Effects of Two Different Self-Paced Training Modalities on the Aerobic Fitness Levels, Psychophysiological Responses, and Antioxidant Status in Physically Active Young Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Inclusion Criteria
- Physically active young male adults;
- Age of 20–25 years;
- Minimum of two years training (four sessions per week);
- Exclusion criteria;
- Non-attendance at training;
- Acute injuries;
- Dropped out of training.
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, I.M.; Shiroma, E.J.; Lobelo, F.; Puska, P.; Blair, S.N.; Katzmarzyk, P.T. Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet 2012, 380, 219–229. [Google Scholar] [CrossRef]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Stanton, R.; To, Q.G.; Khalesi, S.; Williams, S.L.; Alley, S.J.; Thwaite, T.L.; Fenning, A.S.; Vandelanotte, C. Depression, Anxiety and Stress during COVID-19: Associations with Changes in Physical Activity, Sleep, Tobacco and Alcohol Use in Australian Adults. Int. J. Environ. Res. Public Health 2020, 17, 4065. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.Y.; Choi, D.H.; Jung, C.H.; Kang, S.K.; Mok, J.O.; Kim, C.H. Obesity and Physical Activity. J. Obes. Metab. Syndr. 2017, 26, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Najafipour, F.; Mobasseri, M.; Yavari, A.; Nadrian, H.; Aliasgarzadeh, A.; Mashinchi Abbasi, N.; Niafar, M.; Houshyar Gharamaleki, J.; Sadra, V. Effect of regular exercise training on changes in HbA1c, BMI and VO 2 max among patients with type 2 diabetes mellitus: An 8-year trial. BMJ Open Diabetes Res. Care 2017, 5, e000414. [Google Scholar] [CrossRef] [PubMed]
- Paluska, S.A.; Schwenk, T.L. Physical activity and mental health: Current concepts. Sports Med. 2000, 29, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Burgomaster, K.A.; Hughes, S.C.; Heigenhauser, G.J.F.; Bradwell, S.N.; Gibala, M.J. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J. Appl. Physiol. 2005, 98, 1985–1990. [Google Scholar] [CrossRef] [PubMed]
- Gibala, M.J.; Little, J.P.; van Essen, M.; Wilkin, G.P.; Burgomaster, K.A.; Safdar, A.; Raha, S.; Tarnopolsky, M.A. Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. J. Physiol. 2006, 575, 901–911. [Google Scholar] [CrossRef]
- Gibala, M.J. Physiological basis of interval training for performance enhancement. Exp. Physiol. 2021, 106, 2324–2327. [Google Scholar] [CrossRef]
- Iaia, F.M.; Ermanno, R.; Bangsbo, J. High-Intensity Training in Football. Int. J. Sports Physiol. Perform. 2009, 4, 291–306. [Google Scholar] [CrossRef]
- Weston, K.S.; Wisløff, U.; Coombes, J.S. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: A systematic review and meta-analysis. Br. J. Sports Med. 2014, 48, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
- MacInnis, M.J.; Gibala, M.J. Physiological adaptations to interval training and the role of exercise intensity. J. Physiol. 2017, 595, 2915–2930. [Google Scholar] [CrossRef] [PubMed]
- Eddy, D.O.; Sparks, K.L.; Adelizi, D.A. The effects of continuous and interval training in women and men. Eur. J. Appl. Physiol. Occup. Physiol. 1977, 37, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Nordsborg, N.B.; Connolly, L.; Weihe, P.; Iuliano, E.; Krustrup, P.; Saltin, B.; Mohr, M. Oxidative capacity and glycogen content increase more in arm than leg muscle in sedentary women after intense training. J. Appl. Physiol. 2015, 119, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Nybo, L.; Sundstrup, E.; Jakobsen, M.D.; Mohr, M.; Hornstrup, T.; Simonsen, L.; Bülow, J.; Randers, M.B.; Nielsen, J.J.; Aagaard, P.; et al. High-Intensity Training versus Traditional Exercise Interventions for Promoting Health. Med. Sci. Sports Exerc. 2010, 42, 1951–1958. [Google Scholar] [CrossRef] [PubMed]
- Ramos, J.S.; Dalleck, L.C.; Tjonna, A.E.; Beetham, K.S.; Coombes, J.S. The Impact of High-Intensity Interval Training Versus Moderate-Intensity Continuous Training on Vascular Function: A Systematic Review and Meta-Analysis. Sports Med. 2015, 45, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Milanović, Z.; Sporiš, G.; Weston, M. Effectiveness of High-Intensity Interval Training (HIT) and Continuous Endurance Training for VO2max Improvements: A Systematic Review and Meta-Analysis of Controlled Trials. Sports Med. 2015, 45, 1469–1481. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.L.; Terada, T.; Cotie, L.M.; Tulloch, H.E.; Leenen, F.H.; Mistura, M.; Hans, H.; Wang, H.W.; Vidal-Almela, S.; Reid, R.D.; et al. The effects of high-intensity interval training, Nordic walking and moderate-to-vigorous intensity continuous training on functional capacity, depression and quality of life in patients with coronary artery disease enrolled in cardiac rehabilitation: A randomized controlled trial (CRX study). Prog. Cardiovasc. Dis. 2022, 70, 73–83. [Google Scholar] [CrossRef]
- Stork, M.J.; Banfield, L.E.; Gibala, M.J.; Martin Ginis, K.A. A scoping review of the psychological responses to interval exercise: Is interval exercise a viable alternative to traditional exercise? Health Psychol. Rev. 2017, 11, 324–344. [Google Scholar] [CrossRef]
- Stork, M.J.; Gibala, M.J.; Martin Ginis, K.A. Psychological and Behavioral Responses to Interval and Continuous Exercise. Med. Sci. Sports Exerc. 2018, 50, 2110–2121. [Google Scholar] [CrossRef]
- Finaud, J.; Lac, G.; Filaire, E. Oxidative Stress. Sports Med. 2006, 36, 327–358. [Google Scholar] [CrossRef] [PubMed]
- Thirupathi, A.; Pinho, R.A.; Ugbolue, U.C.; He, Y.; Meng, Y.; Gu, Y. Effect of Running Exercise on Oxidative Stress Biomarkers: A Systematic Review. Front. Physiol. 2021, 11, 610112. [Google Scholar] [CrossRef] [PubMed]
- Farney, T.M.; McCarthy, C.G.; Canale, R.E.; Schilling, B.K.; Whitehead, P.N.; Bloomer, R.J. Absence of Blood Oxidative Stress in Trained Men after Strenuous Exercise. Med. Sci. Sports Exerc. 2012, 44, 1855–1863. [Google Scholar] [CrossRef] [PubMed]
- Waaso, P.; Gofton, N.; Zuhl, M. The Effect of Self-Selected Exercise Workloads on Perceived Enjoyment and Self-Efficacy in Sedentary Adults. Behav. Sci. 2022, 12, 224. [Google Scholar] [CrossRef] [PubMed]
- Brellenthin, A.G.; Crombie, K.M.; Hillard, C.J.; Koltyn, K.F. Endocannabinoid and Mood Responses to Exercise in Adults with Varying Activity Levels. Transl. J. Am. Coll. Sport. Med. 2017, 2, 138–145. [Google Scholar]
- Kellogg, E.; Cantacessi, C.; McNamer, O.; Holmes, H.; von Bargen, R.; Ramirez, R.; Gallagher, D.; Vargas, S.; Santia, B.; Rodriguez, K.; et al. Comparison of Psychological and Physiological Responses to Imposed vs. Self-selected High-Intensity Interval Training. J. Strength. Cond. Res. 2019, 33, 2945–2952. [Google Scholar] [CrossRef] [PubMed]
- Adamo, A.M.; Llesuy, S.F.; Pasquini, J.M.; Boveris, A. Brain chemiluminescence and oxidative stress in hyperthyroid rats. Biochem. J. 1989, 263, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Ewing, J.F.; Janero, D.R. Microplate Superoxide Dismutase Assay Employing a Nonenzymatic Superoxide Generator. Anal. Biochem. 1995, 232, 243–248. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Sen, C.K.; Marin, E.; Kretzschmar, M.; Hanninen, O. Skeletal muscle and liver glutathione homeostasis in response to training, exercise, and immobilization. J. Appl. Physiol. 1992, 73, 1265–1272. [Google Scholar] [CrossRef]
- Buchheit, M. The 30–15 intermittent fitness test: 10 year review. Myorobie J. 2010, 1, 278. [Google Scholar]
- Helgerud, J.; Høydal, K.; Wang, E.; Karlsen, T.; Berg, P.; Bjerkaas, M.; Simonsen, T.; Helgesen, C.; Hjorth, N.; Bach, R.; et al. Aerobic High-Intensity Intervals Improve VO2max More Than Moderate Training. Med. Sci. Sport. Exerc. 2007, 39, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Hottenrott, K.; Ludyga, S.; Schulze, S. Effects of high intensity training and continuous endurance training on aerobic capacity and body composition in recreationally active runners. J. Sports Sci. Med. 2012, 11, 483–488. [Google Scholar] [PubMed]
- Soylu, Y.; Arslan, E.; Sogut, M.; Kilit, B.; Clemente, F. Effects of self-paced high-intensity interval training and moderateintensity continuous training on the physical performance and psychophysiological responses in recreationally active young adults. Biol. Sport. 2021, 38, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Foster, C.; Boullosa, D.; McGuigan, M.; Fusco, A.; Cortis, C.; Arney, B.E.; Orton, B.; Dodge, C.; Jaime, S.; Radtke, K.; et al. 25 Years of Session Rating of Perceived Exertion: Historical Perspective and Development. Int. J. Sports Physiol. Perform. 2021, 16, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Terry, P.C.; Lane, A.M.; Lane, H.J.; Keohane, L. Development and validation of a mood measure for adolescents. J. Sports Sci. 1999, 17, 861–872. [Google Scholar] [CrossRef] [PubMed]
- Terry, P.C.; Potgieter, J.R.; Fogarty, G.J. The stellenbosch mood scale: A dual-language measure of mood. Int. J. Sports Exerc. Psychol. 2003, 1, 231–245. [Google Scholar] [CrossRef]
- Cakiroglu, A.A.; Demir, E.; Guclu, M. The Validity and Reliablity Study of the Brunel Mood Scale with the Adult Athletes (Turkish Adaptation). Int. J. Appl. Exerc. Physiol. 2020, 9, 126–140. [Google Scholar]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- Farias-Junior, L.F.; Macêdo, G.A.D.; Browne, R.A.V.; Freire, Y.A.; Oliveira-Dantas, F.F.; Schwade, D.; Mortatti, A.L.; Santos, T.M.; Costa, E.C. Physiological and Psychological Responses during Low-Volume High-Intensity Interval Training Sessions with Different Work-Recovery Durations. J. Sports Sci. Med. 2019, 18, 181–190. [Google Scholar]
- Martínez-Díaz, I.C.; Carrasco, L. Neurophysiological Stress Response and Mood Changes Induced by High-Intensity Interval Training: A Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 7320. [Google Scholar] [CrossRef] [PubMed]
- Karageorghis, C.I.; Jones, L.; Howard, L.W.; Thomas, R.M.; Moulashis, P.; Santich, S.J. When It HIITs, You Feel No Pain: Psychological and Psychophysiological Effects of Respite-Active Music in High-Intensity Interval Training. J. Sports Exerc. Psychol. 2021, 43, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Costa, K.; De Lira, C.; Penna, E.; Andrade, M.; Fonseca, F.D.S.; De Lima-Junior, D.; Gentil, P.; Filho, A.S.; Costa, G.D.C.T. State of mood, motivation, and impulsivity of young athletes: A cross-sectional study. Hum. Mov. 2023, 24, 86–92. [Google Scholar] [CrossRef]
- Thum, J.S.; Parsons, G.; Whittle, T.; Astorino, T.A. High-Intensity Interval Training Elicits Higher Enjoyment than Moderate Intensity Continuous Exercise. PLoS ONE 2017, 12, e0166299. [Google Scholar] [CrossRef] [PubMed]
- Olney, N.; Wertz, T.; LaPorta, Z.; Mora, A.; Serbas, J.; Astorino, T.A. Comparison of Acute Physiological and Psychological Responses between Moderate-Intensity Continuous Exercise and Three Regimes of High-Intensity Interval Training. J. Strength. Cond. Res. 2018, 32, 2130–2138. [Google Scholar] [CrossRef] [PubMed]
- Martinez, N.; Kilpatrick, M.W.; Salomon, K.; Jung, M.E.; Little, J.P. Affective and enjoyment responses to high-intensity interval training in overweight-to-obese and insufficiently active adults. J. Sports Exerc. Psychol. 2015, 37, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Ekkekakis, P.; Parfitt, G.; Petruzzello, S.J. The Pleasure and Displeasure People Feel When they Exercise at Different Intensities. Sport. Med. 2011, 41, 641–671. [Google Scholar] [CrossRef]
- Jung, M.E.; Bourne, J.E.; Little, J.P. Where Does HIT Fit? An Examination of the Affective Response to High-Intensity Intervals in Comparison to Continuous Moderate- and Continuous Vigorous-Intensity Exercise in the Exercise Intensity-Affect Continuum. PLoS ONE 2014, 9, e114541. [Google Scholar] [CrossRef]
- Mohr, M.; Nordsborg, N.B.; Lindenskov, A.; Steinholm, H.; Nielsen, H.P.; Mortensen, J.; Weihe, P.; Krustrup, P. High-Intensity Intermittent Swimming Improves Cardiovascular Health Status for Women with Mild Hypertension. Biomed. Res. Int. 2014, 2014, 728289. [Google Scholar] [CrossRef]
- Murawska-Cialowicz, E.; Wolanski, P.; Zuwala-Jagiello, J.; Feito, Y.; Petr, M.; Kokstejn, J.; Stastny, P.; Goliński, D. Effect of HIIT with Tabata Protocol on Serum Irisin, Physical Performance, and Body Composition in Men. Int. J. Environ. Res. Public Health 2020, 17, 3589. [Google Scholar] [CrossRef]
- Mazurek, K.; Zmijewski, P.; Krawczyk, K.; Czajkowska, A.; Kęska, A.; Kapuscinski, P.; Mazurek, T. High intensity interval and moderate continuous cycle training in a physical education programme improves health-related fitness in young females. Biol. Sport 2016, 33, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Kristiansen, J.; Sjúrðarson, T.; Grove, E.L.; Rasmussen, J.; Kristensen, S.D.; Hvas, A.-M.; Mohr, M. Feasibility and impact of whole-body high-intensity interval training in patients with stable coronary artery disease: A randomised controlled trial. Sci. Rep. 2022, 12, 17295. [Google Scholar] [CrossRef] [PubMed]
- Azizbeigi, K.; Stannard, S.R.; Atashak, S.; Mosalman Haghighi, M. Antioxidant enzymes and oxidative stress adaptation to exercise training: Comparison of endurance, resistance, and concurrent training in untrained males. J. Exerc. Sci. Fit. 2014, 12, 1–6. [Google Scholar] [CrossRef]
- Vezzoli, A.; Pugliese, L.; Marzorati, M.; Serpiello, F.R.; La Torre, A.; Porcelli, S. Time-Course Changes of Oxidative Stress Response to High-Intensity Discontinuous Training versus Moderate-Intensity Continuous Training in Masters Runners. PLoS ONE 2014, 9, e87506. [Google Scholar] [CrossRef] [PubMed]
- Knez, W.L.; Jenkins, D.G.; Coombes, J.S. Oxidative Stress in Half and Full Ironman Triathletes. Med. Sci. Sports Exerc. 2007, 39, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, S.; Debnath, M.; Das, M.; Bandyopadhyay, A.; Dey, S.K.; Datta, G. Effect of high intensity interval training on antioxidant status, inflammatory response and muscle damage indices in endurance team male players. Apunt. Sports Med. 2021, 56, 100352. [Google Scholar] [CrossRef]
- El Abed, K.; Ammar, A.; Boukhris, O.; Trabelsi, K.; Masmoudi, L.; Bailey, S.J.; Hakim, A.; Bragazzi, N.L. Independent and Combined Effects of All-Out Sprint and Low-Intensity Continuous Exercise on Plasma Oxidative Stress Biomarkers in Trained Judokas. Front. Physiol. 2019, 10, 842. [Google Scholar] [CrossRef]
- Zivkovic, V.; Lazarevic, P.; Djuric, D.; Cubrilo, D.; Macura, M.; Vuletic, M.; Barudzic, N.; Nesic, M.; Jakovljevic, V. Alteration in basal redox state of young male soccer players after a six-month training programme. Acta Physiol. Hung. 2013, 100, 64–76. [Google Scholar] [CrossRef]
- Peserico, C.S.; Machado, F.A. Association between endurance performance, oxidative stress, and antioxidant markers during a running training program in untrained men. Sport Sci. Health 2022, 18, 249–256. [Google Scholar] [CrossRef]
- Ponce-Gonzalez, J.G.; Corral-Pérez, J.; Villarreal, E.; Gutierrez-Manzanedo, J.V.; Castro-Maqueda, G.; Casals, C. Antioxidants Markers of Professional Soccer Players During the Season and their Relationship with Competitive Performance. J. Hum. Kinet. 2021, 80, 113–123. [Google Scholar] [CrossRef]
- Margaritis, I.; Tessier, F.; Richard, M.J.; Marconnet, P. No Evidence of Oxidative Stress After a Triathlon Race in Highly Trained Competitors. Int. J. Sports Med. 1997, 18, 186–190. [Google Scholar] [CrossRef]
Weeks | Sp-MICT (n = 12) | Sp-HIIT (n = 12) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Training | RPE | Fatigue | Depression | Anger | Vigour | Training | RPE | Fatigue | Depression | Anger | Vigour | |
1 | 24 min cont. running | 12.5 ± 0.3 | 2.4 ± 0.4 | 1.7 ± 1.0 | 1.6 ± 0.8 | 1.4 ± 0.4 * | 2 × (12 × 30 s), 30 s rest | 16.2 ± 0.2 * | 3.0 ± 0.4 | 3.2 ± 1.3 * | 1.6 ± 1.0 | 0.9 ± 0.4 |
2 | 13.2 ± 0.3 | 2.9 ± 0.5 | 1.6 ± 0.5 | 1.6 ± 0.2 | 1.1 ± 0.4 * | 17.1 ± 0.1 * | 3.3 ± 0.4 | 2.3 ± 0.9 * | 1.3 ± 0.4 | 0.7 ± 0.4 | ||
3 | 32 min cont. running | 13.1 ± 0.5 | 3.0 ± 0.4 | 1.6 ± 0.5 | 1.3 ± 0.2 | 0.9 ± 0.4 * | 2 × (16 × 30 s), 30 s rest | 17.1 ± 0.2 * | 3.3 ± 0.3 | 2.0 ± 0.6 * | 1.3 ± 0.3 | 0.6 ± 0.3 |
4 | 14.1 ± 0.4 | 2.9 ± 0.6 | 1.1 ± 0.6 | 1.1 ± 0.4 | 1.1 ± 0.6 * | 17.3 ± 0.1 * | 3.2 ± 0.4 | 2.1 ± 0.6 * | 1.1 ± 0.5 | 1.8 ± 0.4 | ||
5 | 40 min cont. running | 13.6 ± 0.7 | 2.8 ± 0.4 | 1.4 ± 0.6 | 1.1 ± 0.5 | 1.2 ± 0.4 * | 2 × (20 × 30 s), 30 s rest | 17.4 ± 0.1 * | 3.1 ± 0.3 | 2.2 ± 0.6 * | 0.9 ± 0.4 | 0.9 ± 0.3 |
6 | 13.4 ± 0.1 | 2.8 ± 0.5 | 0.9 ± 0.5 | 1.1 ± 0.4 | 0.9 ± 0.4 * | 17.8 ± 0.4 * | 3.2 ± 0.3 | 1.3 ± 0.4 * | 0.9 ± 0.3 | 0.7 ± 0.3 | ||
7 | 48 min cont. running | 13.6 ± 0.3 | 3.9 ± 0.5 | 0.8 ± 0.4 | 1.1 ± 0.5 | 1.1 ± 0.5 * | 2 × (24 × 30 s), 30 s rest | 17.7 ± 0.3 * | 3.3 ± 0.3 | 0.9 ± 0.5 * | 0.8 ± 0.4 | 0.7 ± 0.3 |
8 | 13.7 ± 0.6 | 2.9 ± 0.6 | 0.8 ± 0.7 | 0.9 ± 0.6 | 1.0 ± 0.5 * | 17.9 ± 0.3 * | 3.4 ± 0.3 | 1.0 ± 0.6 * | 0.8 ± 0.4 | 0.6 ± 0.3 |
Sp-MICT (n = 12) | Sp-HIIT (n = 12) | p Values | |||||||
---|---|---|---|---|---|---|---|---|---|
Pre-Test | Post-Test | Cohen’s d | Descriptor | Pre-Test | Post-Test | Cohen’s d | Descriptor | ||
Body weight (kg) | 78.2 ± 12.2 | 76.1 ± 11.8 * | 0.2 | trivial | 75.7 ± 8.9 | 73.2 ± 8.6 * | 0.3 | small | 0.540 |
Body fat (%) | 14.8 ± 3.7 | 13.2 ± 3.2 * | 0.4 | small | 13.9 ± 3.0 | 11.8 ± 2.4 * | 0.8 | moderate | 0.365 |
BMI (kg·m−2) | 24.2 ± 2.9 | 23.5 ± 2.8 * | 0.2 | small | 25.0 ± 2.4 | 24.2 ± 2.3 * | 0.3 | small | 0.462 |
30-15 VIFT (km·h−1) | 14.5 ± 0.5 | 15.1 ± 0.6 * | 1.0 | moderate | 14.3 ± 0.6 | 16.4 ± 0.7 *# | 3.2 | very large | 0.040 |
VO2max (mL·min−1·kg−1) | 40.7 ± 1.3 | 42.1 ± 1.5 * | 1.1 | moderate | 40.2 ± 1.5 | 45.1 ± 1.6 *# | 3.1 | very large | 0.043 |
MDA (mmol.ml−1) | 0.4 ± 0.0 | 0.4 ± 0.0 * | 2.0 | very large | 0.4 ± 0.0 | 0.5 ± 0.0 *# | 3.2 | very large | 0.025 |
CAT (U·mg−1 Hb) | 66.9 ± 11.1 | 52.0 ± 11.5 * | 1.3 | large | 64.5 ± 6.3 | 44.8 ± 4.5 * | 3.6 | very large | 0.191 |
SOD (U·mg−1 Hb) | 1.4 ± 0.2 | 1.3 ± 0.1 * | 0.9 | moderate | 1.4 ± 0.2 | 1.2 ± 0.2 * | 1.5 | large | 0.309 |
GSH (µmol·g−1 Hb) | 11.4 ± 0.7 | 13.5 ± 0.6 * | 3.3 | very large | 11.7 ± 0.7 | 14.1 ± 1.2 * | 2.4 | very large | 0.208 |
GSSG (µmol·g−1 Hb) | 8.9 ± 1.0 | 10.5 ± 1.1 * | 1.5 | large | 9.4 ± 0.7 | 10.9 ± 0.7 * | 2.1 | very large | 0.226 |
GSH/GSSG ratio | 1.3 ± 0.1 | 1.3 ± 0.1 * | 0.1 | trivial | 1.2 ± 0.1 | 1.3 ± 0.2 * | 0.5 | small | 0.755 |
CAT (U·mg−1 Hb) | SOD (U·mg−1 Hb) | MDA (mmol·mL−1) | GSH (µmol·g−1 Hb) | GSSG (µmol·g−1 Hb) | GSH/GSSG Ratio | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Pre | Post | Pre | Post | Pre | Post | Pre | Post | |
30-15 VIFT (km·h−1) | −0.1 | −0.1 | −0.2 | −0.2 | −0.2 | −0.1 | −0.2 | −0.3 | −0.1 | −0.3 | 0.1 | 0.2 |
(small) | (trivial) | (small) | (small) | (small) | (small) | (small) | (small) | (small) | (moderate) | (trivial) | (small) | |
VO2max (mL·min−1·kg−1) | 0.0 | 0.0 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.4 | −0.1 | −0.3 |
(trivial) | (trivial) | (small) | (small) | (small) | (small) | (small) | (small) | (trivial) | (moderate) | (trivial) | (small) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soylu, Y.; Krustrup, P.; Mohr, M.; Arslan, E.; Kilit, B.; Radzimiński, Ł. Effects of Two Different Self-Paced Training Modalities on the Aerobic Fitness Levels, Psychophysiological Responses, and Antioxidant Status in Physically Active Young Adults. J. Clin. Med. 2023, 12, 7232. https://doi.org/10.3390/jcm12237232
Soylu Y, Krustrup P, Mohr M, Arslan E, Kilit B, Radzimiński Ł. Effects of Two Different Self-Paced Training Modalities on the Aerobic Fitness Levels, Psychophysiological Responses, and Antioxidant Status in Physically Active Young Adults. Journal of Clinical Medicine. 2023; 12(23):7232. https://doi.org/10.3390/jcm12237232
Chicago/Turabian StyleSoylu, Yusuf, Peter Krustrup, Magni Mohr, Ersan Arslan, Bulent Kilit, and Łukasz Radzimiński. 2023. "Effects of Two Different Self-Paced Training Modalities on the Aerobic Fitness Levels, Psychophysiological Responses, and Antioxidant Status in Physically Active Young Adults" Journal of Clinical Medicine 12, no. 23: 7232. https://doi.org/10.3390/jcm12237232
APA StyleSoylu, Y., Krustrup, P., Mohr, M., Arslan, E., Kilit, B., & Radzimiński, Ł. (2023). Effects of Two Different Self-Paced Training Modalities on the Aerobic Fitness Levels, Psychophysiological Responses, and Antioxidant Status in Physically Active Young Adults. Journal of Clinical Medicine, 12(23), 7232. https://doi.org/10.3390/jcm12237232