Positron Emission Tomography-Derived Radiomics and Artificial Intelligence in Multiple Myeloma: State-of-the-Art
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Study Selection, Data Collection, and Quality Assessment
3. Results
3.1. Radiomics Assessment
3.2. Quality (Risk of Bias) Assessment
3.3. Diagnosis
3.4. Differential Diagnosis between Myeloma and Bone Metastases
3.5. Therapy Response Assessment and Prognosis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2016, 66, 7–30. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Rajkumar, V.; Kyle, R.A.; van Duin, M.; Sonneveld, P.; Mateos, M.-V.; Gay, F. Multiple myeloma. Nat. Rev. Dis. Primers 2017, 3, 17046. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.-V.; Kumar, P.S.; Hillengass, J.; Kastritis, E.; Richardson, P.P.; et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Callander, N.S.; Adekola, K.; Anderson, L.; Baljevic, M.; Campagnaro, E.; Castillo, J.J.; Chandler, J.C.; Costello, C.; Efebera, Y.; et al. Multiple Myeloma, Version 3.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2020, 18, 1685–1717. [Google Scholar] [CrossRef] [PubMed]
- Basha, M.A.A.; Hamed, M.A.G.; Refaat, R.; AlAzzazy, M.Z.; Bessar, M.A.; Mohamed, E.M.; Ahmed, A.F.; Tantawy, H.F.; Altaher, K.M.; Obaya, A.A.; et al. Diagnostic performance of 18F-FDG PET/CT and whole-body MRI before and early after treatment of multiple myeloma: A prospective comparative study. Jpn. J. Radiol. 2018, 36, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Nanni, C.; Zamagni, E.; Versari, A.; Chauvie, S.; Bianchi, A.; Rensi, M.; Bellò, M.; Rambaldi, I.; Gallamini, A.; Patriarca, F.; et al. Image interpretation criteria for FDG PET/CT in multiple myeloma: A new proposal from an Italian expert panel. IMPeTUs (Italian Myeloma criteria for PET USe). Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 414–421. [Google Scholar] [CrossRef]
- Rajkumar, S.V.; Kumar, S. Multiple myeloma current treatment algorithms. Blood Cancer J. 2020, 10, 94. [Google Scholar] [CrossRef]
- van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging-"how-to" guide and critical reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef]
- Urso, L.; Manco, L.; Castello, A.; Evangelista, L.; Guidi, G.; Castellani, M.; Florimonte, L.; Cittanti, C.; Turra, A.; Panareo, S. PET-Derived Radiomics and Artificial Intelligence in Breast Cancer: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 13409. [Google Scholar] [CrossRef]
- Evangelista, L.; Fiz, F.; Laudicella, R.; Bianconi, F.; Castello, A.; Guglielmo, P.; Liberini, V.; Manco, L.; Frantellizzi, V.; Giordano, A.; et al. PET Radiomics and Response to Immunotherapy in Lung Cancer: A Systematic Review of the Literature. Cancers 2023, 15, 3258. [Google Scholar] [CrossRef]
- Ibrahim, A.; Primakov, S.; Beuque, M.; Woodruff, H.C.; Halilaj, I.; Wu, G.; Refaee, T.; Granzier, R.; Widaatalla, Y.; Hustinx, R.; et al. Radiomics for precision medicine: Current challenges, future prospects, and the proposal of a new framework. Methods 2021, 188, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.G.; Jun, S.; Cho, Y.W.; Lee, H.; Kim, G.B.; Seo, J.B.; Kim, N. Deep Learning in Medical Imaging: General Overview. Korean J. Radiol. 2017, 18, 570–584. [Google Scholar] [CrossRef] [PubMed]
- Meyer, P.; Noblet, V.; Mazzara, C.; Lallement, A. Survey on deep learning for radiotherapy. Comput. Biol. Med. 2018, 98, 126–146. [Google Scholar] [CrossRef] [PubMed]
- Manco, L.; Maffei, N.; Strolin, S.; Vichi, S.; Bottazzi, L.; Strigari, L. Basic of machine learning and deep learning in imaging for medical physicists. Phys. Med. 2021, 83, 194–205. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; van Timmeren, J.; Sanduleanu, S.; Larue, R.T.H.M.; Even, A.J.G.; Jochems, A.; et al. Radiomics: The bridge between medical 528 imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [PubMed]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.; Sterne, J.A.; Bossuyt, P.M.; QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.; Huang, D.; Wu, J.; Chen, X.; Chen, Y.; Huang, C. 18F-FDG PET/CT based radiomics features improve prediction of prognosis: Multiple machine learning algorithms and multimodality applications for multiple myeloma. BMC Med. Imaging 2023, 23, 87. [Google Scholar] [CrossRef]
- Milara, E.; Alonso, R.; Masseing, L.; Seiffert, A.P.; Gómez-Grande, A.; Gómez, E.J.; Martínez-López, J.; Sánchez-González, P. Radiomics analysis of bone marrow biopsy locations in [18F]FDG PET/CT images for measurable residual disease assessment in multiple myeloma. Phys. Eng. Sci. Med. 2023, 46, 903–913. [Google Scholar] [CrossRef]
- Ni, B.; Huang, G.; Huang, H.; Wang, T.; Han, X.; Shen, L.; Chen, Y.; Hou, J. Machine Learning Model Based on Optimized Radiomics Feature from 18F-FDG-PET/CT and Clinical Characteristics Predicts Prognosis of Multiple Myeloma: A Preliminary Study. J. Clin. Med. 2023, 12, 2280. [Google Scholar] [CrossRef]
- Mannam, P.; Murali, A.; Gokulakrishnan, P.; Venkatachalapathy, E.; Venkata Sai, P.M. Radiomic Analysis of Positron-Emission Tomography and Computed Tomography Images to Differentiate between Multiple Myeloma and Skeletal Metastases. Indian J. Nucl. Med. 2022, 37, 217–226. [Google Scholar] [CrossRef]
- Milara, E.; Gómez-Grande, A.; Tomás-Soler, S.; Seiffert, A.P.; Alonso, R.; Gómez, E.J.; Martínez-López, J.; Sánchez-González, P. Bone marrow segmentation and radiomics analysis of [18F]FDG PET/CT images for measurable residual disease assessment in multiple myeloma. Comput. Methods Programs Biomed. 2022, 225, 107083. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Wang, Y.; Wang, Y.; Mao, Y.; Zhang, F.; Yu, J. Application of 18F-FDG PET-CT Images Based Radiomics in Identifying Vertebral Multiple Myeloma and Bone Metastases. Front. Med. 2022, 9, 874847. [Google Scholar] [CrossRef] [PubMed]
- Mesguich, C.; Hindie, E.; de Senneville, B.D.; Tlili, G.; Pinaquy, J.B.; Marit, G.; Saut, O. Improved 18-FDG PET/CT diagnosis of multiple myeloma diffuse disease by radiomics analysis. Nucl. Med. Commun. 2021, 42, 1135–1143. [Google Scholar] [CrossRef] [PubMed]
- Ripani, D.; Caldarella, C.; Za, T.; Rossi, E.; De Stefano, V.; Giordano, A. Progression to Symptomatic Multiple Myeloma Predicted by Texture Analysis-Derived Parameters in Patients without Focal Disease at 18F-FDG PET/CT. Clin. Lymphoma Myeloma Leuk. 2021, 21, 536–544. [Google Scholar] [CrossRef] [PubMed]
- Jamet, B.; Morvan, L.; Nanni, C.; Michaud, A.V.; Bailly, C.; Chauvie, S.; Moreau, P.; Touzeau, C.; Zamagni, E.; Bodet-Milin, C.; et al. Random survival forest to predict transplant-eligible newly diagnosed multiple myeloma outcome including FDG-PET radiomics: A combined analysis of two independent prospective European trials. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1005–1015. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Tetteh, G.; Lipkova, J.; Zhao, Y.; Li, H.; Christ, P.; Piraud, M.; Buck, A.; Shi, K.; Menze, B.H. Automated Whole-Body Bone Lesion Detection for Multiple Myeloma on 68Ga-Pentixafor PET/CT Imaging Using Deep Learning Methods. Contrast Media Mol. Imaging 2018, 2018, 2391925. [Google Scholar] [CrossRef]
- Antoch, G.; Vogt, F.M.; Freudenberg, L.S.; Nazaradeh, F.; Goehde, S.C.; Barkhausen, J.; Dahmen, G.; Bockisch, A.; Debatin, J.F.; Ruehm, S.G. Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 2003, 290, 3199–3206. [Google Scholar] [CrossRef]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised International Staging System for Multiple Myeloma: A Report from International Myeloma Working Group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef]
- Castello, A.; Castellani, M.; Florimonte, L.; Urso, L.; Mansi, L.; Lopci, E. The Role of Radiomics in the Era of Immune Checkpoint Inhibitors: A New Protagonist in the Jungle of Response Criteria. J. Clin. Med. 2022, 11, 1740. [Google Scholar] [CrossRef]
- Joshi, G.; Jain, A.; Araveeti, S.R.; Adhikari, S.; Garg, H.; Bhandari, M. FDA approved Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices: An updated landscape. medRxiv, 2022; preprint. [Google Scholar] [CrossRef]
- Filippi, L.; Ferrari, C.; Nuvoli, S.; Bianconi, F.; Donner, D.; Marongiu, A.; Mammucci, P.; Vultaggio, V.; Chierichetti, F.; Rubini, G.; et al. Pet-radiomics in lymphoma and multiple myeloma: Update of current literature. Clin. Transl. Imaging, 2023; preprint. [Google Scholar] [CrossRef]
- Alonso, R.; Cedena, M.T.; Gómez-Grande, A.; Ríos, R.; Moraleda, J.M.; Cabañas, V.; Moreno, M.J.; López-Jiménez, J.; Martín, F.; Sanz, A.; et al. Imaging and bone marrow assessments improve minimal residual disease prediction in multiple myeloma. Am. J. Hematol. 2019, 94, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Rasche, L.; Alapat, D.; Kumar, M.; Gershner, G.; McDonald, J.; Wardell, C.P.; Samant, R.; Van Hemert, R.; Epstein, J.; Williams, A.F.; et al. Combination of flow cytometry and functional imaging for monitoring of residual disease in myeloma. Leukemia 2019, 33, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.E.S.; Mosci, C.; Souza, E.M.; Brunetto, S.Q.; Etchebehere, E.; Santos, A.O.; Camacho, M.R.; Miranda, E.; Lima, M.C.L.; Amorim, B.J.; et al. Proposal for a Quantitative 18F-FDG PET/CT Metabolic Parameter to Assess the Intensity of Bone Involvement in Multiple Myeloma. Sci. Rep. 2019, 9, 16429. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef]
- Orlhac, F.; Eertink, J.J.; Cottereau, A.-S.; Zijlstra, J.M.; Thieblemont, C.; Meignan, M.A.; Boellaard, R.; Buvat, I. A Guide to Com-Bat Harmonization of Imaging Biomarkers in Multicenter Studies. J. Nucl. Med. 2022, 63, 172–179. [Google Scholar] [CrossRef]
Author | Year | Design | Setting/Aim | Imaging | Number of Patients |
---|---|---|---|---|---|
Zhong et al. [17] | 2023 | R | Diagnosis | FDG-PET/CT | 98 |
Milara et al. [18] | 2023 | R | Therapy response assessment | FDG-PET/CT | 39 |
Ni et al. [19] | 2023 | R | Prognosis | FDG-PET/CT | 98 |
Mannam et al. [20] | 2022 | R | Myeloma vs. MTS | FDG-PET/CT | 40 |
Milara et al. [21] | 2022 | R | Therapy response assessment | FDG-PET/CT | 39 |
Jin et al. [22] | 2022 | R | Myeloma vs. MTS | FDG-PET/CT | 131 |
Mesguich et al. [23] | 2021 | P | Diagnosis | FDG-PET/CT | 30 |
Ripani et al. [24] | 2021 | R | Pattern distribution | FDG-PET/CT | 45 |
Jamet et al. [25] | 2020 | P | Prognosis | FDG-PET/CT | 139 |
Xu et al. [26] | 2018 | R | Diagnosis | [68Ga]Pentixafor-PET/CT | 12 |
Author | TA | FTs | FT Types | Sw TA | Sw Class | Selected FTs | Statistical Test | RQS 2.0 (%) |
---|---|---|---|---|---|---|---|---|
Zhong et al. [17] | Yes | 408 (CT) 266 (PET) | HSLM, GLCM, GLDM, GLRLM, GLSZM, NGTDM | LifeX | OS | 4 (CT) 5 (PET) | Univariable Cox regression and LASSO | 18 (27.27%) |
Milara et al. [18] | Yes | 32 (PET) | HSLM, GLCM, GLRLM, NGTDM | Matlab | C | 19/28 * (PET) | MW, SC | 20 (30.30%) |
Ni et al. [19] | Yes | 1702 (CT and PET) | SH, FO, GLCM, GLSM, GLSZM, NGTDM, GLDM | 3D slicer | OS | 3 (PET) | LASSO and 10-FCV proportional-hazards model | 18 (27.27%) |
Mannam et al. [20] | Yes | 138 (CT) 138 (PET) | SH, FO, GLCM, GLRLM, GLDM, NGTDM, GLSZM, Wavelat | 3D slicer | OS | 5 (CT) 5 (PET) | ROC | 24 (36.36%) |
Milara et al. [21] | Yes | 29 (PET) | SUVmax, GLCM, GLRLM, NGTDM | Matlab | C | 19 (PET) | MW, SC | 20 (30.30%) |
Jin et al. [22] | Yes | 279 (CT) 279 (PET) | HSLM, GRM, GLRLM, GLCM, ARM, Wavelet | Mazda | OS | 223 (CT) 234 (PET) | LASSO, 10-FCV | 24 (36.36%) |
Mesguich et al. [23] | Yes | 87 (CT) 87 (PET) | SUVmax, FO, GLCM, GLRLM, GLDM, NGTDM, GLSZM | Pyradiomics | OS | 2 (CT) 3 (PET) | RFT and correlation matrix | 26 (39.39%) |
Ripani et al. [24] | Yes | n.d. (PET) | SH, FO, GLCM, GLRLM, GLZLM, NGTDM | LifeX | OS | n.d. (PET) | MW | 15 (22.73%) |
Jamet et al. [25] | Yes | 15 (PET) | GLCM, GLRLM, GLSZM | Pyradiomics | OS | 5 (PET) | SC | 39 (59.09%) |
Xu et al. [26] | Not | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | 14 (22.95%) ** |
Author | AI Area | AI Sw | Sw Class | Data-Mining Algorithms | Validation | Validation Test |
---|---|---|---|---|---|---|
Zhong et al. [17] | ML | R-software | OS | Cox, GB-Cox, CoxBoost, GBM, RSF, SVCR | Yes | 5-FCV |
Milara et al. [18] | ML | Orange | C | DT, SVM, RSF, LR, kNN, NN | Yes | 5-FCV |
Ni et al. [19] | ML | R-software | OS | n.d. | Yes | n.d. |
Mannam et al. [20] | ML | Weka Data Mining, XLSTAT | C | Naive Bayesian, OneRules, single/multinomial LR, MLP, LM, RF, AdaBoost, Bagging, ICO, RaF, kNN, SVM, LogitBoost | Yes | 10-FCV |
Milara et al. [21] | ML | Orange | C | decision tree, SVM with linear polynomial and RBF kernels, RF, LR, kNN, and NN | Yes | 5-FCV |
Jin et al. [22] | ML | R-software, Python, IBM SPSS, and MedCalc | OS/C | Multivariate LR | Yes | 10-FCV |
Mesguich et al. [23] | ML | Scikit-learn library | OS | LR, GNB, kNN, SVM, RF | Yes | 5-FCV |
Ripani et al. [24] | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. |
Jamet et al. [25] | ML | Python | OS | RSF | Yes | 5-FCV |
Xu et al. [26] | DL ML | Python | OS | CNNs, V-Net, W-Net RF, kNN, SVM | Yes | 3-FCV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manco, L.; Albano, D.; Urso, L.; Arnaboldi, M.; Castellani, M.; Florimonte, L.; Guidi, G.; Turra, A.; Castello, A.; Panareo, S. Positron Emission Tomography-Derived Radiomics and Artificial Intelligence in Multiple Myeloma: State-of-the-Art. J. Clin. Med. 2023, 12, 7669. https://doi.org/10.3390/jcm12247669
Manco L, Albano D, Urso L, Arnaboldi M, Castellani M, Florimonte L, Guidi G, Turra A, Castello A, Panareo S. Positron Emission Tomography-Derived Radiomics and Artificial Intelligence in Multiple Myeloma: State-of-the-Art. Journal of Clinical Medicine. 2023; 12(24):7669. https://doi.org/10.3390/jcm12247669
Chicago/Turabian StyleManco, Luigi, Domenico Albano, Luca Urso, Mattia Arnaboldi, Massimo Castellani, Luigia Florimonte, Gabriele Guidi, Alessandro Turra, Angelo Castello, and Stefano Panareo. 2023. "Positron Emission Tomography-Derived Radiomics and Artificial Intelligence in Multiple Myeloma: State-of-the-Art" Journal of Clinical Medicine 12, no. 24: 7669. https://doi.org/10.3390/jcm12247669
APA StyleManco, L., Albano, D., Urso, L., Arnaboldi, M., Castellani, M., Florimonte, L., Guidi, G., Turra, A., Castello, A., & Panareo, S. (2023). Positron Emission Tomography-Derived Radiomics and Artificial Intelligence in Multiple Myeloma: State-of-the-Art. Journal of Clinical Medicine, 12(24), 7669. https://doi.org/10.3390/jcm12247669