Vaccine-Induced Immune Thrombocytopenia and Thrombosis (VITT)—Insights from Clinical Cases, In Vitro Studies and Murine Models
Abstract
:1. Introduction
2. Similarities and Differences between VITT, HIT and Its Variants
3. What Explains the Secondary Immunological Response in VITT?
4. Insights into Vaccine Components and Their Mechanistic Role in Thrombo-Inflammation of VITT
5. Possible Events after Vaccination
6. The Antibody Landscape within and beyond VITT
7. Mechanistic Insights from Murine Models of VITT
8. Conclusion and Further Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kaur, S.P.; Gupta, V. COVID-19 Vaccine: A Comprehensive Status Report. Virus Res. 2020, 288, 198114. [Google Scholar] [CrossRef] [PubMed]
- Pai, M. Epidemiology of VITT. Semin. Hematol. 2022, 59, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Greinacher, A.; Thiele, T.; Warkentin, T.E.; Weisser, K.; Kyrle, P.A.; Eichinger, S. Thrombotic Thrombocytopenia after ChAdOx1 NCov-19 Vaccination. N. Engl. J. Med. 2021, 384, 2092–2101. [Google Scholar] [CrossRef]
- Scully, M.; Singh, D.; Lown, R.; Poles, A.; Solomon, T.; Levi, M.; Goldblatt, D.; Kotoucek, P.; Thomas, W.; Lester, W. Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 NCoV-19 Vaccination. N. Engl. J. Med. 2021, 384, 2202–2211. [Google Scholar] [CrossRef] [PubMed]
- Schultz, N.H.; Sørvoll, I.H.; Michelsen, A.E.; Munthe, L.A.; Lund-Johansen, F.; Ahlen, M.T.; Wiedmann, M.; Aamodt, A.-H.; Skattør, T.H.; Tjønnfjord, G.E.; et al. Brief Report: Thrombosis and Thrombocytopenia after ChAdOx1 NCoV-19 Vaccination. N. Engl. J. Med. 2021, 384, 2124–2130. [Google Scholar] [CrossRef]
- Guidance for Clinical Case Management of TTS Following Vaccination to Prevent COVID-19. Available online: https://www.who.int/publications/i/item/9789240061989 (accessed on 17 May 2023).
- Pavord, S.; Hunt, B.J.; Horner, D.; Bewley, S.; Karpusheff, J. Vaccine Induced Immune Thrombocytopenia and Thrombosis: Summary of NICE Guidance. BMJ 2021, 375, n2195. [Google Scholar] [CrossRef]
- Pavord, S.; Scully, M.; Hunt, B.J.; Lester, W.; Bagot, C.; Craven, B.; Rampotas, A.; Ambler, G.; Makris, M. Clinical Features of Vaccine-Induced Immune Thrombocytopenia and Thrombosis. N. Engl. J. Med. 2021, 385, 1680–1689. [Google Scholar] [CrossRef]
- Cines, D.B.; Greinacher, A. Vaccine-Induced Immune Thrombotic Thrombocytopenia. Blood 2023, 141, 1659–1665. [Google Scholar] [CrossRef]
- Johansen, S.; Lægreid, I.J.; Ernstsen, S.L.; Azrakhsh, N.A.; Kittang, A.O.; Lindås, R.; Gjertsen, B.T.; Vetti, N.; Mørtberg, T.V.; Sørvoll, I.H.; et al. Thrombosis and Thrombocytopenia after HPV Vaccination. J. Thromb. Haemost. 2022, 20, 700–704. [Google Scholar] [CrossRef]
- Kanack, A.J.; Lægreid, I.J.; Johansen, S.; Reikvam, H.; Ahlen, M.T.; Padmanabhan, A. Human Papilloma Virus Vaccine and VITT Antibody Induction. Am. J. Hematol. 2022, 97, E363–E364. [Google Scholar] [CrossRef]
- Greinacher, A.; Langer, F.; Schönborn, L.; Thiele, T.; Haddad, M.; Renné, T.; Rollin, J.; Gruel, Y.; Warkentin, T.E. Platelet-Activating Anti-PF4 Antibodies Mimic VITT Antibodies in an Unvaccinated Patient with Monoclonal Gammopathy. Haematologica 2022, 107, 1219–1221. [Google Scholar] [CrossRef] [PubMed]
- Warkentin, T.E.; Baskin-Miller, J.; Raybould, A.L.; Sheppard, J.-A.I.; Daka, M.; Nazy, I.; Moll, S. Adenovirus-Associated Thrombocytopenia, Thrombosis, and VITT-like Antibodies. N. Engl. J. Med. 2023, 389, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Natelson, E.A.; Lynch, E.C.; Alfrey, C.P.; Gross, J.B. Heparin-Induced Thrombocytopenia. An Unexpected Response to Treatment of Consumption Coagulopathy. Ann. Intern. Med. 1969, 71, 1121–1125. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, G.R.; Dixon, R.H.; Silver, D. Heparin Induced Thrombocytopenia with Thrombotic and Hemorrhagic Manifestations. Surg. Gynecol. Obstet. 1973, 136, 409–416. [Google Scholar]
- Greinacher, A.; Selleng, K.; Palankar, R.; Wesche, J.; Handtke, S.; Wolff, M.; Aurich, K.; Lalk, M.; Methling, K.; Völker, U.; et al. Insights in ChAdOx1 NCoV-19 Vaccine-Induced Immune Thrombotic Thrombocytopenia. Blood 2021, 138, 2256–2268. [Google Scholar] [CrossRef]
- Warkentin, T.E.; Sheppard, J.A.I.; Whitlock, R.P. Temporal Presentations of Heparin-Induced Thrombocytopenia Following Cardiac Surgery: A Single-Center, Retrospective Cohort Study. J. Thromb. Haemost. 2022, 20, 2601–2616. [Google Scholar] [CrossRef]
- Warkentin, T.E.; Kelton, J.G. Temporal Aspects of Heparin-Induced Thrombocytopenia. N. Engl. J. Med. 2001, 344, 1286–1292. [Google Scholar] [CrossRef]
- Visentin, G.P.; Ford, S.E.; Scott, J.P.; Aster, R.H. Antibodies from Patients with Heparin-Induced Thrombocytopenia/Thrombosis Are Specific for Platelet Factor 4 Complexed with Heparin or Bound to Endothelial Cells. J. Clin. Investig. 1994, 93, 81–88. [Google Scholar] [CrossRef]
- Kelton, J.G.; Sheridan, D.; Santos, A.; Smith, J.; Steeves, K.; Smith, C.; Brown, C.; Murphy, W.G. Heparin-Induced Thrombocytopenia: Laboratory Studies. Blood 1988, 72, 925–930. [Google Scholar] [CrossRef]
- Favaloro, E.J.; Pasalic, L. Heparin-Induced Thrombotic Thrombocytopenia (HITT) and Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT): Similar but Different. Methods Mol. Biol. 2023, 2663, 405–415. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, L.; Bancroft, D.P.; Lai, C.K.; Maione, T.E. Crystal Structure of Recombinant Human Platelet Factor 4. Biochemistry 1994, 33, 8361–8366. [Google Scholar] [CrossRef]
- Warkentin, T.E.; Greinacher, A. Laboratory Testing for Heparin-Induced Thrombocytopenia and Vaccine-Induced Immune Thrombotic Thrombocytopenia Antibodies: A Narrative Review. Semin. Thromb. Hemost. 2023, 49, 621–633. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Yarovoi, S.V.; Zhu, Z.; Rauova, L.; Hayes, V.; Lebedeva, T.; Liu, Q.; Poncz, M.; Arepally, G.; Cines, D.B.; et al. Atomic Description of the Immune Complex Involved in Heparin-Induced Thrombocytopenia. Nat. Commun. 2015, 6, 8277. [Google Scholar] [CrossRef] [PubMed]
- Huynh, A.; Kelton, J.G.; Arnold, D.M.; Daka, M.; Nazy, I. Antibody Epitopes in Vaccine-Induced Immune Thrombotic Thrombocytopaenia. Nature 2021, 596, 565–569. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Toma, F.; Uzun, G.; Wagner, T.R.; Pelzl, L.; Zlamal, J.; Freytag, V.; Weich, K.; Nowak-Harnau, S.; Rothbauer, U.; et al. The Interaction between Anti-PF4 Antibodies and Anticoagulants in Vaccine-Induced Thrombotic Thrombocytopenia. Blood 2022, 139, 3430–3438. [Google Scholar] [CrossRef]
- Arnold, D.M. Heparin or Nonheparin Anticoagulants for VITT. Blood 2022, 139, 3358–3359. [Google Scholar] [CrossRef]
- Greinacher, A.; Langer, F.; Makris, M.; Pai, M.; Pavord, S.; Tran, H.; Warkentin, T.E. Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT)—Update on Diagnosis and Management Considering Different Resources: Response to Comment from Yamada et al. J. Thromb. Haemost. 2022, 20, 542–543. [Google Scholar] [CrossRef]
- Schönborn, L.; Esteban, O.; Wesche, J.; Dobosz, P.; Broto, M.; Rovira, S.; Fuhrmann, J.; Torres, R.; Serra, J.; Llevadot, R.; et al. Anti-Platelet Factor 4 Induced Immunothrombosis Independent of Heparin or Vaccination. In ISTH Congress Abstracts; ISTH: Carrboro, NC, USA, 2023. [Google Scholar]
- Oldenburg, J.; Klamroth, R.; Langer, F.; von Auer, C.; Albisetti, M.; Ay, C.; Korte, W. Updated GTH Statement on Vaccination with the AstraZeneca COVID-19, as of March 22. 2021. Available online: https://gth-online.org/wp-content/uploads/2021/03/GTH_Stellungnahme_AstraZeneca_engl._3_22_2021.pdf (accessed on 15 September 2023).
- Amiral, J.; Pouplard, C.; Vissac, A.M.; Walenga, J.M.; Jeske, W.; Gruel, Y. Affinity Purification of Heparin-Dependent Antibodies to Platelet Factor 4 Developed in Heparin-Induced Thrombocytopenia: Biological Characteristics and Effects on Platelet Activation. Br. J. Haematol. 2000, 109, 336–341. [Google Scholar] [CrossRef]
- Amiral, J.; Bridey, E.; Dreyfus, M.; Vissac, A.M.; Fressinaud, E.; Wolf, M.; Meyer, D. Platelet Factor 4 Complexed to Heparin Is the Target for Antibodies Generated in Heparin-Induced Thrombocytopenia. Thromb. Haemost. 1992, 68, 95–96. [Google Scholar] [CrossRef]
- Warkentin, T.E.; Arnold, D.M.; Sheppard, J.-A.I.; Moore, J.C.; Kelton, J.G.; Nazy, I. Investigation of Anti-PF4 versus Anti-PF4/Heparin Reactivities by Fluid-Phase EIA for Four Anti-PF4 Disorders: Classic HIT, Autoimmune HIT, VITT, Spontaneous HIT. J. Thromb. Haemost. 2023, 21, 2268–2276. [Google Scholar] [CrossRef]
- Warkentin, T.E.; Kelton, J.G. Delayed-Onset Heparin-Induced Thrombocytopenia and Thrombosis. Ann. Intern. Med. 2001, 135, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.-H.; Medvedev, N.; Delcea, M.; Greinacher, A. Anti-Platelet Factor 4/Polyanion Antibodies Mediate a New Mechanism of Autoimmunity. Nat. Commun. 2017, 8, 14945. [Google Scholar] [CrossRef] [PubMed]
- Warkentin, T.E.; Makris, M.; Jay, R.M.; Kelton, J.G. A Spontaneous Prothrombotic Disorder Resembling Heparin-Induced Thrombocytopenia. Am. J. Med. 2008, 121, 632–636. [Google Scholar] [CrossRef]
- Warkentin, T.E.; Greinacher, A. Spontaneous HIT Syndrome: Knee Replacement, Infection, and Parallels with Vaccine-Induced Immune Thrombotic Thrombocytopenia. Thromb. Res. 2021, 204, 40–51. [Google Scholar] [CrossRef]
- Padmanabhan, A.; Jones, C.G.; Bougie, D.W.; Curtis, B.R.; McFarland, J.G.; Wang, D.; Aster, R.H. Heparin-Independent, PF4-Dependent Binding of HIT Antibodies to Platelets: Implications for HIT Pathogenesis. Blood 2015, 125, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Cines, D.B.; Yarovoi, S.V.; Zaitsev, S.V.; Lebedeva, T.; Rauova, L.; Poncz, M.; Arepally, G.M.; Khandelwal, S.; Stepanova, V.; Rux, A.H.; et al. Polyphosphate/Platelet Factor 4 Complexes Can Mediate Heparin-Independent Platelet Activation in Heparin-Induced Thrombocytopenia. Blood Adv. 2016, 1, 62–74. [Google Scholar] [CrossRef]
- Jaax, M.E.; Krauel, K.; Marschall, T.; Brandt, S.; Gansler, J.; Fürll, B.; Appel, B.; Fischer, S.; Block, S.; Helm, C.A.; et al. Complex Formation with Nucleic Acids and Aptamers Alters the Antigenic Properties of Platelet Factor 4. Blood 2013, 122, 272–281. [Google Scholar] [CrossRef]
- Thiele, T.; Weisser, K.; Schönborn, L.; Funk, M.B.; Weber, G.; Greinacher, A.; Keller-Stanislawski, B. Laboratory Confirmed Vaccine-Induced Immune Thrombotic Thrombocytopenia: Retrospective Analysis of Reported Cases after Vaccination with ChAdOx-1 NCoV-19 in Germany. Lancet Reg. Health Eur. 2022, 12, 100270. [Google Scholar] [CrossRef]
- Greinacher, A.; Warkentin, T.E. Platelet Factor 4 Triggers Thrombo-Inflammation by Bridging Innate and Adaptive Immunity. Int. J. Lab. Hematol. 2023, 45, 11–22. [Google Scholar] [CrossRef]
- Hancock, R.E. Cationic Peptides: Effectors in Innate Immunity and Novel Antimicrobials. Lancet Infect. Dis. 2001, 1, 156–164. [Google Scholar] [CrossRef]
- Krauel, K.; Pötschke, C.; Weber, C.; Kessler, W.; Fürll, B.; Ittermann, T.; Maier, S.; Hammerschmidt, S.; Bröker, B.M.; Greinacher, A. Platelet Factor 4 Binds to Bacteria, Inducing Antibodies Cross-Reacting with the Major Antigen in Heparin-Induced Thrombocytopenia. Blood 2011, 117, 1370–1378. [Google Scholar] [CrossRef] [PubMed]
- Michalik, S.; Siegerist, F.; Palankar, R.; Franzke, K.; Schindler, M.; Reder, A.; Seifert, U.; Cammann, C.; Wesche, J.; Steil, L.; et al. Comparative Analysis of ChAdOx1 NCoV-19 and Ad26.COV2.S SARS-CoV-2 Vector Vaccines. Haematologica 2022, 107, 947–957. [Google Scholar] [CrossRef]
- Greinacher, A.; Schönborn, L.; Siegerist, F.; Steil, L.; Palankar, R.; Handtke, S.; Reder, A.; Thiele, T.; Aurich, K.; Methling, K.; et al. Pathogenesis of Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT). Semin. Hematol. 2022, 59, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Handtke, S.; Wolff, M.; Zaninetti, C.; Wesche, J.; Schönborn, L.; Aurich, K.; Ulm, L.; Hübner, N.O.; Becker, K.; Thiele, T.; et al. A Flow Cytometric Assay to Detect Platelet-Activating Antibodies in VITT after ChAdOx1 NCov-19 Vaccination. Blood 2021, 137, 3656–3659. [Google Scholar] [CrossRef] [PubMed]
- Vanderlugt, C.L.; Miller, S.D. Epitope Spreading in Immune-Mediated Diseases: Implications for Immunotherapy. Nat. Rev. Immunol. 2002, 2, 85–95. [Google Scholar] [CrossRef]
- Sachs, U.J. Prospects for Risk Stratification of Anti-HPA-1a Alloimmunized Pregnant Women. Transfus. Apher. Sci. 2020, 59, 102709. [Google Scholar] [CrossRef]
- Hawkins, J.; Aster, R.H.; Curtis, B.R. Post-Transfusion Purpura: Current Perspectives. J. Blood Med. 2019, 10, 405–415. [Google Scholar] [CrossRef]
- Lubenow, N.; Eichler, P.; Albrecht, D.; Carlsson, L.E.; Kothmann, J.; Rossocha, W.R.; Hahn, M.; Quitmann, H.; Greinacher, A. Very Low Platelet Counts in Post-Transfusion Purpura Falsely Diagnosed as Heparin-Induced Thrombocytopenia: Report of Four Cases and Review of Literature. Thromb. Res. 2000, 100, 115–125. [Google Scholar] [CrossRef]
- Vogelsang, G.; Kickler, T.S.; Bell, W.R. Post-Transfusion Purpura: A Report of Five Patients and a Review of the Pathogenesis and Management. Am. J. Hematol. 1986, 21, 259–267. [Google Scholar] [CrossRef]
- Jackson, S.P.; Darbousset, R.; Schoenwaelder, S.M. Thromboinflammation: Challenges of Therapeutically Targeting Coagulation and Other Host Defense Mechanisms. Blood 2019, 133, 906–918. [Google Scholar] [CrossRef]
- Guo, L.; Rondina, M.T. The Era of Thromboinflammation: Platelets Are Dynamic Sensors and Effector Cells during Infectious Diseases. Front. Immunol. 2019, 10, 2204. [Google Scholar] [CrossRef] [PubMed]
- Quirino-Teixeira, A.C.; Rozini, S.V.; Barbosa-Lima, G.; Coelho, D.R.; Carneiro, P.H.; Mohana-Borges, R.; Bozza, P.T.; Hottz, E.D. Inflammatory Signaling in Dengue-Infected Platelets Requires Translation and Secretion of Nonstructural Protein 1. Blood Adv. 2020, 4, 2018–2031. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.X.; Tyagi, T.; Jain, K.; Gu, V.W.; Lee, S.H.; Hwa, J.M.; Kwan, J.M.; Krause, D.S.; Lee, A.I.; Halene, S.; et al. Thrombocytopathy and Endotheliopathy: Crucial Contributors to COVID-19 Thromboinflammation. Nat. Rev. Cardiol. 2021, 18, 194–209. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.T.; Boyd, R.J.; Sarkar, D.; Teijeira-Crespo, A.; Chan, C.K.; Bates, E.; Waraich, K.; Vant, J.; Wilson, E.; Truong, C.D.; et al. ChAdOx1 Interacts with CAR and PF4 with Implications for Thrombosis with Thrombocytopenia Syndrome. Sci. Adv. 2021, 7, 8213. [Google Scholar] [CrossRef] [PubMed]
- Alban, S.; Krauel, K.; Greinacher, A. Role of Sulfated Polysaccharides and Other Polyanions in the Pathogenesis of Heparin-Induced Thrombocytopenia. In Heparin-Induced Thrombocytopenia; Warkentin, T., Greinacher, A., Eds.; CRC Press: London, UK, 2013; pp. 193–220. ISBN 9780429110382. [Google Scholar]
- Alban, S.; Neupane, S.; Girreser, U.; Sönnichsen, F.D.; Greinacher, A. The COVID-19 Vaccine ChAdOx1-S Is Not Contaminated with Sulfated Glycosaminoglycans. J. Thromb. Haemost. 2022, 20, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Lubenow, N.; Hinz, P.; Thomaschewski, S.; Lietz, T.; Vogler, M.; Ladwig, A.; Jünger, M.; Nauck, M.; Schellong, S.; Wander, K.; et al. The Severity of Trauma Determines the Immune Response to PF4/Heparin and the Frequency of Heparin-Induced Thrombocytopenia. Blood 2010, 115, 1797–1803. [Google Scholar] [CrossRef]
- Hwang, J.; Lee, S.B.; Lee, S.W.; Lee, M.H.; Koyanagi, A.; Jacob, L.; Tizaoui, K.; Yon, D.K.; Shin, J., II; Smith, L. Comparison of Vaccine-Induced Thrombotic Events between ChAdOx1 NCoV-19 and Ad26.COV.2.S Vaccines. J. Autoimmun. 2021, 122, 102681. [Google Scholar] [CrossRef]
- Schönborn, L.; Wesche, J.; Fuhrmann, J.; Esteban, O.; Dobosz, P.; Broto, M.; Serra, J.; Llevadot, R.; Greinacher, A. Developing an Assay to Distinguish between HIT and VITT Antibodies. Hamostaseologie 2023, 43, S77. [Google Scholar] [CrossRef]
- Kanack, A.J.; Bayas, A.; George, G.; Abou-Ismail, M.Y.; Singh, B.; Kohlhagen, M.C.; Splinter, N.P.; Christ, M.; Naumann, M.; Moser, K.A.; et al. Monoclonal and Oligoclonal Anti-Platelet Factor 4 Antibodies Mediate VITT. Blood 2022, 140, 73–77. [Google Scholar] [CrossRef]
- Wang, J.J.; Armour, B.; Chataway, T.; Troelnikov, A.; Colella, A.; Yacoub, O.; Hockley, S.; Tan, C.W.; Gordon, T.P. Vaccine-Induced Immune Thrombotic Thrombocytopenia Is Mediated by a Stereotyped Clonotypic Antibody. Blood 2022, 140, 1738–1742. [Google Scholar] [CrossRef]
- Coughlan, L.; Bradshaw, A.C.; Parker, A.L.; Robinson, H.; White, K.; Custers, J.; Goudsmit, J.; Van Roijen, N.; Barouch, D.H.; Nicklin, S.A.; et al. Ad5:Ad48 Hexon Hypervariable Region Substitutions Lead to Toxicity and Increased Inflammatory Responses Following Intravenous Delivery. Mol. Ther. 2012, 20, 2268–2281. [Google Scholar] [CrossRef] [PubMed]
- Toh, C.H.; Wang, G.; Parker, A.L. The Aetiopathogenesis of Vaccine-Induced Immune Thrombotic Thrombocytopenia. Clin. Med. 2022, 22, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Leung, H.H.L.; Perdomo, J.; Ahmadi, Z.; Zheng, S.S.; Rashid, F.N.; Enjeti, A.; Ting, S.B.; Chong, J.J.H.; Chong, B.H. NETosis and Thrombosis in Vaccine-Induced Immune Thrombotic Thrombocytopenia. Nat. Commun. 2022, 13, 5206. [Google Scholar] [CrossRef] [PubMed]
- McFadyen, J.D.; Sharma, P.; Moon, M.J.; Noonan, J.; Goodall, E.; Tran, H.A.; Peter, K. Activation of Circulating Platelets in Vaccine-induced Thrombotic Thrombocytopenia and Its Reversal by Intravenous Immunoglobulin. Br. J. Haematol. 2022, 196, 234. [Google Scholar] [CrossRef]
- Scavone, M.; Clerici, B.; Birocchi, S.; Mencarini, T.; Calogiuri, M.; Ghali, C.; Prati, D.; Bozzi, S.; Villa, P.; Cattaneo, M.; et al. Platelet Activation and Modulation in Thrombosis with Thrombocytopenia Syndrome Associated with ChAdO×1 NCov-19 Vaccine. Haematologica 2021, 106, 3228–3231. [Google Scholar] [CrossRef]
- Steiner, S.; Seidinger, D.; Huber, K.; Kaun, C.; Minar, E.; Kopp, C.W. Effect of Glycoprotein IIb/IIIa Antagonist Abciximab on Monocyte-Platelet Aggregates and Tissue Factor Expression. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 1697–1702. [Google Scholar] [CrossRef]
- Hottz, E.D.; Azevedo-Quintanilha, I.G.; Palhinha, L.; Teixeira, L.; Barreto, E.A.; Pão, C.R.R.; Righy, C.; Franco, S.; Souza, T.M.L.; Kurtz, P.; et al. Platelet Activation and Platelet-Monocyte Aggregate Formation Trigger Tissue Factor Expression in Patients with Severe COVID-19. Blood 2020, 136, 1330–1341. [Google Scholar] [CrossRef]
- Pitkänen, H.H.; Jouppila, A.; Helin, T.; Dulipati, V.; Kotimaa, J.; Meri, S.; Kantele, A.; Jalkanen, P.; Julkunen, I.; Lassila, R. COVID-19 Adenovirus Vaccine Triggers Antibodies against PF4 Complexes to Activate Complement and Platelets. Thromb. Res. 2021, 208, 129–137. [Google Scholar] [CrossRef]
- Pomara, C.; Sessa, F.; Ciaccio, M.; Dieli, F.; Esposito, M.; Garozzo, S.F.; Giarratano, A.; Prati, D.; Rappa, F.; Salerno, M.; et al. Post-Mortem Findings in Vaccine-Induced Thrombotic Thrombocytopenia. Haematologica 2021, 106, 2291. [Google Scholar] [CrossRef]
- Johnston, I.; Sarkar, A.; Hayes, V.; Koma, G.T.; Arepally, G.M.; Chen, J.; Chung, D.W.; López, J.A.; Cines, D.B.; Rauova, L.; et al. Recognition of PF4-VWF Complexes by Heparin-Induced Thrombocytopenia Antibodies Contributes to Thrombus Propagation. Blood 2020, 135, 1270. [Google Scholar] [CrossRef]
- Nicolai, L.; Leunig, A.; Pekayvaz, K.; Esefeld, M.; Anjum, A.; Rath, J.; Riedlinger, E.; Ehreiser, V.; Mader, M.; Eivers, L.; et al. Thrombocytopenia and Splenic Platelet-Directed Immune Responses after IV ChAdOx1 NCov-19 Administration. Blood 2022, 140, 478–490. [Google Scholar] [CrossRef]
- Cañas, C.A.; Posso-Osorio, I.; Bedoya-Joaqui, V.; López, H.E.; Tobón, G.J. An Idiotypic Network Dysregulation Could Be Related to the Pathogenesis of Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT) Following Vaccination with Vaccines Expressing Spike Protein of SARS CoV2. Intern. Emerg. Med. 2022, 17, 1249. [Google Scholar] [CrossRef] [PubMed]
- Kowarz, E.; Krutzke, L.; Külp, M.; Streb, P.; Larghero, P.; Reis, J.; Bracharz, S.; Engler, T.; Kochanek, S.; Marschalek, R. Vaccine-Induced COVID-19 Mimicry Syndrome. Elife 2022, 11, e74974. [Google Scholar] [CrossRef]
- Greinacher, A.; Selleng, K.; Mayerle, J.; Palankar, R.; Wesche, J.; Reiche, S.; Aebischer, A.; Warkentin, T.E.; Muenchhoff, M.; Hellmuth, J.C.; et al. Anti–Platelet Factor 4 Antibodies Causing VITT Do Not Cross-React with SARS-CoV-2 Spike Protein. Blood 2021, 138, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Schönborn, L.; Seck, S.E.; Thiele, T.; Warkentin, T.E.; Greinacher, A. SARS-CoV-2 Infection in Patients with a History of VITT. N. Engl. J. Med. 2022, 387, 88–90. [Google Scholar] [CrossRef] [PubMed]
- Almuqrin, A.; Davidson, A.D.; Williamson, M.K.; Lewis, P.A.; Heesom, K.J.; Morris, S.; Gilbert, S.C.; Matthews, D.A. SARS-CoV-2 Vaccine ChAdOx1 NCoV-19 Infection of Human Cell Lines Reveals Low Levels of Viral Backbone Gene Transcription alongside Very High Levels of SARS-CoV-2 S Glycoprotein Gene Transcription. Genome Med. 2021, 13, 43. [Google Scholar] [CrossRef] [PubMed]
- Thiele, T.; Ulm, L.; Holtfreter, S.; Schönborn, L.; Kuhn, S.O.; Scheer, C.; Warkentin, T.E.; Bröker, B.M.; Becker, K.; Aurich, K.; et al. Frequency of Positive Anti-PF4/Polyanion Antibody Tests after COVID-19 Vaccination with ChAdOx1 NCoV-19 and BNT162b2. Blood 2021, 138, 299–303. [Google Scholar] [CrossRef] [PubMed]
- Schönborn, L.; Greinacher, A. Longitudinal Aspects of VITT. Semin. Hematol. 2022, 59, 108–114. [Google Scholar] [CrossRef]
- Schönborn, L.; Thiele, T.; Kaderali, L.; Günther, A.; Hoffmann, T.; Seck, S.E.; Selleng, K.; Greinacher, A. Most Anti-PF4 Antibodies in Vaccine-Induced Immune Thrombotic Thrombocytopenia Are Transient. Blood 2022, 139, 1903–1907. [Google Scholar] [CrossRef]
- Nazy, I.; Huynh, A.; Arnold, D. Distinct Antibody Groups in Patients with Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT) and Their Clinical Implications. In ISTH Congress Abstracts; ISTH: Carrboro, NC, USA, 2023. [Google Scholar]
- Schönborn, L.; Thiele, T.; Esefeld, M.; El Debuch, K.; Wesche, J.; Seck, S.E.; Kaderali, L.; Wolff, M.; Warkentin, T.E.; Greinacher, A. Quantitative Interpretation of PF4/Heparin-EIA Optical Densities in Predicting Platelet-Activating VITT Antibodies. J. Thromb. Haemost. 2022, 20, 2579–2586. [Google Scholar] [CrossRef]
- Jennewein, M.F.; Alter, G. The Immunoregulatory Roles of Antibody Glycosylation. Trends Immunol. 2017, 38, 358–372. [Google Scholar] [CrossRef]
- Ackerman, M.E.; Crispin, M.; Yu, X.; Baruah, K.; Boesch, A.W.; Harvey, D.J.; Dugast, A.S.; Heizen, E.L.; Ercan, A.; Choi, I.; et al. Natural Variation in Fc Glycosylation of HIV-Specific Antibodies Impacts Antiviral Activity. J. Clin. Investig. 2013, 123, 2183–2192. [Google Scholar] [CrossRef] [PubMed]
- Pasek, M.; Duk, M.; Podbielska, M.; Sokolik, R.; Szechiński, J.; Lisowska, E.; Krotkiewski, H. Galactosylation of IgG from Rheumatoid Arthritis (RA) Patients—Changes during Therapy. Glycoconj. J. 2006, 23, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Vayne, C.; Palankar, R.; Billy, S.; Handtke, S.; Thiele, T.; Cordonnier, C.; Pouplard, C.; Greinacher, A.; Gruel, Y.; Rollin, J. The Deglycosylated Form of 1E12 Inhibits Platelet Activation and Prothrombotic Effects Induced by VITT Antibodies. Haematologica 2022, 107, 2445–2453. [Google Scholar] [CrossRef] [PubMed]
- Huynh, A.; Arnold, D.M.; Michael, J.V.; Clare, R.; Smith, J.W.; Daka, M.; Ianosi-Irimie, M.; McKenzie, S.E.; Kelton, J.G.; Nazy, I. Characteristics of VITT Antibodies in Patients Vaccinated with Ad26.COV2.S. Blood Adv. 2023, 7, 246–250. [Google Scholar] [CrossRef]
- Kanack, A.J.; Schaefer, J.K.; Sridharan, M.; Splinter, N.P.; Kohlhagen, M.C.; Singh, B.; De Lorenzo, S.B.; Mauch, E.E.; Hussein, M.A.; Shaikh, M.; et al. Monoclonal Gammopathy of Thrombotic/Thrombocytopenic Significance. Blood 2023, 141, 1772–1776. [Google Scholar] [CrossRef]
- Miles, A.A.; Miles, E.M. Vascular Reactions to Histamine, Histamine-Liberator and Leukotaxine in the Skin of Guinea-Pigs. J. Physiol. 1952, 118, 228–257. [Google Scholar] [CrossRef]
- Azzarone, B.; Veneziani, I.; Moretta, L.; Maggi, E. Pathogenic Mechanisms of Vaccine-Induced Immune Thrombotic Thrombocytopenia in People Receiving Anti-COVID-19 Adenoviral-Based Vaccines: A Proposal. Front. Immunol. 2021, 12, 3312. [Google Scholar] [CrossRef]
- Tomko, R.P.; Xu, R.; Philipson, L. HCAR and MCAR: The Human and Mouse Cellular Receptors for Subgroup C Adenoviruses and Group B Coxsackieviruses. Proc. Natl. Acad. Sci. USA 1997, 94, 3352–3356. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, M.; Podd, A.; Yuan, L.; Newman, D.K.; Wen, R.; Arepally, G.; Wang, D. Critical Role for Mouse Marginal Zone B Cells in PF4/Heparin Antibody Production. Blood 2013, 121, 3484–3492. [Google Scholar] [CrossRef]
- Krauel, K.; Schulze, A.; Jouni, R.; Hackbarth, C.; Hietkamp, B.; Selleng, S.; Koster, A.; Jensch, I.; van der Linde, J.; Schwertz, H.; et al. Further Insights into the Anti-PF4/Heparin IgM Immune Response. Thromb. Haemost. 2016, 115, 752–761. [Google Scholar] [CrossRef]
- McKenzie, S.E.; Taylor, S.M.; Malladi, P.; Yuhan, H.; Cassel, D.L.; Chien, P.; Schwartz, E.; Schreiber, A.D.; Surrey, S.; Reilly, M.P. The Role of the Human Fc Receptor FcγRIIA in the Immune Clearance of Platelets: A Transgenic Mouse Model. J. Immunol. 1999, 162, 4311–4318. [Google Scholar] [CrossRef] [PubMed]
- Reilly, M.P.; Taylor, S.M.; Hartman, N.K.; Arepally, G.M.; Sachais, B.S.; Cines, D.B.; Poncz, M.; McKenzie, S.E. Heparin-Induced Thrombocytopenia/Thrombosis in a Transgenic Mouse Model Requires Human Platelet Factor 4 and Platelet Activation through FcγRIIA. Blood 2001, 98, 2442–2447. [Google Scholar] [CrossRef] [PubMed]
- Perdomo, J.; Leung, H.H.L.; Ahmadi, Z.; Yan, F.; Chong, J.J.H.; Passam, F.H.; Chong, B.H. Neutrophil Activation and NETosis Are the Major Drivers of Thrombosis in Heparin-Induced Thrombocytopenia. Nat. Commun. 2019, 10, 1322. [Google Scholar] [CrossRef]
- McKenzie, S.E. Humanized Mouse Models of FcR Clearance in Immune Platelet Disorders. Blood Rev. 2002, 16, 3–5. [Google Scholar] [CrossRef] [PubMed]
- Holm, S.; Kared, H.; Michelsen, A.E.; Kong, X.Y.; Dahl, T.B.; Schultz, N.H.; Nyman, T.A.; Fladeby, C.; Seljeflot, I.; Ueland, T.; et al. Immune Complexes, Innate Immunity, and NETosis in ChAdOx1 Vaccine-Induced Thrombocytopenia. Eur. Heart J. 2021, 42, 4064–4072. [Google Scholar] [CrossRef]
- Von Hundelshausen, P.; Lorenz, R.; Siess, W.; Weber, C. Vaccine-Induced Immune Thrombotic Thrombocytopenia (VITT): Targeting Pathomechanisms with Bruton Tyrosine Kinase Inhibitors. Thromb. Haemost. 2021, 121, 1395–1399. [Google Scholar] [CrossRef]
- Thiele, T.; Esefeld, M.; Handtke, S.; Rath, J.; Schönborn, L.; Antovich, J.; Lotfi, K.; Holmström, M.; Harasser, L.; Feistritzer, C.; et al. Thrombotic Thrombocytopenia Syndrome after Vaccination against COVID-19 Associated with Antiplatelet Antibodies. In ISTH Congress Abstracts; ISTH: Carrboro, NC, USA, 2023. [Google Scholar]
Cited Work | Used Model | Core Statements |
---|---|---|
Greinacher, A. et al. Blood 2021 [16] | Miles edema model [92] | ChAdOx1 nCov-19 vaccine components are able to induce leaky vessels as a hallmark of inflammation. This pro-inflammatory milieu can facilitate VITT development. |
Nicolai, L. et al. Blood 2022 [75] | ChAdOx1 immunization model in C57Bl6 mice [75] | Intravenous injection of ChAdOx1 nCov-19 triggers the formation of platelet-adenovirus aggregates and platelet activation. The immune response subsequently leads to increased splenic platelet clearance as an underlying mechanism of the observed thrombocytopenia. |
Krauel, K. et al. Thromb Haemost 2016 [96] | PF4-knockout mice [96] | The immune response to PF4 is part of the inborn antibody repertoire. |
Leung, H.H.L. et al. Nat Commun 2022 [67] | hFcγRIIa+/hPF4+ double transgenic mice [98] immunized with VITT IgG | VITT antibodies directly stimulate neutrophils to release NETs. VITT antibodies activate blood cells via FcyRII receptor. VITT antibody-induced thrombi contain platelets, neutrophils, fibrin, extracellular DNA and citrullinated histone H3. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dabbiru, V.A.S.; Müller, L.; Schönborn, L.; Greinacher, A. Vaccine-Induced Immune Thrombocytopenia and Thrombosis (VITT)—Insights from Clinical Cases, In Vitro Studies and Murine Models. J. Clin. Med. 2023, 12, 6126. https://doi.org/10.3390/jcm12196126
Dabbiru VAS, Müller L, Schönborn L, Greinacher A. Vaccine-Induced Immune Thrombocytopenia and Thrombosis (VITT)—Insights from Clinical Cases, In Vitro Studies and Murine Models. Journal of Clinical Medicine. 2023; 12(19):6126. https://doi.org/10.3390/jcm12196126
Chicago/Turabian StyleDabbiru, Venkata A. S., Luisa Müller, Linda Schönborn, and Andreas Greinacher. 2023. "Vaccine-Induced Immune Thrombocytopenia and Thrombosis (VITT)—Insights from Clinical Cases, In Vitro Studies and Murine Models" Journal of Clinical Medicine 12, no. 19: 6126. https://doi.org/10.3390/jcm12196126
APA StyleDabbiru, V. A. S., Müller, L., Schönborn, L., & Greinacher, A. (2023). Vaccine-Induced Immune Thrombocytopenia and Thrombosis (VITT)—Insights from Clinical Cases, In Vitro Studies and Murine Models. Journal of Clinical Medicine, 12(19), 6126. https://doi.org/10.3390/jcm12196126