Principal Component Analysis Applied to Radiomics Data: Added Value for Separating Benign from Malignant Solitary Pulmonary Nodules
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Data Acquisition, Reconstruction, and Tumor Segmentation
2.3. Texture Analysis
2.4. Statistical Analysis
Statistical Analysis Was Performed Using SPSS Version 28
3. Results
4. Discussion
5. Shortcomings
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ost, D.; Fein, A.; Feinsilver, S. The solitary pulmonary nodule. N. Eng. J. Med. 2003, 348, 2535–2542. [Google Scholar] [CrossRef] [PubMed]
- Gould, M.; Ananth, I.; Barnett, P. A clinical model to estimate the pretest probablity of lung cancer in patients with solitary pulmonary nodules. Chest 2007, 131, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Nasim, F.; Ost, D. Managemnt of the solitary pulmonary nodule. Curr. Opin. Pulm. Med. 2019, 25, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Chan, E.; Gaur, P.; Ge, Y.; Kopas, L.; Santacruz, J.; Gupta, N.; Munden, R.; Cagle, P.; Kim, M. Management of the solitary pulmonary nodule. Arch. Pathol. Lab. Med. 2017, 141, 927–931. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Huang, Y.; Song, H.; Wang, Y.; Huang, Y. The value of 18F-FDG PET/CT in the diagnosis of the solitary pulmonary nodules. A meta-analysis. Medicine 2018, 97, e0130. [Google Scholar] [CrossRef]
- Deppen, S.; Blume, J.D.; Kensinger, C.D.; Morgan, A.M.; Aldrich, M.C.; Massion, P.P.; Walker, R.C.; McPheeters, M.L.; Putnam, J.B.; Grogan, E.L. Accuracy of FDG-PET to diagnose lung cancer in areas with infectious lung disease: A meta-analysis. JAMA 2014, 312, 1227–1236. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.; Klanahan, P.; Hricak, H. Radiomics: Images are more than pictures, they are data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Hatt, M.; Tixier, F.; Pierce, L.; Kinahan, P.; Cheze Le Rest, C.; Visvikis, D. Characterization of PET/CT images using texture analysis: The past, the present… any future? Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 151–165. [Google Scholar] [CrossRef]
- Albano, D.; Gatta, R.; Marini, M.; Rodella, C.; Camoni, L.; Dondi, F.; Giubinni, R.; Bertagna, F. Role of 18F-FDG PET/CT radiomics features in the differential diagnosis pf solitary pulmonary nodules: Diagnostic accuracy and comparison between two different PET/CT scanners. J. Clin. Med. 2021, 10, 5064. [Google Scholar] [CrossRef]
- Salihoglu, Y.; Erdemir, R.; Puren, B.; Ozdemir, S.; Uyulan, C.; Egizei, T.; Tekin, H. Diagnostic performance of machine learning models based on 18F-FDG PET/CT radiomic features in the classification of solitary pulmonary nodules. Mol. Imaging Radionucl. Ther. 2022, 31, 82–88. [Google Scholar] [CrossRef]
- Hatt, M.; Majdoub, M.; Vallières, M.; Tixier, F.; Cheze le Rest, C.; Groheux, D.; Hindié, E.; Martineau, A.; Pradier, O.; Hustinx, R.; et al. 18F-FDG PET uptake characterization through texture analysis: Investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort. J. Nucl. Med. 2015, 56, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Orlhac, F.; Soussan, M.; Maisonobe, J.; Garcia, C.; Vanderlinden, B.; Buvat, I. Tumor texture analysis in 18F-FDG PET: Relationships between texture paramaters, histogram indices, standardized uptake values, metabolic volumes and total lesion glycolysis. J. Nucl. Med. 2014, 55, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Chalkidou, A.; O’Doherty, M.; Marsden, P. False discovery rates in PET and CT studies with texture features: A systematic review. PLoS ONE 2015, 10, e0124165. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, I.; Cadima, J. Principal component analysis: A review and recent developments. Phil Trans. R. Soc. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Nioche, C.; Orlhac, F.; Boughdad, S.; Reuzé, S.; Goya-Outi, J.; Robert, C.; Pellot-Barakat, C.; Soussan, M.; Frouin, F.; Buvat, I. LIFEx: A freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Res. 2018, 78, 4786–4789. [Google Scholar] [CrossRef] [PubMed]
- Hatcher, L. A Step-by-Step Approach Using the SAS System for Factor Analysis and Structural Equation Modeling; SAS Instite, Inc.: Cary, NC, USA, 1994. [Google Scholar]
- Kline, P. Psychometrics and Psychology; Academin Press: London, UK, 1979. [Google Scholar]
- Amadasun, M.; King, R. Texture features corresponding to texture properties. IEEE Trans. Syst. Man. Cybern. 1989, 19, 264–274. [Google Scholar] [CrossRef]
- Jones, H.; Cadwallader, C.; White, J.; Uddin, M.; Peters, A.; Chilvers, E. Dissocation between respiratory burst activity and deoxyglucose uptake in human neutrophil granulocytes: Implications for interpretation of 18F-FDG PET images. J. Nucl. Med. 2002, 43, 652–657. [Google Scholar]
- Chen, S.; Harmon, S.; Perk, T.; Li, X.; Chen, M.; Li, Y.; Jeraj, R. Using neighourhood gray tone difference matrix texture features on dual time point PET/CT images to differentiate maligant from benign FDG-avid solitary pulmonary nodules. Cancer Imaging 2019, 19, 56. [Google Scholar] [CrossRef]
- Yu, H.; Caldwell, C.; Mah, K.; Poon, I.; Balogh, J.; MacKenzie, R.; Khaouam, N.; Tirona, R. Automated radiation targeting in head and neck cancer using region-based texture analysis of PET and CT images. Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 618–625. [Google Scholar] [CrossRef]
- Oh, J.; Kang, B.; Roh, J.; Kim, J.; Cho, K.; Lee, S.; Kim, S.; Choi, S.; Niam, S.; Kim, S. Intratumoral textural heterogeneity on pretreatment (18)F-FDG PET images predicts response and survival after chemoradiotherapy for hypopharnygeal cancer. Ann. Surg. Oncol. 2015, 22, 2746–2754. [Google Scholar] [CrossRef]
- Lovinfosse, P.; Polus, M.; Van Daele, D.; Martinive, P.; Daenen, F.; Hatt, M.; Visvikis, D.; Koopmansch, B.; Lambert, F.; Coimbra, C.; et al. FDG PET/CT radiomics for predicting the outcome of locally advanced rectal cancer. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.; Yip, C.; Siddique, M.; Goh, V.; Chicklore, S.; Roy, A.; Marsden, P.; Ahmad, S.; Landau, D. Are pretreatment 18F-FDG PET tumor textural features in non-small cell lung cancer associated with response and survival after chemoradiotherapy. J. Nucl. Med. 2013, 54, 19. [Google Scholar] [CrossRef] [PubMed]
- Keloff, G.; Hoffman, J.; Johnson, B.; Scher, H.; Siegel, B.; Cheng, E.; Cheson, D.; O’Shaugnessy, J.; Guyton, K.; Mankoff, D.; et al. Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin. Cancer Res. 2005, 11, 2785–2788. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.; Turkington, T.; Wilson, J.; Wong, T. A systematic review of the factors affecting accuracy of SUV measurements. Am. J. Roentgenol. 2010, 195, 310–320. [Google Scholar] [CrossRef] [PubMed]
- Devriese, J.; Beels, L.; Maes, A.; Van de Wiele, C.; Pottel, H. Impact of PET reconstruction protocols on quantification of lesions that fulfill the PERCIST inclusion criteria. EJNMM Phys. 2018, 5, 35. [Google Scholar] [CrossRef]
- Tixier, F.; Le Reste, C.; Hatt, M.; Albarghach, N.; Pradier, O.; Metges, J.P.; Corcos, L.; Visvikis, D. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J. Nucl. Med. 2011, 52, 369–378. [Google Scholar] [CrossRef]
- Khalaf, M.; Abdel-Nabi, H.; Baker, J.; Shao, Y.; Lamonica, D.; Gona, J. Relation between nodule size and 18F-FDG-PET SUV for malignant and benign pulmonary nodules. J. Hematol. Oncol. 2008, 1, 13. [Google Scholar] [CrossRef]
- Fisher, R.A. Statistical Methods for Research Workers; Darien, C., Ed.; Hafner Publishing Company: New York, NY, USA, 1970; pp. 83–84. [Google Scholar]
- Brooks, F.; Grigsby, P. The effect of small tumor volumes upon intra-tumoral tracer uptake heterogeneity studies. J. Nucl. Med. 2014, 55, 37–42. [Google Scholar] [CrossRef]
- Van de Wiele, C.; Kruse, V.; Smeets, P.; Sathekge, M.; Maes, A. Predictive and prognostic value of metabolic tumour volume and total lesion glycolysis in solid tumours. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 290–301. [Google Scholar] [CrossRef]
PC1 | PC2 | |
---|---|---|
Morphological integrated intensity | - | 0.976 |
Intensity-based maximum gray level (SUVmax) | 0.838 | 0.513 |
GCLM joint average | 0.845 | 0.513 |
GCLM autocorrelation | 0.830 | 0.552 |
GLRLM High Gray Level Run Emphasis | 0.826 | 0.559 |
GLRLM Short Run High Gray Level Emphasis | 0.830 | 0.553 |
NGTDM Contrast | 0.981 | - |
NGTDM Complexity | 0.927 | - |
GLSZM High Gray Level Zone Emphasis | 0.816 | 0.575 |
B | S.E. | Wald | Sig. | |
---|---|---|---|---|
REGR factor score 1 | 2.532 | 0.964 | 6.899 | 0.009 |
REGR factor score 2 | 6.328 | 2.713 | 5.442 | 0.020 |
Constant | 3.022 | 1.305 | 5.363 | 0.021 |
(a) | |||
Benign Predicted | Malignant Predicted | Percentage Correct | |
Benign observed | 16 | 4 | 80.0 |
Malignant observed | 8 | 11 | 57.9 |
Overall percentage | 69.0 | ||
(b) | |||
Benign Predicted | Malignant Predicted | Percentage Correct | |
Benign observed | 17 | 3 | 85.0 |
Malignant observed | 6 | 13 | 68.4 |
Overall percentage | 76.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bomhals, B.; Cossement, L.; Maes, A.; Sathekge, M.; Mokoala, K.M.G.; Sathekge, C.; Ghysen, K.; Van de Wiele, C. Principal Component Analysis Applied to Radiomics Data: Added Value for Separating Benign from Malignant Solitary Pulmonary Nodules. J. Clin. Med. 2023, 12, 7731. https://doi.org/10.3390/jcm12247731
Bomhals B, Cossement L, Maes A, Sathekge M, Mokoala KMG, Sathekge C, Ghysen K, Van de Wiele C. Principal Component Analysis Applied to Radiomics Data: Added Value for Separating Benign from Malignant Solitary Pulmonary Nodules. Journal of Clinical Medicine. 2023; 12(24):7731. https://doi.org/10.3390/jcm12247731
Chicago/Turabian StyleBomhals, Birte, Lara Cossement, Alex Maes, Mike Sathekge, Kgomotso M. G. Mokoala, Chabi Sathekge, Katrien Ghysen, and Christophe Van de Wiele. 2023. "Principal Component Analysis Applied to Radiomics Data: Added Value for Separating Benign from Malignant Solitary Pulmonary Nodules" Journal of Clinical Medicine 12, no. 24: 7731. https://doi.org/10.3390/jcm12247731
APA StyleBomhals, B., Cossement, L., Maes, A., Sathekge, M., Mokoala, K. M. G., Sathekge, C., Ghysen, K., & Van de Wiele, C. (2023). Principal Component Analysis Applied to Radiomics Data: Added Value for Separating Benign from Malignant Solitary Pulmonary Nodules. Journal of Clinical Medicine, 12(24), 7731. https://doi.org/10.3390/jcm12247731