Early Exposure of Kidney Transplant Recipients with Chronic Antibody-Mediated Rejection to Tocilizumab—A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Measurement of TCZ Concentration and Exposure
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Variability of TCZ trough Concentrations and Early Exposure (ΣCmin)
3.3. Determinants of the TCZ trough Concentration
3.4. Association between Early TCZ Plasma Exposure and Kidney Function
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ALAT | alanine aminotransferase |
ASAT | aspartate aminotransferase |
ACR | urinary albumin-to-creatinine ratio |
BMI | body mass index |
BSA | body surface area |
CAMR | chronic antibody-mediated rejection |
Cmin | trough concentration |
ΣCmin | sum of the three Cmin measurements over the three first months of treatment |
CV | coefficient of variation |
DSA | donor-specific antibody |
GFR | glomerular filtration rate |
IgG | immunoglobulin G |
IL-6 | interleukin 6 |
M | month |
TCZ | tocilizumab |
References
- Montgomery, R.A.; Loupy, A.; Segev, D.L. Antibody-mediated rejection: New approaches in prevention and management. Am. J. Transplant. 2018, 18 (Suppl. S3), 3–17. [Google Scholar] [CrossRef] [PubMed]
- Hart, A.; Singh, D.; Brown, S.J.; Wang, J.H.; Kasiske, B.L. Incidence, risk factors, treatment, and consequences of antibody-mediated kidney transplant rejection: A systematic review. Clin. Transplant. 2021, 35, e14320. [Google Scholar] [CrossRef]
- Chehade, H.; Pascual, M. The Challenge of Acute Antibody-Mediated Rejection in Kidney Transplantation. Transplantation 2016, 100, 264. [Google Scholar] [CrossRef] [PubMed]
- Rostaing, L.P.E.; Böhmig, G.A.; Gibbons, B.; Taqi, M.M. Post-Transplant Surveillance and Management of Chronic Active Antibody-Mediated Rejection in Renal Transplant Patients in Europe. Transpl. Int. 2023, 36, 11381. [Google Scholar] [CrossRef] [PubMed]
- Cabezas, L.; Jouve, T.; Malvezzi, P.; Janbon, B.; Giovannini, D.; Rostaing, L.; Noble, J. Tocilizumab and Active Antibody-Mediated Rejection in Kidney Transplantation: A Literature Review. Front. Immunol. 2022, 13, 839380. [Google Scholar] [CrossRef]
- Sharma, R. Anti-Interleukin 6 Therapeutics for Chronic Antibody-Mediated Rejection In Kidney Transplant Recipients. Exp. Clin. Transplant. 2022, 20, 709–716. [Google Scholar] [CrossRef]
- Pearl, M.; Weng, P.L.; Chen, L.; Dokras, A.; Pizzo, H.; Garrison, J.; Butler, C.; Zhang, J.; Reed, E.F.; Kim, I.K.; et al. Long term tolerability and clinical outcomes associated with tocilizumab in the treatment of refractory antibody mediated rejection (AMR) in pediatric renal transplant recipients. Clin. Transplant. 2022, 36, e14734. [Google Scholar] [CrossRef]
- Miller, C.L.; Madsen, J.C. IL-6 Directed Therapy in Transplantation. Curr. Transplant. Rep. 2021, 8, 191–204. [Google Scholar] [CrossRef]
- van Vugt, L.K.; Schagen, M.R.; de Weerd, A.; Reinders, M.E.; de Winter, B.C.; Hesselink, D.A. Investigational drugs for the treatment of kidney transplant rejection. Expert Opin. Investig. Drugs 2022, 31, 1087–1100. [Google Scholar] [CrossRef]
- McElvaney, O.J.; Curley, G.F.; Rose-John, S.; McElvaney, N.G. Interleukin-6: Obstacles to targeting a complex cytokine in critical illness. Lancet Respir. Med. 2021, 9, 643–654. [Google Scholar] [CrossRef]
- Bastida, C.; Soy, D.; Ruiz-Esquide, V.; Sanmartí, R.; Huitema, A.D.R. Exposure-response modeling of tocilizumab in rheumatoid arthritis using continuous composite measures and their individual components. Br. J. Clin. Pharmacol. 2019, 85, 1710–1718. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Aubert, O.; Vo, A.; Loupy, A.; Haas, M.; Puliyanda, D.; Kim, I.; Louie, S.; Kang, A.; Peng, A.; et al. Assessment of Tocilizumab (Anti-Interleukin-6 Receptor Monoclonal) as a Potential Treatment for Chronic Antibody-Mediated Rejection and Transplant Glomerulopathy in HLA-Sensitized Renal Allograft Recipients. Am. J. Transplant. 2017, 17, 2381–2389. [Google Scholar] [CrossRef] [PubMed]
- Lavacca, A.; Presta, R.; Gai, C.; Mella, A.; Gallo, E.; Camussi, G.; Abbasciano, I.; Barreca, A.; Caorsi, C.; Fop, F.; et al. Early effects of first-line treatment with anti-interleukin-6 receptor antibody tocilizumab for chronic active antibody-mediated rejection in kidney transplantation. Clin. Transplant. 2020, 34, e13908. [Google Scholar] [CrossRef]
- Massat, M.; Congy-Jolivet, N.; Hebral, A.-L.; Esposito, L.; Marion, O.; Delas, A.; Colombat, M.; Faguer, S.; Kamar, N.; Del Bello, A.; et al. Do anti-IL-6R blockers have a beneficial effect in the treatment of antibody-mediated rejection resistant to standard therapy after kidney transplantation? Am. J. Transplant. 2021, 21, 1641–1649. [Google Scholar] [CrossRef] [PubMed]
- Shin, B.-H.; Everly, M.J.; Zhang, H.; Choi, J.; Vo, A.; Zhang, X.; Huang, E.; Jordan, S.C.; Toyoda, M. Impact of Tocilizumab (Anti-IL-6R) Treatment on Immunoglobulins and Anti-HLA Antibodies in Kidney Transplant Patients With Chronic Antibody-mediated Rejection. Transplantation 2020, 104, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Chandran, S.; Leung, J.; Hu, C.; Laszik, Z.G.; Tang, Q.; Vincenti, F.G. Interleukin-6 blockade with tocilizumab increases Tregs and reduces T effector cytokines in renal graft inflammation: A randomized controlled trial. Am. J. Transplant. 2021, 21, 2543–2554. [Google Scholar] [CrossRef]
- Pottebaum, A.A.; Venkatachalam, K.; Liu, C.; Brennan, D.C.; Murad, H.; Malone, A.F.; Alhamad, T. Efficacy and Safety of Tocilizumab in the Treatment of Acute Active Antibody-mediated Rejection in Kidney Transplant Recipients. Transplant. Direct 2020, 6, e543. [Google Scholar] [CrossRef]
- Noble, J.; Giovannini, D.; Laamech, R.; Imerzoukene, F.; Janbon, B.; Marchesi, L.; Malvezzi, P.; Jouve, T.; Rostaing, L. Tocilizumab in the Treatment of Chronic Antibody-Mediated Rejection Post Kidney Transplantation: Clinical and Histological Monitoring. Front. Med. 2021, 8, 790547. [Google Scholar] [CrossRef]
- Khairallah, P.; Robbins-Juarez, S.; Patel, S.; Shah, V.; Toma, K.; Fernandez, H.; Dube, G.K.; King, K.; Mohan, S.; Husain, S.A.; et al. Tocilizumab for the treatment of chronic antibody mediated rejection in kidney transplant recipients. Clin. Transplant. 2023, 37, e14853. [Google Scholar] [CrossRef]
- Boonpheng, B.; De Castro, I.C.C.; Ng, Y.-H.; Blosser, C.; Bakthavatsalam, R.; Gimferrer, I.; Smith, K.; Leca, N. Tocilizumab for treatment of chronic active antibody-mediated rejection in kidney transplant recipients. Clin. Transplant. 2023, 37, e14936. [Google Scholar] [CrossRef]
- Truffot, A.; Gautier-Veyret, E.; Baillet, A.; Jourdil, J.-F.; Stanke-Labesque, F.; Gottenberg, J.-E. Variability of rituximab and tocilizumab trough concentrations in patients with rheumatoid arthritis. Fundam. Clin. Pharmacol. 2021, 35, 1090–1099. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, H.; Hsu, J.C.; Lu, P.; Fettner, S.; Zhang, X.; Douglass, W.; Bao, M.; Rowell, L.; Burmester, G.R.; Kivitz, A. Pharmacokinetic and Pharmacodynamic Analysis of Subcutaneous Tocilizumab in Patients with Rheumatoid Arthritis from 2 Randomized, Controlled Trials: SUMMACTA and BREVACTA. J. Clin. Pharmacol. 2017, 57, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Truffot, A.; Jouve, T.; Noble, J.; Bardy, B.; Malvezzi, P.; Rostaing, L.; Stanke-Labesque, F.; Gautier-Veyret, E. Tocilizumab Trough Levels Variability in Kidney-Transplant Candidates Undergoing Desensitization. J. Clin. Med. 2021, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Arad, U.; Elkayam, O. Association of Serum Tocilizumab Trough Concentrations with Clinical Disease Activity Index Scores in Adult Patients with Rheumatoid Arthritis. J. Rheumatol. 2019, 46, 1577–1581. [Google Scholar] [CrossRef] [PubMed]
- Kneepkens, E.L.; van den Oever, I.; Plasencia, C.H.; Pascual-Salcedo, D.; de Vries, A.; Hart, M.; Nurmohamed, M.T.; Balsa, A.; Rispens, T.; Wolbink, G. Serum tocilizumab trough concentration can be used to monitor systemic IL-6 receptor blockade in patients with rheumatoid arthritis: A prospective observational cohort study. Scand. J. Rheumatol. 2017, 46, 87–94. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Loupy, A.; Haas, M.; Roufosse, C.; Naesens, M.; Adam, B.; Afrouzian, M.; Akalin, E.; Alachkar, N.; Bagnasco, S.; Becker, J.U.; et al. The Banff 2019 Kidney Meeting Report (I): Updates on and clarification of criteria for T cell- and antibody-mediated rejection. Am. J. Transplant. 2020, 20, 2318–2331. [Google Scholar] [CrossRef]
- Levin, A.; Stevens, P.E.; Bilous, R.W.; Coresh, J.; Francisco, A.L.M.D.; Jong, P.E.D.; Griffith, K.E.; Hemmelgarn, B.R.; Iseki, K.; Lamb, E.J.; et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. Suppl. 2013, 3, 1–150. [Google Scholar] [CrossRef]
- Haute Autorité de Santé. Evaluation du Rapport Albuminurie/Créatininurie dans le Diagnostic de la Maladie Rénale Chronique Chez L’adulte. 2011. Available online: https://www.has-sante.fr/upload/docs/application/pdf/2011-12/rapport__albuminurie_creatininurie_2011-12-27_14-57-31_440.pdf (accessed on 8 June 2023).
- Willeman, T.; Jourdil, J.-F.; Gautier-Veyret, E.; Bonaz, B.; Stanke-Labesque, F. A multiplex liquid chromatography tandem mass spectrometry method for the quantification of seven therapeutic monoclonal antibodies: Application for adalimumab therapeutic drug monitoring in patients with Crohn’s disease. Anal. Chim. Acta 2019, 1067, 63–70. [Google Scholar] [CrossRef]
- Hartinger, J.M.; Kratky, V.; Hruskova, Z.; Slanar, O.; Tesar, V. Implications of rituximab pharmacokinetic and pharmacodynamic alterations in various immune-mediated glomerulopathies and potential anti-CD20 therapy alternatives. Front. Immunol. 2022, 13, 1024068. [Google Scholar] [CrossRef]
- Del Vecchio, L.; Allinovi, M.; Rocco, P.; Brando, B. Rituximab Therapy for Adults with Nephrotic Syndromes: Standard Schedules or B Cell-Targeted Therapy? J. Clin. Med. 2021, 10, 5847. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shen, Q.; Dong, M.; Xiong, Y.; Xu, H.; Li, Z. Population Pharmacokinetics of Rituximab in Pediatric Patients with Frequent-Relapsing or Steroid-Dependent Nephrotic Syndrome. Front. Pharmacol. 2021, 12, 725665. [Google Scholar] [CrossRef] [PubMed]
- Fogueri, U.; Cheungapasitporn, W.; Bourne, D.; Fervenza, F.C.; Joy, M.S. Rituximab Exhibits Altered Pharmacokinetics in Patients with Membranous Nephropathy. Ann. Pharmacother. 2019, 53, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Stahl, K.; Duong, M.; Schwarz, A.; Wagner, A.D.; Haller, H.; Schiffer, M.; Jacobs, R. Kinetics of Rituximab Excretion into Urine and Peritoneal Fluid in Two Patients with Nephrotic Syndrome. Case Rep. Nephrol. 2017, 2017, 1372859. [Google Scholar] [CrossRef] [PubMed]
- Gupta, J.; Mitra, N.; Kanetsky, P.A.; Devaney, J.; Wing, M.R.; Reilly, M.; Shah, V.O.; Balakrishnan, V.S.; Guzman, N.J.; Girndt, M.; et al. Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin. J. Am. Soc. Nephrol. CJASN 2012, 7, 1938–1946. [Google Scholar] [CrossRef]
- Upadhyay, A.; Larson, M.G.; Guo, C.-Y.; Vasan, R.S.; Lipinska, I.; O’Donnell, C.J.; Kathiresan, S.; Meigs, J.B.; Keaney, J.F.; Rong, J.; et al. Inflammation, kidney function and albuminuria in the Framingham Offspring cohort. Nephrol. Dial. Transplant. 2011, 26, 920–926. [Google Scholar] [CrossRef]
- Dostalek, M.; Gardner, I.; Gurbaxani, B.M.; Rose, R.H.; Chetty, M. Pharmacokinetics, Pharmacodynamics and Physiologically-Based Pharmacokinetic Modelling of Monoclonal Antibodies. Clin. Pharmacokinet. 2013, 52, 83–124. [Google Scholar] [CrossRef]
M1 (n = 17) | M2 (n = 17) | M3 (n = 17) | |
---|---|---|---|
Tocilizumab pharmacological data | |||
Trough concentration (mg/L) | 17.4 (6.7–24.6) CV = 38.6% | 18.7 (11.0–31.2) CV = 41.1% | 20.3 (8.8–39.2) CV = 45.0% |
Dose (mg) | 600 (426–694) | 600 (434–669) | 600 (392–683) |
Laboratory parameters | |||
Creatinine (µmol/L) | 151 (112–190) | 150 (113–190) | 147 (108–196) |
GFR (mL/mn/1.73 m2) | 44 (30–55) | 41 (27–61) | 40 (29–60) |
ACR (mg/mmol) | 9.3 (1.1–160) | 10.2 (0.9–149) | 8.3 (0.9–100) |
Total proteins (g/L) | 68 (64–71) | 69 (60–72) | 67 (62–72) |
Hepatic function altered a % (n) | 6.3 (1) | 6.3 (1) | 6.3 (1) |
C reactive protein (mg/L) | <4 (<4–<4) | <4 (<4–<4) | <4 (<4–<4) |
Variable | Univariate Analysis | Multivariate Analysis | ||||
---|---|---|---|---|---|---|
Estimate | 95% Confidence Interval | p-Value | Estimate | 95% Confidence Interval | p-Value | |
log(Age) | −0.34 | −1.5–0.82 | 0.578 | |||
Gender (male–female) | 0.16 | −0.10–0.41 | 0.253 | |||
log(Time after TCZ initiation) | 0.40 | 0.18–0.61 | 0.001 | 0.42 | 0.17–0.66 | 0.002 |
log(Dose) | 0.96 | −0.094–2.0 | 0.087 | 0.88 | −0.0044–1.8 | 0.067 |
Weight | 0.0053 | −0.0023–0.013 | 0.188 | |||
log(BMI) | 0.57 | −1.1–2.2 | 0.507 | |||
Creatinine | 0.00030 | −0.0036–0.0030 | 0.857 | |||
GFR | 0.0014 | −0.0072–0.0099 | 0.758 | |||
log(ACR) | −0.13 | −0.24–−0.020 | 0.037 | −0.11 | −0.21–−0.0085 | 0.050 |
Total protein | −0.0098 | −0.029–0.0092 | 0.316 | |||
Tacrolimus (yes–no) | 0.33 | 0.033–0.64 | 0.046 | 0.22 | −0.30–0.47 | 0.107 |
Mycophenolic acid (yes–no) | −0.084 | −0.49–0.32 | 0.690 | |||
Belatacept (yes–no) | 0.057 | −0.25–0.37 | 0.725 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arrivé, C.; Jacquet, M.; Gautier-Veyret, E.; Jouve, T.; Noble, J.; Lombardo, D.; Rostaing, L.; Stanke-Labesque, F. Early Exposure of Kidney Transplant Recipients with Chronic Antibody-Mediated Rejection to Tocilizumab—A Preliminary Study. J. Clin. Med. 2023, 12, 7141. https://doi.org/10.3390/jcm12227141
Arrivé C, Jacquet M, Gautier-Veyret E, Jouve T, Noble J, Lombardo D, Rostaing L, Stanke-Labesque F. Early Exposure of Kidney Transplant Recipients with Chronic Antibody-Mediated Rejection to Tocilizumab—A Preliminary Study. Journal of Clinical Medicine. 2023; 12(22):7141. https://doi.org/10.3390/jcm12227141
Chicago/Turabian StyleArrivé, Capucine, Marvin Jacquet, Elodie Gautier-Veyret, Thomas Jouve, Johan Noble, Dorothée Lombardo, Lionel Rostaing, and Françoise Stanke-Labesque. 2023. "Early Exposure of Kidney Transplant Recipients with Chronic Antibody-Mediated Rejection to Tocilizumab—A Preliminary Study" Journal of Clinical Medicine 12, no. 22: 7141. https://doi.org/10.3390/jcm12227141
APA StyleArrivé, C., Jacquet, M., Gautier-Veyret, E., Jouve, T., Noble, J., Lombardo, D., Rostaing, L., & Stanke-Labesque, F. (2023). Early Exposure of Kidney Transplant Recipients with Chronic Antibody-Mediated Rejection to Tocilizumab—A Preliminary Study. Journal of Clinical Medicine, 12(22), 7141. https://doi.org/10.3390/jcm12227141