The Predictors of Long COVID in Southeastern Italy
Abstract
:1. Introduction
2. Materials and Methods
- -
- COVID-19 + duration: the number of days between the positive and negative results of the nasal molecular swab for COVID-19.
- -
- Home Care/Hospitalization: indicating whether patients received care at home or were hospitalized.
- -
- ICU Hospitalization: indicating whether patients required admission to the Intensive Care Unit.
- -
- The presence or absence of Acute Respiratory Failure (ARF).
- -
- Length of Hospitalization: recorded as 0 days for patients who were never hospitalized.
- -
- The intensity of respiratory support: categorized as Ambient Air (AA) and Spontaneous Breath, Oxygen Therapy (OT), Non-Invasive Ventilation (NIV) or Continuous Positive Airway Pressure (CPAP), or Invasive Mechanical Ventilation (IMV) via Endotracheal intubation (ETI), or tracheostomy.
- -
- We recorded antibiotic or antiviral treatments administered in our cohort, which included macrolides, β-lactams, fluoroquinolones, remdesivir, nirmatrelvir/ritonavir, convalescent plasma therapy, and monoclonal antibody therapy.
- -
- The presence or absence of a cycle of corticosteroid therapy at a dosage of 6 mg/kg of dexamethasone or equivalent dosages of other corticosteroids in accordance with guidelines from the World Health Organization (WHO) [17] and the Infectious Diseases Society of America (ISDA) [18]. In hospitalized patients, corticosteroid therapy during the acute phase of COVID lasted for a minimum of 10 days. However, the precise duration remains unknown. Additionally, data on the duration and starting day of corticosteroid administration were not recorded.
- -
- Administration of Low Molecular Weight Heparin (LMWH) based on medical indication.
3. Results
3.1. Comparison between Groups
3.1.1. Comparison Based on Different Levels of Respiratory Support
3.1.2. Comparison between the Long COVID and Recovered COVID-19 Patients
3.2. The Predictors of Long COVID
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Living Guidance for Clinical Management of COVID-19 2021; World Health Organization (WHO): Geneva, Switzerland, 2021; Available online: www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-2 (accessed on 23 November 2021).
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical characteristics of coronavirus disease. N. Engl. J. Med. 2019, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Care Excellence, Scottish Intercollegiate Guidelines Network, and the Royal College of General Practitioners. COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19. NICE Guideline (NG188). 2020. Available online: www.nice.org.uk/guidance/ng188 (accessed on 3 March 2022).
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146, Erratum in Nat. Rev. Microbiol. 2023, 21, 408.. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, T.; Knight, M.; A’Court, C.; Buxton, M.; Husain, L. Management of post-acute COVID-19 in primary care. BMJ 2020, 370, m3026. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; et al. 6-Month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet 2021, 397, 220–232. [Google Scholar] [CrossRef] [PubMed]
- Van Kessel, S.A.M.; Olde Hartman, T.C.; Lucassen, P.L.B.J.; van Jaarsveld, C.H.M. Post-acute and long-COVID-19 symptoms in patients with mild diseases: A systematic review. Fam. Pract. 2022, 39, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, A.; Morrone, M.C.; Patrono, C.; Santoro, M.G.; Schiaffino, S.; Remuzzi, G.; Bussolati, G. COVID-19 Commission of the Accademia Nazionale dei Lincei. Long COVID: Where we stand and challenges ahead. Cell Death Differ. 2022, 29, 1891–1900. [Google Scholar] [CrossRef]
- Ahmed, H.; Patel, K.; Greenwood, D.C.; Halpin, S.; Lewthwaite, P.; Salawu, A.; Eyre, L.; Breen, A.; O’Connor, R.; Jones, A.; et al. Long-term clinical outcomes in survivors of severe acute respiratory syndrome and Middle East respiratory syndrome coronavirus outbreaks after hospitalisation or ICU admission: A systematic review and meta-analysis. J. Rehabil. Med. 2020, 52, jrm00063. [Google Scholar] [CrossRef] [PubMed]
- Ladds, E.; Rushforth, A.; Wieringa, S.; Taylor, S.; Rayner, C.; Husain, L. Persistent symptoms after COVID-19: Qualitative study of 114 “long COVID” patients and draft quality principles for services. BMC Health Serv. Res. 2020, 20, 1144. [Google Scholar] [CrossRef]
- Ballering, A.V.; van Zon, S.K.R.; Hartman, T.C.O.; Rosmalen, J.G.M. Persistence of somatic symptoms after COVID-19 in the Netherlands: An observational cohort study. Lancet 2022, 400, 452–461. [Google Scholar] [CrossRef]
- Büttiker, P.; Stefano, G.B.; Weissenberger, S.; Ptacek, R.; Anders, M.; Raboch, J.; Kream, R.M. HIV, HSV, SARS-CoV-2 and Ebola Share Long-Term Neuropsychiatric Sequelae. Neuropsychiatr. Dis. Treat. 2022, 18, 2229–2237. [Google Scholar] [CrossRef]
- Sukocheva, O.A.; Maksoud, R.; Beeraka, N.M.; Madhunapantula, S.V.; Sinelnikov, M.; Nikolenko, V.N.; Neganova, M.E.; Klochkov, S.G.; Amjad Kamal, M.; Staines, D.R.; et al. Analysis of post COVID-19 condition and its overlap with myalgic encephalomyelitis/chronic fatigue syn-drome. J. Adv. Res. 2022, 40, 179–196. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, K.M.; Vasarmidi, E.; Russell, A.M.; Andrejak, C.; Crestani, B.; Delcroix, M.; Dinh-Xuan, A.T.; Poletti, V.; Sverzellati, N.; Vitacca, M.; et al. European Respiratory Society statement on long COVID follow-up. Eur. Respir. J. 2022, 60, 2102174. [Google Scholar] [CrossRef] [PubMed]
- CDC. Long COVID—Household Pulse Survey—COVID-19. 2022. Available online: https://www.cdc.gov/nchs/covid19/pulse/long-covid.htm (accessed on 18 December 2022).
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic. Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Clinical Practice Guideline on Corticosteroids for COVID-19. 2020. Available online: https://www.who.int/publications/i/item/WHO-2019-nCoV-Corticosteroids-2020.1 (accessed on 13 November 2020).
- Bhimraj, A.; Morgan, R.L.; Shumaker, A.H.; Baden, L.; Cheng, V.C.C.; Edwards, K.M.; Gallagher, J.C.; Gandhi, R.T.; Muller, W.J.; Nakamura, M.M.; et al. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19. Clin. Infect. Dis. 2022, ciac724. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.; Xu, M.; Li, J.; Liu, Y.; Zhang, J.; Xu, Y.; Dong, W. Clinical sequelae of COVID-19 survivors in Wuhan, China: A single-centre longitudinal study. Clin. Microbiol. Infect. 2021, 27, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.P.; Chesney, E.; Oliver, D.; Pollak, T.A.; McGuire, P.; Fusar-Poli, P.; Zandi, M.S.; Lewis, G.; David, A.S. Psychiatric and neuropsychiatric presentations associated with severe HIV infections coronavirus: A systematic review and meta-analysis with respect to the COVID-19 pandemic. Lancet Psychiatry 2020, 7, 611–627. [Google Scholar] [CrossRef] [PubMed]
- Buonamico, E.; Quaranta, V.N.; Boniello, E.; Dimitri, M.; Di Lecce, V.; Labate, L.; Pierucci, P.; Capozza, E.; Carpagnano, G.E.; Resta, O. Risk factors for transfer from Respiratory Inter-mediate Care Unit to Intensive Care Unit in COVID-19. Respir. Investig. 2021, 59, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.M.; Bai, P.; He, W.; Wu, F.; Liu, X.F.; Han, D.M.; Liu, S.; Yang, J.K. Gender Differences in Patients With COVID-19: Focus on Severity and Mortality. Front. Public Health 2020, 8, 152. [Google Scholar] [CrossRef] [PubMed]
- Auerbach, J.M.; Khera, M. Testosterone’s Role in COVID-19. J. Sex Med. 2021, 18, 843–848. [Google Scholar] [CrossRef]
- Tadayon Najafabadi, B.; Rayner, D.G.; Shokraee, K.; Shokraie, K.; Panahi, P.; Rastgou, P.; Sei-rafianpour, F.; Momeni Landi, F.; Alinia, P.; Parnianfard, N.; et al. Obesity as an independent risk factor for COVID-19 severity and mortality. Cochrane Database Syst. Rev. 2023, 5, CD015201. [Google Scholar] [CrossRef]
- Grasselli, G.; Greco, M.; Zanella, A.; Albano, G.; Antonelli, M.; Bellani, G.; Bonanomi, E.; Cabrini, L.; Carlesso, E.; Castelli, G.; et al. Risk Factors Associated With Mortality Among Patients With COVID-19 in Intensive Care Units in Lombardy, Italy. JAMA Intern. Med. 2020, 180, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- Quaranta, V.N.; Kyriakopoulos, C.; Liontos, A.; Barkas, F.; Chronis, C.; Biros, D.; Athanasiou, L.; Milionis, O.; Tsourlos, S.; Veliani, C.; et al. Baseline characteristics and outcome predictors in patients hospitalized with COVID-19 in the University General Hospital of Ioannina, Greece. Pneumon 2022, 35, 9. [Google Scholar] [CrossRef]
- Dessie, Z.G.; Zewotir, T. Mortality-related risk factors of COVID-19: A systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect. Dis. 2021, 21, 855. [Google Scholar] [CrossRef] [PubMed]
- Alkodaymi, M.S.; Omrani, O.A.; Fawzy, N.A.; Shaar, B.A.; Almamlouk, R.; Riaz, M.; Obeidat, M.; Obeidat, Y.; Gerberi, D.; Taha, R.M.; et al. Prevalence of post-acute COVID-19 syndrome symptoms at different follow-up periods: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2022, 28, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Floridia, M.; Grassi, T.; Giuliano, M.; Tiple, D.; Pricci, F.; Villa, M.; Silenzi, A.; Onder, G. Characteristics of Long-COVID care centers in Italy. A national survey of 124 clinical sites. Front. Public Health 2022, 10, 975527. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, L.G.; Gourna Paleoudis, E.; Lesky-Di Bari, D.; Nyirenda, T.; Friedman, T.; Gupta, A.; Rasouli, L.; Zetkulic, M.; Balani, B.; Bawa, H.; et al. Persistence of symptoms and quality of life at 35 days after hospitalization for COVID-19 infection. PLoS ONE 2020, 15, e0243882. [Google Scholar] [CrossRef] [PubMed]
- Agostini, F.; Mangone, M.; Ruiu, P.; Paolucci, T.; Santilli, V.; Bernetti, A. Rehabilitation setting during and after COVID-19: An overview on recommendations. J. Rehabil. Med. 2021, 53, jrm00141. [Google Scholar] [CrossRef]
- Moreno-Pérez, O.; Merino, E.; Leon-Ramirez, J.-M.; Andres, M.; Ramos, J.M.; Arenas-Jiménez, J.; Asensio, S.; Sanchez, R.; Ruiz-Torregrosa, P.; Galan, I.; et al. Post-acute COVID-19 syndrome. Incidence and risk factors: A Mediterranean cohort study. J. Infect. 2021, 82, 378–383. [Google Scholar] [CrossRef]
- Lee, A.M.; Wong, J.G.; McAlonan, G.M.; Cheung, V.; Cheung, C.; Sham, P.C.; Chu, C.-M.; Wong, P.-C.; Tsang, K.W.T.; Chua, S.E. Stress and psychological distress among SARS survivors 1 year after the outbreak. Can. J. Psychiatry 2007, 52, 233–240. [Google Scholar] [CrossRef]
- Johns, M.; George, S.; Taburyanskaya, M.; Poon, Y.K. A Review of the Evidence for Corticosteroids in COVID-19. J. Pharm. Pract. 2022, 35, 626–637. [Google Scholar] [CrossRef]
- Nedel, W.; Nora, D.; Salluh, J.; Lisboa, T.; Póvoa, P. Corticosteroids for severe influenza pneumonia: A critical appraisal. World J. Crit. Care Med. 2016, 5, 89–95. [Google Scholar] [CrossRef]
- Goel, N.; Goyal, N.; Nagaraja, R.; Kumar, R. Systemic corticosteroids for management of ‘long-COVID’: An evaluation after 3 months of treatment. Monaldi Arch Chest Dis. 2021, 92, 1981. [Google Scholar] [CrossRef]
General Population (n = 436) | Long COVID-19 Pt (n = 313) | Recovered COVID-19 Pt (n = 123) | p Value | |
---|---|---|---|---|
Sex F n (%) | 190 (43.6) | 146 (46.6) | 44 (35.8) | 0.025 * |
Age (y) IQ (25–75) | 58 (50.25–66.00) | 58 (51–66) | 59 (49 66.25) | n.s. |
BMI Kg/m2 IQ (25–75) | 28 (25–31) | 28 (25–31.75) | 27 (24–30) | n.s. |
Smoke n (%) No Ex yes | 225 (51.8) 167 (38.5) 42 (9.7) | 159 (51.0) 128 (41.0) 25 (8.0) | 66 (54.1) 39 (32.0) 17 (13.9) | n.s. |
Charlson Index IQ (25–75) | 2 (1–3) | 2 (1–3) | 2 (1–3) | n.s. |
DM n (%) | 82 (18.8) | 62 (19.8) | 20 (16.3) | n.s. |
AH n (%) | 210 (48.2) | 157 (50.2) | 53 (43.1) | n.s. |
CVD n (%) | 85 (19.5) | 63 (20.1) | 22 (17.9) | n.s. |
COPD n (%) | 74 (17.0) | 57 (18.2) | 17 (13.8) | n.s. |
ILD n (%) | 13 (3.0) | 7 (2.2) | 6 (4.9) | n.s. |
Other Pulmonary Disease n (%) | 39 (8.9) | 28 (8.9) | 11 (8.9) | n.s. |
Cerebrovascular Disease n (%) | 21 (4.8) | 17 (5.4) | 4 (3.3) | n.s. |
Dyslipidemia n (%) | 144 (33.0) | 105 (33.5) | 39 (31.7) | n.s. |
Dementia n (%) | 6 (1.4) | 5 (1.6) | 1 (0.8) | n.s. |
AD n (%) | 30 (6.9) | 22 (7.0) | 8 (6.5) | n.s. |
Immunosuppression n (%) | 2 (0.5) | 2 (0.6) | 1 (0.8) | n.s. |
History of Cancer n (%) | 21 (4.8) | 15 (4.8) | 6 (4.9) | n.s. |
Current Cancer n (%) | 15 (3.4) | 10 (3.2) | 5 (4.1) | n.s. |
Home Care/Hospitalization n (%) Hospitalization Home Care | 243 (55.7) 193 (44.3) | 183 (58.5) 130 (41.5) | 60 (48.8) 63 (51.2) | 0.042 * |
ICU yes n (%) | 62 (14.2) | 47 (15.0) | 15 (12.2) | n.s. |
ARF yes n (%) | 298 (68.3) | 216 (69.0) | 82 (66.7) | n.s. |
Hospitalization Length (day) | 10 (0–24) | 11 (0–25) | 0 (0–20.25) | n.s. |
Tot. Symptoms T0 | 1 (1–3) | 1 (1–3) | 0 (1–3) | n.s. |
Dyspnea T0 yes n (%) | 246 (56.4) | 188 (60.1) | 58 (47.2) | 0.010 * |
Cough n (%) | 326 (74.8) | 234 (74.8) | 92 (74.8) | n.s. |
Asthenia n (%) | 361 (82.8) | 266 (85.0) | 95 (77.2) | n.s. |
Nausea T0 yes n (%) | 38 (8.7) | 31 (9.9) | 7 (5.7) | n.s. |
Vomiting T0 yes n (%) | 24 (5.5) | 18 (5.8) | 6 (4.9) | n.s. |
Diarrhea T0 yes n (%) | 70 (16.1) | 50 (16.0) | 20 (16.3) | n.s. |
Headache T0 yes n (%) | 104 (23.9) | 82 (26.2) | 22 (17.9) | 0.042 * |
Anosmia T0 yes n (%) | 158 (36.2) | 115 (36.7) | 43 (35.0) | n.s. |
Ageusia T0 yes n (%) | 152 (34.9) | 111 (35.5) | 41 (33.3) | n.s. |
Corticosteroid Therapy yes n (%) | 355 (81.4) | 264 (84.3) | 91 (74.0) | 0.010 * |
LMWH yes n (%) | 267 (61.2) | 199 (63.6) | 68 (55.3) | n.s. |
Macrolide Therapy Yes n (%) | 359 (82.5) | 260 (83.3) | 99 (80.5) | n.s. |
β-lactam antibiotics therapy | 186 (42.7) | 138 (44.1) | 48 (39.1) | n.s. |
Fluoroquinolones therapy | 28 (6.8) | 22 (7.3) | 6 (5.5) | n.s. |
Remdesivir therapy | 24 (5.5) | 18 (5.8) | 6 (4.9) | n.s. |
Nirmatrelvir/ritonavir therapy | 14 (3.2) | 10 (3.2) | 4 (3.3) | n.s. |
Convalescent Plasma therapy | 15 (3.4) | 12 (3.8) | 3 (2.4) | n.s. |
Monoclonal Antibody therapy | 3 (0.7) | 3 (1.0) | 1 (0.8) | n.s. |
Respiratory Support n (%) AA and Spontaneous Breath OT NIV/CPAP ETI/tracheo | 138 (31.7) 190 (43.6) 74 (17.0) 34 (7.8) | 97 (31.0) 143 (45.7) 47 (15.0) 26 (8.3) | 41 (33.3) 47 (38.2) 27 (22) 8 (6.5) | n.s. |
# Pneumonia Localization n (%) No Pneumonia Monalateral Bilateral | 19 (6.6) 81 (28.2) 187 (65.2) | 14 (6.5) 66 (30.6) 136 (63.0) | 5 (7.0) 15 (21.1) 51 (71.8) | n.s. |
# Pnx yes n (%) | 5 (1.7) | 3 (1.4) | 2 (2.8) | n.s. |
## PlE n (%) | 18 (6.3) | 12 (5.6) | 6 (8.5) | n.s. |
PE yes n (%) | 17 (10.3) | 14 (11.7) | 3 (6.7) | n.s. |
COVID19 + duration day IQ (25–75) | 23.5 (17–32) | 24 (17–32) | 23 (18–32) | n.s. |
Reinfection n (%) | 31 (7.1) | 21 (6.7) | 10 (8.1) | n.s. |
Number Vaccine doses IQ (25–75) | 1 (0–1) | 1 (1–2) | 1 (1–1) | n.s. |
Univariate Logistic Regression | Multivariate Logistic Regression | |||||
---|---|---|---|---|---|---|
ODD | CI 95% | p Value | ODD | CI 95% | p Value | |
Sex M | 0.637 | 0.414–0.980 | 0.040 * | 0.513 | 0.316–0.833 | 0.007 * |
Age (y) | 1.000 | 0.984–1.016 | n.s. | |||
BMI Kg/m2 | 1.051 | 1.005–1.098 | 0.028 * | 1.047 | 0.999–1.097 | 0.056 |
Smoke yes | 1.149 | 0.918–1.439 | n.s. | |||
Charlson Index | 1.059 | 0.946–1.187 | n.s. | |||
DM yes | 1.272 | 0.731–2.213 | n.s. | |||
AH yes | 1.329 | 0.873–2.023 | n.s. | |||
CVD yes | 1.157 | 0.676–1.980 | n.s. | |||
COPD yes | 1.388 | 0.772–2.497 | n.s. | |||
ILD yes | 0.446 | 0.147–1.355 | n.s. | |||
Other Pulmonary Disease yes | 1.0 | 0.482–2.078 | n.s. | |||
Cerebrovascular Disease yes | 1.709 | 0.563–5.183 | n.s. | |||
Dyslipidemia yes | 1.087 | 0.696–1.699 | n.s. | |||
Dementia yes | 1.981 | 0.229–17.126 | n.s. | |||
AD yes | 1.087 | 0.470 −2.511 | n.s. | |||
Immunosuppression yes | 0.785 | 0.070–8.732 | n.s. | |||
History of Cancer yes | 0.982 | 0.372–2.591 | n.s. | |||
Current Cancer yes n (%) | 0.585 | 0.230–1.490 | n.s. | |||
Home Care/Hospitalization | 0.677 | 0.445–1.029 | 0.068 | |||
ICU yes | 1.272 | 0.682–2.371 | n.s. | |||
ARF yes | 1.130 | 0.724–1.764 | n.s. | |||
Hospitalization Length (day) | 1.011 | 0.998–1.024 | n.s. | |||
Tot. Symptoms T0 | 1.141 | 0.988–1.317 | n.s. | |||
Dyspnea T0 yes | 1.686 | 1.107–2.566 | 0.015 * | 1.338 | 0.838–2.138 | 0.222 |
Cough | 0.998 | 0.617–1.613 | n.s. | |||
Asthenia | 1.609 | 0.949–2.728 | n.s. | |||
Nausea T0 yes | 1.822 | 0.780–4.254 | n.s. | |||
Vomiting T0 yes | 1.190 | 0.461–3.072 | n.s. | |||
Diarrhea T0 yes | 0.979 | 0.556–1.725 | n.s. | |||
Headache T0 yes | 1.630 | 0.964–2.756 | n.s. | |||
Anosmia T0 yes n | 1.081 | 0.699–1.671 | n.s. | |||
Ageusia T0 yes | 1.099 | 0.707–1.708 | n.s. | |||
Corticosteroid Therapy yes | 1.895 | 1.143–3.140 | 0.013 * | 2.255 | 1.285–3.956 | 0.005 * |
LMWH yes | 1.412 | 0.924–2.156 | n.s. | |||
Macrolide Therapy Yes | 1.212 | 0.709–2.072 | n.s. | |||
β-lactam antibiotics therapy yes | 1.232 | 0.805–1.886 | n.s. | |||
Fluoroquinolones therapy yes | 1.349 | 0.532–3.420 | n.s. | |||
Remdesivir therapy yes | 1.190 | 0.461–3.072 | n.s. | |||
Nirmatrelvir/ritonavir therapy yes | 0.982 | 0.302–3.191 | n.s. | |||
Convalescent Plasma therapy yes | 1.595 | 0.442–5.751 | n.s. | |||
Monoclonal Antibody therapy yes | 1.181 | 0.122–11.460 | n.s. | |||
Respiratory Support AA and Spontaneous Breath OT NIV/CPAP Tracheo/ETI | Ref 0.728 0.936 0.536 | 0.304–1.742 0.397–2.208 0.213–1.348 | n.s. | |||
# Pneumonia Localization n (%) No Pneumonia Monalateral Bilateral | Ref 1.050 1.650 | 0.360–3.063 0.864–3.149 | n.s. | |||
# Pnx yes | 0.484 | 0.080–2.968 | n.s. | |||
## PlE | 0.637 | 0.230–1.765 | n.s. | |||
PE yes | 1.849 | 0.505–6.765 | n.s. | |||
COVID19 + duration day | 0.994 | 0.978–1.011 | n.s. | |||
Reinfection | 0.813 | 0.371–1.779 | n.s. | |||
Number Vaccine doses | 1.112 | 0.844–1.465 | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quaranta, V.N.; Portacci, A.; Dragonieri, S.; Locorotondo, C.; Buonamico, E.; Diaferia, F.; Iorillo, I.; Quaranta, S.; Carpagnano, G.E. The Predictors of Long COVID in Southeastern Italy. J. Clin. Med. 2023, 12, 6303. https://doi.org/10.3390/jcm12196303
Quaranta VN, Portacci A, Dragonieri S, Locorotondo C, Buonamico E, Diaferia F, Iorillo I, Quaranta S, Carpagnano GE. The Predictors of Long COVID in Southeastern Italy. Journal of Clinical Medicine. 2023; 12(19):6303. https://doi.org/10.3390/jcm12196303
Chicago/Turabian StyleQuaranta, Vitaliano Nicola, Andrea Portacci, Silvano Dragonieri, Cristian Locorotondo, Enrico Buonamico, Fabrizio Diaferia, Ilaria Iorillo, Sara Quaranta, and Giovanna Elisiana Carpagnano. 2023. "The Predictors of Long COVID in Southeastern Italy" Journal of Clinical Medicine 12, no. 19: 6303. https://doi.org/10.3390/jcm12196303
APA StyleQuaranta, V. N., Portacci, A., Dragonieri, S., Locorotondo, C., Buonamico, E., Diaferia, F., Iorillo, I., Quaranta, S., & Carpagnano, G. E. (2023). The Predictors of Long COVID in Southeastern Italy. Journal of Clinical Medicine, 12(19), 6303. https://doi.org/10.3390/jcm12196303