 | 5.6 ± 0.6 | 0.898 |
Diabetes mellitus (%) | 8 | 9 | 7 | 0.311 |
Total cholesterol (mmol/L) | 5.4 ± 1.0 | 5.5 ± 1.0 | 5.3 ± 1.0 | 0.092 |
Triglycerides (mmol/L) | 1.3 (0.9–1.7) | 1.2 (0.9–1.7) | 1.4 (1.0–2.0) | <0.001 |
LDL cholesterol (mmol/L) | 3.6 ± 0.9 | 3.6 ± 0.9 | 3.7 ± 1.0 | 0.674 |
HDL cholesterol (mmol/L) | 1.3 ± 0.3 | 1.4 ± 0.3 | 1.1 ± 0.3 | <0.001 |
eGFR (mL/min/1.73 m2) | 96 ± 13 | 96 ± 14 | 98 ± 12 | 0.080 |
Pulse wave velocity (m/s) | 7.2 (6.4–8.4) | 7.0 (6.3–8) | 7.6 (6.7–8.6) | 0.001 |
Central systolic BP (mmHg) | 116 ± 15 | 115 ± 16 | 118 ± 13 | 0.028 |
Central pulse pressure (mmHg) | 36 ± 10 | 36 ± 11 | 37 ± 9 | 0.212 |
Augmentation pressure (mmHg) | 11 ± 7 | 12 ± 7 | 8 ± 6 | <0.001 |
Augmentation index (%) | 28 ± 14 | 33 ± 11 | 21 ± 14 | <0.001 |
Variables | Total Study Population (n = 467) | Women (n = 284) | Men (n = 183) | p Value |
---|---|---|---|---|
Left ventricle | ||||
LV end-diastolic diameter (mm) | 50 ± 5 | 48 ± 4 | 51 ± 5 | <0.001 |
LV end-systolic diameter (mm) | 33 ± 4 | 32 ± 4 | 34 ± 4 | <0.001 |
Septal wall thickness (mm) | 11 ± 2 | 10 ± 2 | 12 ± 2 | <0.001 |
Posterior wall thickness (mm) | 8 ± 2 | 8 ± 1 | 9 ± 2 | <0.001 |
Relative wall thickness | 0.34 ± 0.08 | 0.33 ± 0.07 | 0.36 ± 0.08 | <0.001 |
LV mass index (g/m2.7) | 38 (33–43) | 37 (32–37) | 40 (35–47) | <0.001 |
LV hypertrophy (%) | 14 | 12 | 18 | 0.052 |
Meridional wall stress (dyne/cm2) | 146 ± 27 | 145 ± 27 | 148 ± 27 | 0.239 |
Systolic function | ||||
Ejection fraction (%) | 62 ± 5 | 62 ± 5 | 62 ± 5 | 0.293 |
Stroke volume index (mL/m2.04) | 32 ± 7 | 32 ± 7 | 32 ± 7 | 0.234 |
Global longitudinal strain (%) | 19.6 ± 2.9 | 20.0 ± 2.8 | 18.8 ± 2.8 | <0.001 |
Systolic ejection time (ms) | 306 ± 28 | 311 ± 28 | 297 ± 27 | <0.001 |
Diastolic function | ||||
Filling pressure (E/e′) | 9.3 ± 2.7 | 9.5 ± 2.7 | 9.0 ± 2.8 | 0.056 |
Average e′ (cm/s) | 9.7 ± 2.2 | 9.9 ± 2.3 | 9.3 ± 2.1 | 0.008 |
Peak tricuspid regurgitation (m/s) | 2.19 ± 0.50 | 2.21 ± 0.50 | 2.15 ± 0.51 | 0.362 |
Left atrial volume index (mL/m2) | 20.2 ± 5.7 | 20.3 ± 5.6 | 19.9 ± 5.9 | 0.376 |
Isovolumetric relaxation time (ms) | 91 ± 22 | 89 ± 14 | 94 ± 30 | 0.019 |
Myocardial work | ||||
Global work index (mmHg%) | 2095 ± 388 | 2126 ± 385 | 2047 ± 389 | 0.031 |
Global constructive work (mmHg%) | 2333 ± 407 | 2333 ± 407 | 2333 ± 409 | 0.995 |
Global wasted work (mmHg%) | 75 (49–115) | 73 (49–106) | 77 (50–126) | 0.186 |
Global work efficiency (%) | 96 (95–97) | 96 (94–97) | 96 (94–97) | 0.138 |
Univariable | Multivariable Model 1 | Multivariable Model 2 | ||||
---|---|---|---|---|---|---|
Spearman Correlation Coefficient | p Value | Standardized β Coefficient | p Value | Standardized β Coefficient | p Value | |
Female sex | 0.13 | 0.007 | 0.15 | 0.001 | 0.04 | 0.544 |
Age (years) | 0.25 | <0.001 | 0.12 | 0.009 | 0.07 | 0.154 |
Clinic systolic BP (mmHg) | 0.29 | <0.001 | 0.23 | <0.001 | 0.19 | <0.001 |
Heart rate (beats/min) | −0.09 | 0.044 | −0.12 | 0.016 | −0.09 | 0.062 |
Meridional wall stress (dyne/cm2) | 0.22 | <0.001 | 0.21 | <0.001 | 0.20 | <0.001 |
Ejection fraction (%) | 0.20 | <0.001 | 0.24 | <0.001 | 0.23 | <0.001 |
Systolic ejection time (ms) | 0.24 | <0.001 | 0.13 | 0.005 | 0.12 | 0.013 |
Left atrial volume index (mL/m2) | 0.22 | <0.001 | 0.15 | 0.001 | 0.13 | 0.001 |
LV mass index (g/m2.7) | 0.12 | 0.009 | ||||
Hypertensive treatment (yes/no) | 0.14 | 0.003 | ||||
Filling pressure (E/e′) | 0.18 | <0.001 | ||||
HbA1c (%) | 0.11 | 0.019 | ||||
Waist circumference (cm) | −0.13 | 0.006 | ||||
Height (cm) | −0.17 | <0.001 | −0.08 | 0.181 | ||
Augmentation pressure (mmHg) | 0.33 | <0.001 | 0.12 | 0.024 | ||
Central pulse pressure (mmHg) | 0.35 | <0.001 | ||||
Augmentation index (%) | 0.21 | <0.001 | ||||
Pulse wave velocity (m/s) | 0.16 | 0.001 | ||||
BMI (kg/m2) | −0.03 | 0.532 |
Variables | Women | Men | ||||||
---|---|---|---|---|---|---|---|---|
Univariable | Multivariable * | Univariable | Multivariable † | |||||
Spearman Correlation Coefficient | p Value | Standardized β Coefficient | p Value | Standardized β Coefficient | p Value | Standardized β Coefficient | p Value | |
cPP | 0.41 | <0.001 | 0.24 | <0.001 | 0.33 | <0.001 | 0.20 | 0.017 |
AP | 0.34 | <0.001 | 0.19 | 0.001 | 0.23 | 0.002 | 0.11 | 0.174 |
Aix | 0.19 | 0.001 | 0.08 | 0.151 | 0.15 | 0.038 | 0.05 | 0.511 |
PWV | 0.15 | 0.011 | 0.01 | 0.848 | 0.21 | 0.004 | 0.06 | 0.443 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lindseth, K.T.; Gerdts, E.; Midtbø, H.; Pristaj, N.; Cramariuc, D.; Einarsen, E. Myocardial Work in Middle-Aged Adults with Overweight and Obesity: Associations with Sex and Central Arterial Stiffness. J. Clin. Med. 2023, 12, 5676. https://doi.org/10.3390/jcm12175676
Lindseth KT, Gerdts E, Midtbø H, Pristaj N, Cramariuc D, Einarsen E. Myocardial Work in Middle-Aged Adults with Overweight and Obesity: Associations with Sex and Central Arterial Stiffness. Journal of Clinical Medicine. 2023; 12(17):5676. https://doi.org/10.3390/jcm12175676
Chicago/Turabian StyleLindseth, Katrine Tryti, Eva Gerdts, Helga Midtbø, Nadia Pristaj, Dana Cramariuc, and Eigir Einarsen. 2023. "Myocardial Work in Middle-Aged Adults with Overweight and Obesity: Associations with Sex and Central Arterial Stiffness" Journal of Clinical Medicine 12, no. 17: 5676. https://doi.org/10.3390/jcm12175676
APA StyleLindseth, K. T., Gerdts, E., Midtbø, H., Pristaj, N., Cramariuc, D., & Einarsen, E. (2023). Myocardial Work in Middle-Aged Adults with Overweight and Obesity: Associations with Sex and Central Arterial Stiffness. Journal of Clinical Medicine, 12(17), 5676. https://doi.org/10.3390/jcm12175676