Inflammation in Heart Failure—Future Perspectives
Abstract
:1. Introduction
2. Inflammatory Mediators Taking Part in the Development and Evolvement of Heart Failure
2.1. TNF-α
2.2. IL-1
2.3. IL-6
2.4. IL-8
2.5. IL-10
2.6. IL-18
2.7. Fibrinogen
2.8. CRP
2.9. iNOS (Inducible Nitric Oxide Synthase)
2.10. Myeloperoxidase (MPO)
2.11. Anti-Inflammatory Targeted Therapies in HF
2.12. The Inflammatory Pathway of Microvascular Injury
2.13. The role of Epigenetic Factors in Heart Failure
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; González-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. 2016 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Rev. Esp. Cardiol. (Engl. Ed.) 2016, 69, 1167. [Google Scholar] [CrossRef] [PubMed]
- Bonow, R.; Mann, D.; Zipes, D.; Libby, P. Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine, 9th ed.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Baumbach, A.; Böhm, M.; Burri, H.; Čelutkiene, J.; Chioncel, O.; Cleland, J.G.F.; Coats, A.J.S.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Ponikowski, P.; Anker, S.D.; AlHabib, K.F.; Cowie, M.R.; Force, T.L.; Hu, S.; Jaarsma, T.; Krum, H.; Rastogi, V.; Rohde, L.E.; et al. Heart Failure: Preventing Disease and Death Worldwide. ESC Heart Fail. 2014, 1, 4–25. [Google Scholar] [CrossRef] [PubMed]
- Dick, S.A.; Epelman, S. Chronic Heart Failure and Inflammation: What Do We Really Know? Circ. Res. 2016, 119, 159–176. [Google Scholar] [CrossRef] [PubMed]
- Mann, D.L. The Evolution of Modern Theory Therapy for Heart Failure. Prog. Pediatr. Cardiol. 2014, 37, 9–12. [Google Scholar] [CrossRef]
- Greene, S.J.; Khan, M.S. Quadruple Medical Therapy for Heart Failure: Medications Working Together to Provide the Best Care. J. Am. Coll. Cardiol. 2021, 77, 1408–1411. [Google Scholar] [CrossRef]
- Francis, G.S. Neurohormonal Control of Heart Failure. Cleve Clin. J. Med. 2011, 78 Suppl. 1, S75–S79. [Google Scholar] [CrossRef]
- Straw, S.; McGinlay, M.; Witte, K.K. Four Pillars of Heart Failure: Contemporary Pharmacological Therapy for Heart Failure with Reduced Ejection Fraction. Open Heart 2021, 8, e001585. [Google Scholar] [CrossRef]
- McMurray, J.J.V.; Solomon, S.D.; Inzucchi, S.E.; Køber, L.; Kosiborod, M.N.; Martinez, F.A.; Ponikowski, P.; Sabatine, M.S.; Anand, I.S.; Bělohlávek, J.; et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N. Engl. J. Med. 2019, 381, 1995–2008. [Google Scholar] [CrossRef]
- Packer, M.; Anker, S.D.; Butler, J.; Filippatos, G.; Pocock, S.J.; Carson, P.; Januzzi, J.; Verma, S.; Tsutsui, H.; Brueckmann, M.; et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N. Engl. J. Med. 2020, 383, 1413–1424. [Google Scholar] [CrossRef]
- Drazner, M.H. The Progression of Hypertensive Heart Disease. Circulation 2011, 123, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Go, A.S.; Mozaffarian, D.; Roger, V.L.; Benjamin, E.J.; Berry, J.D.; Blaha, M.J.; Dai, S.; Ford, E.S.; Fox, C.S.; Franco, S.; et al. Heart Disease and Stroke Statistics--2014 Update: A Report from the American Heart Association. Circulation 2014, 129. [Google Scholar] [CrossRef] [PubMed]
- Pfisterer, M.; Buser, P.; Rickli, H.; Gutmann, M.; Erne, P.; Rickenbacher, P.; Vuillomenet, A.; Jeker, U.; Dubach, P.; Beer, H.; et al. BNP-Guided vs Symptom-Guided Heart Failure Therapy: The Trial of Intensified vs Standard Medical Therapy in Elderly Patients With Congestive Heart Failure (TIME-CHF) Randomized Trial. JAMA 2009, 301, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Rauchhaus, M.; Doehner, W.; Francis, D.P.; Davos, C.; Kemp, M.; Liebenthal, C.; Niebauer, J.; Hooper, J.; Volk, H.D.; Coats, A.J.S.; et al. Plasma Cytokine Parameters and Mortality in Patients with Chronic Heart Failure. Circulation 2000, 102, 3060–3067. [Google Scholar] [CrossRef]
- Surbatovic, M.; Popovic, N.; Vojvodic, D.; Milosevic, I.; Acimovic, G.; Stojicic, M.; Veljovic, M.; Jevdjic, J.; Djordjevic, D.; Radakovic, S. Cytokine Profile in Severe Gram-Positive and Gram-Negative Abdominal Sepsis. Sci. Rep. 2015, 5, 11355. [Google Scholar] [CrossRef]
- Mann, D.L.; McMurray, J.J.V.; Packer, M.; Swedberg, K.; Borer, J.S.; Colucci, W.S.; Djian, J.; Drexler, H.; Feldman, A.; Kober, L.; et al. Targeted Anticytokine Therapy in Patients with Chronic Heart Failure: Results of the Randomized Etanercept Worldwide Evaluation (RENEWAL). Circulation 2004, 109, 1594–1602. [Google Scholar] [CrossRef]
- Redfield, M.M.; Chen, H.H.; Borlaug, B.A.; Semigran, M.J.; Lee, K.L.; Lewis, G.; LeWinter, M.M.; Rouleau, J.L.; Bull, D.A.; Mann, D.L.; et al. Effect of Phosphodiesterase-5 Inhibition on Exercise Capacity and Clinical Status in Heart Failure With Preserved Ejection Fraction: A Randomized Clinical Trial. JAMA 2013, 309, 1268–1277. [Google Scholar] [CrossRef]
- O’Connor, C.M.; Starling, R.C.; Hernandez, A.F.; Armstrong, P.W.; Dickstein, K.; Hasselblad, V.; Heizer, G.M.; Komajda, M.; Massie, B.M.; McMurray, J.J.V.; et al. Effect of Nesiritide in Patients with Acute Decompensated Heart Failure. N. Engl. J. Med. 2011, 365, 32–43. [Google Scholar] [CrossRef]
- Murphy, S.P.; Kakkar, R.; McCarthy, C.P.; Januzzi, J.L. Inflammation in Heart Failure: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 1324–1340. [Google Scholar] [CrossRef]
- Tromp, J.; Khan, M.A.F.; Mentz, R.J.; O’Connor, C.M.; Metra, M.; Dittrich, H.C.; Ponikowski, P.; Teerlink, J.R.; Cotter, G.; Davison, B.; et al. Biomarker Profiles of Acute Heart Failure Patients With a Mid-Range Ejection Fraction. JACC Heart Fail. 2017, 5, 507–517. [Google Scholar] [CrossRef]
- Paulus, W.J.; Tschöpe, C. A Novel Paradigm for Heart Failure with Preserved Ejection Fraction: Comorbidities Drive Myocardial Dysfunction and Remodeling through Coronary Microvascular Endothelial Inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Glezeva, N.; Baugh, J.A. Role of Inflammation in the Pathogenesis of Heart Failure with Preserved Ejection Fraction and Its Potential as a Therapeutic Target. Heart Fail. Rev. 2014, 19, 681–694. [Google Scholar] [CrossRef] [PubMed]
- Tromp, J.; Westenbrink, B.D.; Ouwerkerk, W.; van Veldhuisen, D.J.; Samani, N.J.; Ponikowski, P.; Metra, M.; Anker, S.D.; Cleland, J.G.; Dickstein, K.; et al. Identifying Pathophysiological Mechanisms in Heart Failure With Reduced Versus Preserved Ejection Fraction. J. Am. Coll. Cardiol. 2018, 72, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Adamo, L.; Rocha-Resende, C.; Prabhu, S.D.; Mann, D.L. Reappraising the Role of Inflammation in Heart Failure. Nat. Rev. Cardiol. 2020, 17, 269–285. [Google Scholar] [CrossRef] [PubMed]
- Reina-Couto, M.; Vale, L.; Carvalho, J.; Bettencourt, P.; Albino-Teixeira, A.; Sousa, T. Resolving Inflammation in Heart Failure: Novel Protective Lipid Mediators. Curr. Drug Targets 2016, 17, 1206–1223. [Google Scholar] [CrossRef] [PubMed]
- Reina-Couto, M.; Carvalho, J.; Valente, M.J.; Vale, L.; Afonso, J.; Carvalho, F.; Bettencourt, P.; Sousa, T.; Albino-Teixeira, A. Lipoxins in Chronic Heart Failure: Modulation by Low-Dose Acetylsalicylic Acid and Statin Therapy. J. Hypertens. 2013, 31, E327. Available online: https://www.researchgate.net/publication/259673376_Reina-Couto_M_Carvalho_J_Valente_MJ_Vale_L_Afonso_J_Carvalho_F_Bettencourt_P_Sousa_T_Albino-Teixeira_A_2013_Lipoxins_in_chronic_heart_failure_modulation_by_low-dose_acetylsalicylic_acid_and_statin_the (accessed on 5 November 2023).
- Chiurchiu, V.; Leuti, A.; Saracini, S.; Fontana, D.; Finamore, P.; Giua, R.; Padovini, L.; Incalzi, R.A.; MacCarrone, M. Resolution of Inflammation Is Altered in Chronic Heart Failure and Entails a Dysfunctional Responsiveness of T Lymphocytes. FASEB J. 2019, 33, 909–916. [Google Scholar] [CrossRef]
- Sani, C.M.; Pogue, E.P.L.; Hrabia, J.B.; Zayachkowski, A.G.; Zawadka, M.M.; Poniatowski, A.G.; Długosz, D.; Leśniak, W.; Kruszelnicka, O.; Chyrchel, B.; et al. Association between Low-Grade Chronic Inflammation and Depressed Left Atrial Compliance in Heart Failure with Preserved Ejection Fraction: A Retrospective Analysis. Folia Med. Cracov. 2018, 58, 45–55. [Google Scholar] [CrossRef]
- Mesquita, T.; Lin, Y.N.; Ibrahim, A. Chronic Low-Grade Inflammation in Heart Failure with Preserved Ejection Fraction. Aging Cell 2021, 20, e13453. [Google Scholar] [CrossRef]
- Sharif, S.; Van der Graaf, Y.; Cramer, M.J.; Kapelle, L.J.; de Borst, G.J.; Visseren, F.L.J.; Westerink, J.; van Petersen, R.; Dinther, B.G.F.; Algra, A.; et al. Low-Grade Inflammation as a Risk Factor for Cardiovascular Events and All-Cause Mortality in Patients with Type 2 Diabetes. Cardiovasc. Diabetol. 2021, 20, 220. [Google Scholar] [CrossRef]
- Collier, P.; Watson, C.J.; Voon, V.; Phelan, D.; Jan, A.; Mak, G.; Martos, R.; Baugh, J.A.; Ledwidge, M.T.; McDonald, K.M. Can Emerging Biomarkers of Myocardial Remodelling Identify Asymptomatic Hypertensive Patients at Risk for Diastolic Dysfunction and Diastolic Heart Failure? Eur. J. Heart Fail. 2011, 13, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Hummel, S.L.; Mitchell Seymour, E.; Brook, R.D.; Kolias, T.J.; Sheth, S.S.; Rosenblum, H.R.; Wells, J.M.; Weder, A.B. Low-Sodium Dietary Approaches to Stop Hypertension Diet Reduces Blood Pressure, Arterial Stiffness, and Oxidative Stress in Hypertensive Heart Failure with Preserved Ejection Fraction. Hypertension 2012, 60, 1200–1206. [Google Scholar] [CrossRef]
- Urschel, K.; Cicha, I. TNF-α in the Cardiovascular System: From Physiology to Therapy. Int. J. Interferon Cytokine Mediat. Res. 2015, 7, 9–25. [Google Scholar] [CrossRef]
- Bartekova, M.; Radosinska, J.; Jelemensky, M.; Dhalla, N.S. Role of Cytokines and Inflammation in Heart Function during Health and Disease. Heart Fail. Rev. 2018, 23, 733–758. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, Y.; Otsu, K.; Nishida, K.; Hirotani, S.; Nakayama, H.; Yamaguchi, O.; Matsumura, Y.; Ueno, H.; Tada, M.; Hori, M. Involvement of Reactive Oxygen Species-Mediated NF-Kappa B Activation in TNF-Alpha-Induced Cardiomyocyte Hypertrophy. J. Mol. Cell Cardiol. 2002, 34, 233–240. [Google Scholar] [CrossRef]
- Prabhu, S.D.; Frangogiannis, N.G. The Biological Basis for Cardiac Repair After Myocardial Infarction: From Inflammation to Fibrosis. Circ. Res. 2016, 119, 91–112. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S. The Role of TNFalpha and TNF Receptors in Obesity and Insulin Resistance. J. Intern. Med. 1999, 245, 621–625. [Google Scholar] [CrossRef]
- Gulick, T.; Chung, M.K.; Pieper, S.J.; Lange, L.G.; Schreiner, G.F. Interleukin 1 and Tumor Necrosis Factor Inhibit Cardiac Myocyte Beta-Adrenergic Responsiveness. Proc. Natl. Acad. Sci. USA 1989, 86, 6753–6757. [Google Scholar] [CrossRef]
- Müller-Werdan, U.; Schumann, H.; Fuchs, R.; Reithmann, C.; Loppnow, H.; Koch, S.; Zimny-Arndt, U.; He, C.; Darmer, D.; Jungblut, P.; et al. Tumor Necrosis Factor Alpha (TNF Alpha) Is Cardiodepressant in Pathophysiologically Relevant Concentrations without Inducing Inducible Nitric Oxide-(NO)-Synthase (INOS) or Triggering Serious Cytotoxicity. J. Mol. Cell Cardiol. 1997, 29, 2915–2923. [Google Scholar] [CrossRef]
- Mann, D.L. Inflammatory Mediators and the Failing Heart: Past, Present, and the Foreseeable Future. Circ. Res. 2002, 91, 988–998. [Google Scholar] [CrossRef]
- Schumacher, S.M.; Naga Prasad, S.V. Tumor Necrosis Factor-α in Heart Failure: An Updated Review. Curr. Cardiol. Rep. 2018, 20, 117. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, N.R.; Fabiani, I.; Conte, L.; Nesti, L.; Masi, S.; Natali, A.; Colombo, P.C.; Pedrinelli, R.; DIni, F.L. Persistent Congestion, Renal Dysfunction and Inflammatory Cytokines in Acute Heart Failure: A Prognosis Study. J. Cardiovasc. Med. (Hagerstown) 2020, 21, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Chung, E.S.; Packer, M.; Lo, K.H.; Fasanmade, A.A.; Willerson, J.T. Randomized, Double-Blind, Placebo-Controlled, Pilot Trial of Infliximab, a Chimeric Monoclonal Antibody to Tumor Necrosis Factor-Alpha, in Patients with Moderate-to-Severe Heart Failure: Results of the Anti-TNF Therapy Against Congestive Heart Failure (ATTACH) Trial. Circulation 2003, 107, 3133–3140. [Google Scholar] [CrossRef] [PubMed]
- Rathi, S.S.; Xu, Y.J.; Dhalla, N.S. Mechanism of Cardioprotective Action of TNF-α in the Isolated Rat Heart. Exp. Clin. Cardiol. 2002, 7, 146. [Google Scholar] [PubMed]
- Saini MPharm, H.K.; Xu, Y.-J.; Zhang, M.; Liu, P.P.; Kirshenbaum, L.A.; Dhalla DSc, N.S.; Dhalla, N.S.; Saini, H.; Xu, Y.; Zhang, M.; et al. Role of Tumour Necrosis Factor-Alpha and Other Cytokines in Ischemia-Reperfusion-Induced Injury in the Heart. Exp. Clin. Cardiol. 2005, 10, 213. [Google Scholar]
- Dunlay, S.M.; Weston, S.A.; Redfield, M.M.; Killian, J.M.; Roger, V.L. Tumor Necrosis Factor-Alpha and Mortality in Heart Failure: A Community Study. Circulation 2008, 118, 625–631. [Google Scholar] [CrossRef]
- Szekely, Y.; Arbel, Y. A Review of Interleukin-1 in Heart Disease: Where Do We Stand Today? Cardiol. Ther. 2018, 7, 25–44. [Google Scholar] [CrossRef]
- Yndestad, A.; Damås, J.K.; Øie, E.; Ueland, T.; Gullestad, L.; Aukrust, P. Systemic Inflammation in Heart Failure--the Whys and Wherefores. Heart Fail. Rev. 2006, 11, 83–92. [Google Scholar] [CrossRef]
- Hanna, A.; Frangogiannis, N.G. Inflammatory Cytokines and Chemokines as Therapeutic Targets in Heart Failure. Cardiovasc. Drugs Ther. 2020, 34, 849–863. [Google Scholar] [CrossRef]
- Kaneko, N.; Kurata, M.; Yamamoto, T.; Morikawa, S.; Masumoto, J. The Role of Interleukin-1 in General Pathology. Inflamm. Regen. 2019, 39, 12. [Google Scholar] [CrossRef]
- Frangogiannis, N. Interleukin-1 in Cardiac Injury, Repair, and Remodeling: Pathophysiologic and Translational Concepts. Discoveries (Craiova) 2015, 3, e41. [Google Scholar] [CrossRef] [PubMed]
- Abbate, A.; Toldo, S.; Marchetti, C.; Kron, J.; Van Tassell, B.W.; Dinarello, C.A. Interleukin-1 and the Inflammasome as Therapeutic Targets in Cardiovascular Disease. Circ. Res. 2020, 126, 1260–1280. [Google Scholar] [CrossRef] [PubMed]
- Segiet, O.A.; Piecuch, A.; Mielańczyk, Ł.; Michalski, M.; Nowalany-Kozielska, E. Role of Interleukins in Heart Failure with Reduced Ejection Fraction. Anatol. J. Cardiol. 2019, 22, 287–299. [Google Scholar] [CrossRef] [PubMed]
- Braunwald, E. Biomarkers in Heart Failure. N. Engl. J. Med. 2008, 358, 2148–2159. [Google Scholar] [CrossRef] [PubMed]
- Zell, R.; Geck, P.; Werdan, K.; Boekstegers, P. TNF-Alpha and IL-1 Alpha Inhibit Both Pyruvate Dehydrogenase Activity and Mitochondrial Function in Cardiomyocytes: Evidence for Primary Impairment of Mitochondrial Function. Mol. Cell Biochem. 1997, 177, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Tatsumi, T.; Matoba, S.; Kawahara, A.; Keira, N.; Shiraishi, J.; Akashi, K.; Kobara, M.; Tanaka, T.; Katamura, M.; Nakagawa, C.; et al. Cytokine-Induced Nitric Oxide Production Inhibits Mitochondrial Energy Production and Impairs Contractile Function in Rat Cardiac Myocytes. J. Am. Coll. Cardiol. 2000, 35, 1338–1346. [Google Scholar] [CrossRef] [PubMed]
- van Tassell, B.W.; Arena, R.A.; Toldo, S.; Mezzaroma, E.; Azam, T.; Seropian, I.M.; Shah, K.; Canada, J.; Voelkel, N.F.; Dinarello, C.A.; et al. Enhanced Interleukin-1 Activity Contributes to Exercise Intolerance in Patients with Systolic Heart Failure. PLoS ONE 2012, 7. [Google Scholar] [CrossRef]
- Kumar, A.; Thota, V.; Dee, L.; Olson, J.; Uretz, E.; Parrillo, J.E. Tumor Necrosis Factor Alpha and Interleukin 1beta Are Responsible for in Vitro Myocardial Cell Depression Induced by Human Septic Shock Serum. J. Exp. Med. 1996, 183, 949–958. [Google Scholar] [CrossRef]
- Van Tassell, B.W.; Arena, R.; Biondi-Zoccai, G.; McNair Canada, J.; Oddi, C.; Abouzaki, N.A.; Jahangiri, A.; Falcao, R.A.; Kontos, M.C.; Shah, K.B.; et al. Effects of Interleukin-1 Blockade with Anakinra on Aerobic Exercise Capacity in Patients with Heart Failure and Preserved Ejection Fraction (from the D-HART Pilot Study). Am. J. Cardiol. 2014, 113, 321–327. [Google Scholar] [CrossRef]
- Bujak, M.; Frangogiannis, N.G. The Role of IL-1 in the Pathogenesis of Heart Disease. Arch. Immunol. Ther. Exp. (Warsz) 2009, 57, 165–176. [Google Scholar] [CrossRef]
- Ozova, E.; Kiiakbaev, G.K.; Kobalava, Z. [Inflammation and Chronic Heart Failure. The Role of Statins]. Kardiologiia 2007, 47, 52–64. [Google Scholar] [PubMed]
- Su, J.H.; Luo, M.Y.; Liang, N.; Gong, S.X.; Chen, W.; Huang, W.Q.; Tian, Y.; Wang, A.P. Interleukin-6: A Novel Target for Cardio-Cerebrovascular Diseases. Front. Pharmacol. 2021, 12, 745061. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Yang, D.; Xiang, M.; Wang, J. Role of Interleukin-6 in Regulation of Immune Responses to Remodeling after Myocardial Infarction. Heart Fail. Rev. 2015, 20, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Meléndez, G.C.; McLarty, J.L.; Levick, S.P.; Du, Y.; Janicki, J.S.; Brower, G.L. Interleukin 6 Mediates Myocardial Fibrosis, Concentric Hypertrophy, and Diastolic Dysfunction in Rats. Hypertension 2010, 56, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Hirota, H.; Yoshida, K.; Kishimoto, T.; Taga, T. Continuous Activation of Gp130, a Signal-Transducing Receptor Component for Interleukin 6-Related Cytokines, Causes Myocardial Hypertrophy in Mice. Proc. Natl. Acad. Sci. USA 1995, 92, 4862–4866. [Google Scholar] [CrossRef]
- Chia, Y.C.; Kieneker, L.M.; van Hassel, G.; Binnenmars, S.H.; Nolte, I.M.; van Zanden, J.J.; van der Meer, P.; Navis, G.; Voors, A.A.; Bakker, S.J.L.; et al. Interleukin 6 and Development of Heart Failure with Preserved Ejection Fraction in the General Population. J. Am. Heart Assoc. 2021, 10, 18549. [Google Scholar] [CrossRef]
- De Boer, R.A.; Nayor, M.; DeFilippi, C.R.; Enserro, D.; Bhambhani, V.; Kizer, J.R.; Blaha, M.J.; Brouwers, F.P.; Cushman, M.; Lima, J.A.C.; et al. Association of Cardiovascular Biomarkers With Incident Heart Failure With Preserved and Reduced Ejection Fraction. JAMA Cardiol. 2018, 3, 215–224. [Google Scholar] [CrossRef]
- Markousis-Mavrogenis, G.; Tromp, J.; Ouwerkerk, W.; Devalaraja, M.; Anker, S.D.; Cleland, J.G.; Dickstein, K.; Filippatos, G.S.; van der Harst, P.; Lang, C.C.; et al. The Clinical Significance of Interleukin-6 in Heart Failure: Results from the BIOSTAT-CHF Study. Eur. J. Heart Fail. 2019, 21, 965–973. [Google Scholar] [CrossRef]
- Mooney, L.; Jackson, C.E.; Adamson, C.; McConnachie, A.; Welsh, P.; Myles, R.C.; McMurray, J.J.V.; Jhund, P.S.; Petrie, M.C.; Lang, N.N. Adverse Outcomes Associated with Interleukin-6 in Patients Recently Hospitalized for Heart Failure with Preserved Ejection Fraction. Circ. Heart Fail. 2023, 16, E010051. [Google Scholar] [CrossRef]
- Wu, C.K.; Lee, J.K.; Chiang, F.T.; Yang, C.H.; Huang, S.W.; Hwang, J.J.; Lin, J.L.; Tseng, C.D.; Chen, J.J.; Tsai, C.T. Plasma Levels of Tumor Necrosis Factor-α and Interleukin-6 Are Associated with Diastolic Heart Failure through Downregulation of Sarcoplasmic Reticulum Ca2+ ATPase. Crit. Care Med. 2011, 39, 984–992. [Google Scholar] [CrossRef]
- Li, Y.Y.; Feng, Y.Q.; Kadokami, T.; McTiernan, C.F.; Draviam, R.; Watkins, S.C.; Feldman, A.M. Myocardial Extracellular Matrix Remodeling in Transgenic Mice Overexpressing Tumor Necrosis Factor Alpha Can Be Modulated by Anti-Tumor Necrosis Factor Alpha Therapy. Proc. Natl. Acad. Sci. USA 2000, 97, 12746–12751. [Google Scholar] [CrossRef] [PubMed]
- Koprululu Kucuk, G.; Guney, A.I.; Sunbul, M.; Guctekin, T.; Koç, G.; Kirac, D. Il-6 and UGT1A1 Variations May Related to Furosemide Resistance in Heart Failure Patients. IUBMB Life 2023, 75, 830–843. [Google Scholar] [CrossRef] [PubMed]
- Gabriele, P.; Zhi Fang, S.; Tonny D.T., T.; Carsten, K.; Hideo A., B.; Michael, E.; Markus, F.; Thomas, W.; Hans H., S.; Mario C., D. Activation of the Cardiac Interleukin-6 System in Advanced Heart Failure. Eur. J. Heart Fail. 2001, 3, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Reina-Couto, M.; Pereira-Terra, P.; Quelhas-Santos, J.; Silva-Pereira, C.; Albino-Teixeira, A.; Sousa, T. Inflammation in Human Heart Failure: Major Mediators and Therapeutic Targets. Front. Physiol. 2021, 12, 746494. [Google Scholar] [CrossRef] [PubMed]
- Apostolakis, S.; Vogiatzi, K.; Amanatidou, V.; Spandidos, D.A. Interleukin 8 and Cardiovascular Disease. Cardiovasc. Res. 2009, 84, 353–360. [Google Scholar] [CrossRef]
- DeForge, L.E.; Fantone, J.C.; Kenney, J.S.; Remick, D.G. Oxygen Radical Scavengers Selectively Inhibit Interleukin 8 Production in Human Whole Blood. J. Clin. Invest. 1992, 90, 2123–2129. [Google Scholar] [CrossRef]
- Ito, T.; Ikeda, U.; Yamamoto, K.; Shimada, K. Regulation of Interleukin-8 Expression by HMG-CoA Reductase Inhibitors in Human Vascular Smooth Muscle Cells. Atherosclerosis 2002, 165, 51–55. [Google Scholar] [CrossRef]
- Kim, H.Y.; Kang, Y.J.; Song, I.H.; Choi, H.C.; Kim, H.S. Upregulation of Interleukin-8/CXCL8 in Vascular Smooth Muscle Cells from Spontaneously Hypertensive Rats. Hypertens. Res. 2008, 31, 515–523. [Google Scholar] [CrossRef]
- Simonini, A.; Moscucci, M.; Muller, D.W.M.; Bates, E.R.; Pagani, F.D.; Burdick, M.D.; Strieter, R.M. IL-8 Is an Angiogenic Factor in Human Coronary Atherectomy Tissue. Circulation 2000, 101, 1519–1526. [Google Scholar] [CrossRef]
- Nymo, S.H.; Hulthe, J.; Ueland, T.; McMurray, J.; Wikstrand, J.; Askevold, E.T.; Yndestad, A.; Gullestad, L.; Aukrust, P. Inflammatory Cytokines in Chronic Heart Failure: Interleukin-8 Is Associated with Adverse Outcome. Results from CORONA. Eur. J. Heart Fail. 2014, 16, 68–75. [Google Scholar] [CrossRef]
- Damås, J.K.; Gullestad, L.; Ueland, T.; Solum, N.O.; Simonsen, S.; Frøland, S.S.; Aukrust, P. CXC-Chemokines, a New Group of Cytokines in Congestive Heart Failure--Possible Role of Platelets and Monocytes. Cardiovasc. Res. 2000, 45, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Rodriguez, A.; Abreu-Gonzalez, P.; Garcia-Gonzalez, M.; Ferrer, J. Prognostic Value of Interleukin-8 as a Predictor of Heart Failure in Patients with Myocardial Infarction and Percutaneous Intervention. Int. J. Cardiol. 2006, 111, 158–160. [Google Scholar] [CrossRef] [PubMed]
- Stafford, N.; Assrafally, F.; Prehar, S.; Zi, M.; De Morais, A.M.; Maqsood, A.; Cartwright, E.J.; Mueller, W.; Oceandy, D. Signaling via the Interleukin-10 Receptor Attenuates Cardiac Hypertrophy in Mice During Pressure Overload, but Not Isoproterenol Infusion. Front. Pharmacol. 2020, 11, 559220. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.; Ma, Y.; Iyer, R.P.; DeLeon-Pennell, K.Y.; Yabluchanskiy, A.; Garrett, M.R.; Lindsey, M.L. IL-10 Improves Cardiac Remodeling after Myocardial Infarction by Stimulating M2 Macrophage Polarization and Fibroblast Activation. Basic. Res. Cardiol. 2017, 112, 33. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.K.; Krishnamurthy, P.; Barefield, D.; Singh, N.; Gupta, R.; Lambers, E.; Thal, M.; MacKie, A.; Hoxha, E.; Ramirez, V.; et al. Interleukin-10 Treatment Attenuates Pressure Overload-Induced Hypertrophic Remodeling and Improves Heart Function via Signal Transducers and Activators of Transcription 3-Dependent Inhibition of Nuclear Factor-ΚB. Circulation 2012, 126, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, P.; Rajasingh, J.; Lambers, E.; Qin, G.; Losordo, D.W.; Kishore, R. IL-10 Inhibits Inflammation and Attenuates Left Ventricular Remodeling after Myocardial Infarction via Activation of STAT-3 and Suppression of HuR. Circ. Res. 2009, 104, e9. [Google Scholar] [CrossRef]
- Mallat, Z.; Besnard, S.; Duriez, M.; Deleuze, V.; Emmanuel, F.; Bureau, M.F.; Soubrier, F.; Esposito, B.; Duez, H.; Fievet, C.; et al. Protective Role of Interleukin-10 in Atherosclerosis. Circ. Res. 1999, 85. [Google Scholar] [CrossRef]
- Bagchi, A.K.; Malik, A.; Akolkar, G.; Belló-Klein, A.; Khaper, N.; Singal, P.K. IL-10: A Key Molecule in the Mitigation of Heart Failure. In Biomedical Translational Research: From Disease Diagnosis to Treatment; Springer Nature Singapore: Singapore, 2022; pp. 257–271. [Google Scholar]
- Stumpf, C.; Lehner, C.; Yilmaz, A.; Daniel, W.G.; Garlichs, C.D. Decrease of Serum Levels of the Anti-Inflammatory Cytokine Interleukin-10 in Patients with Advanced Chronic Heart Failure. Clin. Sci. (Lond.) 2003, 105, 45–50. [Google Scholar] [CrossRef]
- Yilmaz, M.I.; Solak, Y.; Saglam, M.; Cayci, T.; Acikel, C.; Unal, H.U.; Eyileten, T.; Oguz, Y.; Sari, S.; Carrero, J.J.; et al. The Relationship between IL-10 Levels and Cardiovascular Events in Patients with CKD. Clin. J. Am. Soc. Nephrol. 2014, 9, 1207–1216. [Google Scholar] [CrossRef]
- Barcelos, A.L.V.; de Oliveira, E.A.; Haute, G.V.; Costa, B.P.; Pedrazza, L.; Donadio, M.V.F.; de Oliveira, J.R.; Bodanese, L.C. Association of IL-10 to Coronary Disease Severity in Patients with Metabolic Syndrome. Clin. Chim. Acta 2019, 495, 394–398. [Google Scholar] [CrossRef]
- Gupta, R.; Liu, L.; Zhang, X.; Fan, X.; Krishnamurthy, P.; Verma, S.; Tongers, J.; Misener, S.; Ashcherkin, N.; Sun, H.; et al. IL-10 Provides Cardioprotection in Diabetic Myocardial Infarction via Upregulation of Heme Clearance Pathways. JCI Insight 2020, 5. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Markel, T.A.; Meldrum, D.R. Interleukin 18 in the Heart. Shock. 2008, 30, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Buckley, L.; Sun, C.; Al Rifai, M.; Yu, B.; Nambi, V.; Virani, S.S.; Selvin, E.; Matsushita, K.; Hoogeveen, R.C.; et al. Association of Interleukin-6 and Interleukin-18 with Cardiovascular Disease in Older Adults: Atherosclerosis Risk in Communities Study. Eur. J. Prev. Cardiol. 2023, zwad197. [Google Scholar] [CrossRef] [PubMed]
- Seta, Y.; Kanda, T.; Tanaka, T.; Arai, M.; Sekiguchi, K.; Yokoyama, T.; Kurimoto, M.; Tamura, J.; Kurabayashi, M. Interleukin 18 in Acute Myocardial Infarction. Heart 2000, 84, 668. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, L.C.; Mezzaroma, E.; Van Tassell, B.W.; Marchetti, C.; Carbone, S.; Abbate, A.; Toldo, S. Interleukin-18 as a Therapeutic Target in Acute Myocardial Infarction and Heart Failure. Mol. Med. 2014, 20, 221–229. [Google Scholar] [CrossRef]
- Colston, J.T.; Boylston, W.H.; Feldman, M.D.; Jenkinson, C.P.; de la Rosa, S.D.; Barton, A.; Trevino, R.J.; Freeman, G.L.; Chandrasekar, B. Interleukin-18 Knockout Mice Display Maladaptive Cardiac Hypertrophy in Response to Pressure Overload. Biochem. Biophys. Res. Commun. 2007, 354, 552–558. [Google Scholar] [CrossRef]
- Mallat, Z.; Heymes, C.; Corbaz, A.; Logeart, D.; Alouani, S.; Cohen-Solal, A.; Seidler, T.; Hasenfuss, G.; Chvatchko, Y.; Shah, A.M.; et al. Evidence for Altered Interleukin 18 (IL)-18 Pathway in Human Heart Failure. FASEB J. 2004, 18, 1752–1754. [Google Scholar] [CrossRef]
- Chandrasekar, B.; Mummidi, S.; Claycomb, W.C.; Mestril, R.; Nemer, M. Interleukin-18 Is a pro-Hypertrophic Cytokine That Acts through a Phosphatidylinositol 3-Kinase-Phosphoinositide-Dependent Kinase-1-Akt-GATA4 Signaling Pathway in Cardiomyocytes. J. Biol. Chem. 2005, 280, 4553–4567. [Google Scholar] [CrossRef]
- Fix, C.; Bingham, K.; Carver, W. Effects of Interleukin-18 on Cardiac Fibroblast Function and Gene Expression. Cytokine 2011, 53, 19–28. [Google Scholar] [CrossRef]
- Blankenberg, S.; Luc, G.; Ducimetière, P.; Arveiler, D.; Ferrières, J.; Amouyel, P.; Evans, A.; Cambien, F.; Tiret, L. Interleukin-18 and the Risk of Coronary Heart Disease in European Men: The Prospective Epidemiological Study of Myocardial Infarction (PRIME). Circulation 2003, 108, 2453–2459. [Google Scholar] [CrossRef]
- Kaptoge, S.; Seshasai, S.R.K.; Gao, P.; Freitag, D.F.; Butterworth, A.S.; Borglykke, A.; Di Angelantonio, E.; Gudnason, V.; Rumley, A.; Lowe, G.D.O.; et al. Inflammatory Cytokines and Risk of Coronary Heart Disease: New Prospective Study and Updated Meta-Analysis. Eur. Heart J. 2014, 35. [Google Scholar] [CrossRef] [PubMed]
- Fibrin(Ogen) in Cardiovascular Disease: An Update. Available online: https://pubmed.ncbi.nlm.nih.gov/12669113/ (accessed on 5 November 2023).
- Kannel, W.B.; Bell, J. Influence of Fibrinogen on Cardiovascular Disease. Drugs 1997, 54 Suppl. 3, 32–40. [Google Scholar] [CrossRef]
- Stec, J.J.; Silbershatz, H.; Tofler, G.H.; Matheney, T.H.; Sutherland, P.; Lipinska, I.; Massaro, J.M.; Wilson, P.F.W.; Muller, J.E.; D’Agostino, R.B. Association of Fibrinogen with Cardiovascular Risk Factors and Cardiovascular Disease in the Framingham Offspring Population. Circulation 2000, 102, 1634–1638. [Google Scholar] [CrossRef] [PubMed]
- Fibrinogen as a Risk Factor for Coronary Heart Disease-PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/9717059/ (accessed on 5 November 2023).
- Meng, Z.; Zhao, Y.; He, Y. Fibrinogen Level Predicts Outcomes in Critically Ill Patients with Acute Exacerbation of Chronic Heart Failure. Dis. Markers 2021, 2021. [Google Scholar] [CrossRef]
- Shrivastava, A.K.; Singh, H.V.; Raizada, A.; Singh, S.K. C-Reactive Protein, Inflammation and Coronary Heart Disease. Egypt. Heart J. 2015, 67, 89–97. [Google Scholar] [CrossRef]
- Habib, S.S.; Kurdi, M.I.; Al Aseri, Z.; Suriya, M.O. CRP Levels Are Higher in Patients with ST Elevation than Non-ST Elevation Acute Coronary Syndrome. Arq. Bras. Cardiol. 2011, 96, 13–17. [Google Scholar] [CrossRef]
- DuBrock, H.M.; AbouEzzeddine, O.F.; Redfield, M.M. High-Sensitivity C-Reactive Protein in Heart Failure with Preserved Ejection Fraction. PLoS ONE 2018, 13. [Google Scholar] [CrossRef]
- Lakhani, I.; Wong, M.V.; Hung, J.K.F.; Gong, M.; Waleed, K.B.; Xia, Y.; Lee, S.; Roever, L.; Liu, T.; Tse, G.; et al. Diagnostic and Prognostic Value of Serum C-Reactive Protein in Heart Failure with Preserved Ejection Fraction: A Systematic Review and Meta-Analysis. Heart Fail. Rev. 2021, 26, 1141–1150. [Google Scholar] [CrossRef]
- Albar, Z.; Albakri, M.; Hajjari, J.; Karnib, M.; Janus, S.E.; Al-Kindi, S.G. Inflammatory Markers and Risk of Heart Failure With Reduced to Preserved Ejection Fraction. Am. J. Cardiol. 2022, 167, 68–75. [Google Scholar] [CrossRef]
- Koller, L.; Kleber, M.; Goliasch, G.; Sulzgruber, P.; Scharnagl, H.; Silbernagel, G.; Grammer, T.; Delgado, G.; Tomaschitz, A.; Pilz, S.; et al. C-Reactive Protein Predicts Mortality in Patients Referred for Coronary Angiography and Symptoms of Heart Failure with Preserved Ejection Fraction. Eur. J. Heart Fail. 2014, 16, 758–766. [Google Scholar] [CrossRef]
- Kardys, I.; Knetsch, A.M.; Bleumink, G.S.; Deckers, J.W.; Hofman, A.; Stricker, B.H.C.; Witteman, J.C.M. C-Reactive Protein and Risk of Heart Failure. The Rotterdam Study. Am. Heart J. 2006, 152, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Burger, P.M.; Koudstaal, S.; Mosterd, A.; Fiolet, A.T.L.; Teraa, M.; van der Meer, M.G.; Cramer, M.J.; Visseren, F.L.J.; Ridker, P.M.; Dorresteijn, J.A.N.; et al. C-Reactive Protein and Risk of Incident Heart Failure in Patients With Cardiovascular Disease. J. Am. Coll. Cardiol. 2023, 82, 414–426. [Google Scholar] [CrossRef]
- Araújo, J.P.; Lourenço, P.; Azevedo, A.; Friões, F.; Rocha-Gonçalves, F.; Ferreira, A.; Bettencourt, P. Prognostic Value of High-Sensitivity C-Reactive Protein in Heart Failure: A Systematic Review. J. Card. Fail. 2009, 15, 256–266. [Google Scholar] [CrossRef] [PubMed]
- Pellicori, P.; Zhang, J.; Cuthbert, J.; Urbinati, A.; Shah, P.; Kazmi, S.; Clark, A.L.; Cleland, J.G.F. High-Sensitivity C-Reactive Protein in Chronic Heart Failure: Patient Characteristics, Phenotypes, and Mode of Death. Cardiovasc. Res. 2020, 116, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, H.; Kasai, T.; Sato, A.; Ishiwata, S.; Yatsu, S.; Shitara, J.; Murata, A.; Kato, T.; Suda, S.; Matsue, Y.; et al. Association between C-Reactive Protein Levels at Hospital Admission and Long-Term Mortality in Patients with Acute Decompensated Heart Failure. Heart Vessels 2019, 34, 1961–1968. [Google Scholar] [CrossRef] [PubMed]
- Stumpf, C.; Sheriff, A.; Zimmermann, S.; Schaefauer, L.; Schlundt, C.; Raaz, D.; Garlichs, C.D.; Achenbach, S. C-Reactive Protein Levels Predict Systolic Heart Failure and Outcome in Patients with First ST-Elevation Myocardial Infarction Treated with Coronary Angioplasty. Arch. Med. Sci. 2017, 13, 1086–1093. [Google Scholar] [CrossRef] [PubMed]
- Schmalgemeier, H.; Bitter, T.; Fischbach, T.; Horstkotte, D.; Oldenburg, O. C-Reactive Protein Is Elevated in Heart Failure Patients with Central Sleep Apnea and Cheyne-Stokes Respiration. Respiration 2014, 87, 113–120. [Google Scholar] [CrossRef]
- Park, J.J.; Yoon, M.; Cho, H.W.; Cho, H.J.; Kim, K.H.; Yang, D.H.; Yoo, B.S.; Kang, S.M.; Baek, S.H.; Jeon, E.S.; et al. C-Reactive Protein and Statins in Heart Failure with Reduced and Preserved Ejection Fraction. Front. Cardiovasc. Med. 2022, 9, 1064967. [Google Scholar] [CrossRef]
- Geenen, L.W.; Baggen, V.J.M.; Van Den Bosch, A.E.; Eindhoven, J.A.; Kauling, R.M.; Cuypers, J.A.A.E.; Roos-Hesselink, J.W.; Boersma, E. Prognostic Value of C-Reactive Protein in Adults with Congenital Heart Disease. Heart 2021, 107, 474–481. [Google Scholar] [CrossRef]
- Drexler, H. Nitric Oxide Synthases in the Failing Human Heart. Circulation 1999, 99, 2972–2975. [Google Scholar] [CrossRef]
- Hare, J.M.; Givertz, M.M.; Creager, M.A.; Colucci, W.S. Increased Sensitivity to Nitric Oxide Synthase Inhibition in Patients with Heart Failure: Potentiation of Beta-Adrenergic Inotropic Responsiveness. Circulation 1998, 97, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Drexler, H.; Kästner, S.; Strobel, A.; Studer, R.; Brodde, O.E.; Hasenfuß, G. Expression, Activity and Functional Significance of Inducible Nitric Oxide Synthase in the Failing Human Heart. J. Am. Coll. Cardiol. 1998, 32, 955–963. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Torres, I.; Manzano-Pech, L.; Rubio-Ruíz, M.E.; Soto, M.E.; Guarner-Lans, V. Nitrosative Stress and Its Association with Cardiometabolic Disorders. Molecules 2020, 25. [Google Scholar]
- Guo, Y.; Wen, J.; He, A.; Qu, C.; Peng, Y.; Luo, S.; Wang, X. INOS Contributes to Heart Failure with Preserved Ejection Fraction through Mitochondrial Dysfunction and Akt S-Nitrosylation. J. Adv. Res. 2023, 43, 175. [Google Scholar] [CrossRef]
- Vejlstrup, N.G.; Bouloumie, A.; Boesgaard, S.; Andersen, C.B.; Nielsen-Kudsk, J.E.; Mortensen, S.A.; Kent, J.D.; Harrison, D.G.; Busse, R.; Aldershvile, J. Inducible Nitric Oxide Synthase (INOS) in the Human Heart: Expression and Localization in Congestive Heart Failure. J. Mol. Cell Cardiol. 1998, 30, 1215–1223. [Google Scholar] [CrossRef]
- Ozbayer, C.; Kebapci, M.N.; Kurt, H.; Colak, E.; Gunes, H.V.; Degirmenci, I. Potential Associations between Variants of Genes Encoding Regulators of Inflammation, and Mediators of Inflammation in Type 2 Diabetes and Insulin Resistance. J. Clin. Pharm. Ther. 2021, 46, 1395–1403. [Google Scholar] [CrossRef]
- Schiattarella, G.G.; Altamirano, F.; Tong, D.; French, K.M.; Villalobos, E.; Kim, S.Y.; Luo, X.; Jiang, N.; May, H.I.; Wang, Z.V.; et al. Nitrosative Stress Drives Heart Failure with Preserved Ejection Fraction. Nature 2019, 568, 351–356. [Google Scholar] [CrossRef]
- Méry, P.F.; Lohmann, S.M.; Walter, U.; Fischmeister, R. Ca2+ Current Is Regulated by Cyclic GMP-Dependent Protein Kinase in Mammalian Cardiac Myocytes. Proc. Natl. Acad. Sci. USA 1991, 88, 1197–1201. [Google Scholar] [CrossRef]
- Habib, F.M.; Springall, D.R.; Davies, G.J.; Oakley, C.M.; Yacoub, M.H.; Polak, J.M. Tumour Necrosis Factor and Inducible Nitric Oxide Synthase in Dilated Cardiomyopathy. Lancet 1996, 347, 1151–1155. [Google Scholar] [CrossRef]
- Fukuchi, M.; Hussain, S.N.A.; Giaid, A. Heterogeneous Expression and Activity of Endothelial and Inducible Nitric Oxide Synthases in End-Stage Human Heart Failure: Their Relation to Lesion Site and Beta-Adrenergic Receptor Therapy. Circulation 1998, 98, 132–139. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, X.; Hu, X.; Van Deel, E.D.; Zhu, G.; Chen, Y. Inducible Nitric Oxide Synthase Deficiency Protects the Heart From Systolic Overload–Induced Ventricular Hypertrophy and Congestive Heart Failure. Circ. Res. 2007, 100, 1089–1098. [Google Scholar] [CrossRef] [PubMed]
- Mungrue, I.N.; Gros, R.; You, X.; Pirani, A.; Azad, A.; Csont, T.; Schulz, R.; Butany, J.; Stewart, D.J.; Husain, M. Cardiomyocyte Overexpression of INOS in Mice Results in Peroxynitrite Generation, Heart Block, and Sudden Death. J. Clin. Invest. 2002, 109, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Carretero, O.A.; Cingolani, O.H.; Liao, T.D.; Sun, Y.; Xu, J.; Li, L.Y.; Pagano, P.J.; Yang, J.J.; Yang, X.P. Role of Inducible Nitric Oxide Synthase in Cardiac Function and Remodeling in Mice with Heart Failure Due to Myocardial Infarction. Am. J. Physiol. Heart Circ. Physiol. 2005, 289, 2616–2623. [Google Scholar] [CrossRef] [PubMed]
- Ferreiro, C.R.; Chagas, A.C.P.; Carvalho, M.H.C.; Dantas, A.P.; Scavone, C.; Souza, L.C.B.; Buffolo, E.; da Luz, P.L. Expression of Inducible Nitric Oxide Synthase Is Increased in Patients with Heart Failure Due to Ischemic Disease. Braz. J. Med. Biol. Res. 2004, 37, 1313–1320. [Google Scholar] [CrossRef] [PubMed]
- Starling, R.C.; Cleveland, F. Inducible Nitric Oxide Synthase in Severe Human Heart Failure⁎: Impact of Mechanical Unloading⁎Editorials Published in the Journal of the American College of Cardiologyreflect the Views of the Authors and Do Not Necessarily Represent the Views of JACCor the American College of Cardiology. J. Am. Coll. Cardiol. 2005, 45, 1425–1427. [Google Scholar] [CrossRef] [PubMed]
- Ramachandra, C.J.A.; Ja, K.P.M.M.; Chua, J.; Cong, S.; Shim, W.; Hausenloy, D.J. Myeloperoxidase As a Multifaceted Target for Cardiovascular Protection. Antioxid. Redox Signal 2020, 32, 1135–1149. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.J.; Hazen, S.L. Myeloperoxidase and Cardiovascular Disease. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1102–1111. [Google Scholar] [CrossRef]
- Tang, W.H.W.; Tong, W.; Troughton, R.W.; Martin, M.G.; Shrestha, K.; Borowski, A.; Jasper, S.; Hazen, S.L.; Klein, A.L. Prognostic Value and Echocardiographic Determinants of Plasma Myeloperoxidase Levels in Chronic Heart Failure. J. Am. Coll. Cardiol. 2007, 49, 2364–2370. [Google Scholar] [CrossRef]
- Wilson Tang, W.H.; Shrestha, K.; Troughton, R.W.; Borowski, A.G.; Klein, A.L. Integrating Plasma High-Sensitivity C-Reactive Protein and Myeloperoxidase for Risk Prediction in Chronic Systolic Heart Failure. Congest. Heart Fail. 2011, 17, 105–109. [Google Scholar] [CrossRef]
- Prognostic Value of Plasma Myeloperoxidase Level’s and Echocardiographic Determinants in Chronic Heart Failure Patients. Available online: https://pubmed.ncbi.nlm.nih.gov/31101776/ (accessed on 29 November 2023).
- Tang, W.H.W.; Katz, R.; Brennan, M.L.; Aviles, R.J.; Tracy, R.P.; Psaty, B.M.; Hazen, S.L. Usefulness of Myeloperoxidase Levels in Healthy Elderly Subjects to Predict Risk of Developing Heart Failure. Am. J. Cardiol. 2009, 103, 1269–1274. [Google Scholar] [CrossRef]
- Coculescu, B.I.; Dincă, G.V.; Bălăeţ, C.; Manole, G.; Bălăeţ, M.; Stocheci, C.M. Myeloperoxidase, a Possible Biomarker for the Early Diagnosis of Cardiac Diastolic Dysfunction with Preserved Ejection Fraction. J. Enzyme Inhib. Med. Chem. 2018, 33, 1292–1298. [Google Scholar] [CrossRef] [PubMed]
- Park, J.I.; Suh, S.I.; Hyun, C. Evaluation of Serum Myeloperoxidase Concentration in Dogs with Heart Failure Due to Chronic Mitral Valvular Insufficiency. Can. J. Vet. Res. 2017, 81, 37. [Google Scholar] [PubMed]
- Ridker, P.M.; Everett, B.M.; Thuren, T.; MacFadyen, J.G.; Chang, W.H.; Ballantyne, C.; Fonseca, F.; Nicolau, J.; Koenig, W.; Anker, S.D.; et al. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. New Engl. J. Med. 2017, 377, 1119–1131. [Google Scholar] [CrossRef] [PubMed]
- Morton, A.C.; Rothman, A.M.K.; Greenwood, J.P.; Gunn, J.; Chase, A.; Clarke, B.; Hall, A.S.; Fox, K.; Foley, C.; Banya, W.; et al. The Effect of Interleukin-1 Receptor Antagonist Therapy on Markers of Inflammation in Non-ST Elevation Acute Coronary Syndromes: The MRC-ILA Heart Study. Eur. Heart J. 2015, 36, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Abbate, A.; Wohlford, G.F.; Del Buono, M.G.; Chiabrando, J.G.; Markley, R.; Turlington, J.; Kadariya, D.; Trankle, C.R.; Biondi-Zoccai, G.; Lipinski, M.J.; et al. Interleukin-1 Blockade with Anakinra and Heart Failure Following ST-Segment Elevation Myocardial Infarction: Results from a Pooled Analysis of the VCUART Clinical Trials. Eur. Heart J. Cardiovasc. Pharmacother. 2022, 8, 503–510. [Google Scholar] [CrossRef]
- Van Tassell, B.W.; Buckley, L.F.; Carbone, S.; Trankle, C.R.; Canada, J.M.; Dixon, D.L.; Abouzaki, N.; Oddi-Erdle, C.; Biondi-Zoccai, G.; Arena, R.; et al. Interleukin-1 Blockade in Heart Failure with Preserved Ejection Fraction: Rationale and Design of the Diastolic Heart Failure Anakinra Response Trial 2 (D-HART2). Clin. Cardiol. 2017, 40, 626. [Google Scholar] [CrossRef]
- Van Tassell, B.W.; Canada, J.; Carbone, S.; Trankle, C.; Buckley, L.; Erdle, C.O.; Abouzaki, N.A.; Dixon, D.; Kadariya, D.; Christopher, S.; et al. Interleukin-1 Blockade in Recently Decompensated Systolic Heart Failure: Results From REDHART (Recently Decompensated Heart Failure Anakinra Response Trial). Circ. Heart Fail. 2017, 10. [Google Scholar] [CrossRef]
- Mahfooz, K.; Rana, A.; Palagati, K.; Suvarna, A.K.; Perryman, C.; Gaddipati, S.P.; Adhnon, A.; Andani, R.; Vasavada, A. Anakinra in Heart Failure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Med. Sci. 2023, 11, 4. [Google Scholar] [CrossRef]
- Ridker, P.M.; Devalaraja, M.; Baeres, F.M.M.; Engelmann, M.D.M.; Hovingh, G.K.; Ivkovic, M.; Lo, L.; Kling, D.; Pergola, P.; Raj, D.; et al. IL-6 Inhibition with Ziltivekimab in Patients at High Atherosclerotic Risk (RESCUE): A Double-Blind, Randomised, Placebo-Controlled, Phase 2 Trial. The Lancet 2021, 397, 2060–2069. [Google Scholar] [CrossRef]
- Kjekshus, J.; Apetrei, E.; Barrios, V.; Böhm, M.; Cleland, J.G.F.; Cornel, J.H.; Dunselman, P.; Fonseca, C.; Goudev, A.; Grande, P.; et al. Rosuvastatin in Older Patients with Systolic Heart Failure. New Engl. J. Med. 2007, 357, 2248–2261. [Google Scholar] [CrossRef]
- L, T.; AP, M.; R, M.; S, B.; MG, F.; R, L.; D, L.; GL, N.; M, P.; G, T. Effect of Rosuvastatin in Patients with Chronic Heart Failure (the GISSI-HF Trial): A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet 2008, 372, 1231–1239. [Google Scholar] [CrossRef]
- Cotter, G.; Kaluski, E.; Milo, O.; Blatt, A.; Salah, A.; Hendler, A.; Krakover, R.; Golick, A.; Vered, Z. LINCS: L-NAME (a NO Synthase Inhibitor) in the Treatment of Refractory Cardiogenic Shock: A Prospective Randomized Study. Eur. Heart J. 2003, 24, 1287–1295. [Google Scholar] [CrossRef] [PubMed]
- Džavík, V.; Cotter, G.; Reynolds, H.R.; Alexander, J.H.; Ramanathan, K.; Stebbins, A.L.; Hathaway, D.; Farkouh, M.E.; Ohman, E.M.; Baran, D.A.; et al. Effect of Nitric Oxide Synthase Inhibition on Haemodynamics and Outcome of Patients with Persistent Cardiogenic Shock Complicating Acute Myocardial Infarction: A Phase II Dose-Ranging Study. Eur. Heart J. 2007, 28, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Hochman, J.S.; Alexander, J.H.; Reynolds, H.R.; Stebbins, A.L.; Dzavik, V.; Harrington, R.A.; Van De Werf, F. Effect of Tilarginine Acetate in Patients with Acute Myocardial Infarction and Cardiogenic Shock: The TRIUMPH Randomized Controlled Trial. JAMA 2007, 297, 1657–1666. [Google Scholar] [CrossRef]
- Kessler, E.L.; Oerlemans, M.I.F.J.; van den Hoogen, P.; Yap, C.; Sluijter, J.P.G.; de Jager, S.C.A. Immunomodulation in Heart Failure with Preserved Ejection Fraction: Current State and Future Perspectives. J. Cardiovasc. Transl. Res. 2021, 14, 63. [Google Scholar] [CrossRef] [PubMed]
- Börger, V.; Bremer, M.; Ferrer-Tur, R.; Gockeln, L.; Stambouli, O.; Becic, A.; Giebel, B. Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles and Their Potential as Novel Immunomodulatory Therapeutic Agents. Int. J. Mol. Sci. 2017, 18, 1450. [Google Scholar] [CrossRef]
- Feyen, D.A.M.; Van Den Hoogen, P.; Van Laake, L.W.; Van Eeuwijk, E.C.M.; Hoefer, I.; Pasterkamp, G.; Chamuleau, S.A.J.; Grundeman, P.F.; Doevendans, P.A.; Sluijter, J.P.G. Intramyocardial Stem Cell Injection: Go(Ne) with the Flow. Eur. Heart J. 2017, 38, 184–186. [Google Scholar] [CrossRef]
- Van Linthout, S.; Hamdani, N.; Miteva, K.; Koschel, A.; Müller, I.; Pinzur, L.; Aberman, Z.; Pappritz, K.; Linke, W.A.; Tschöpe, C. Placenta-Derived Adherent Stromal Cells Improve Diabetes Mellitus-Associated Left Ventricular Diastolic Performance. Stem Cells Transl. Med. 2017, 6, 2135–2145. [Google Scholar] [CrossRef]
- Study Details|Regression of Fibrosis & Reversal of Diastolic Dysfunction in HFpEF Patients Treated with Allogeneic CDCs|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT02941705 (accessed on 23 November 2023).
- Kitzman, D.W.; Shah, S.J. The HFpEF Obesity Phenotype: The Elephant in the Room. J. Am. Coll. Cardiol. 2016, 68, 200–203. [Google Scholar] [CrossRef]
- Mahajan, R.; Lau, D.H.; Sanders, P. Impact of Obesity on Cardiac Metabolism, Fibrosis, and Function. Trends Cardiovasc. Med. 2015, 25, 119–126. [Google Scholar] [CrossRef]
- Cavalera, M.; Wang, J.; Frangogiannis, N.G. Obesity, Metabolic Dysfunction, and Cardiac Fibrosis: Pathophysiological Pathways, Molecular Mechanisms, and Therapeutic Opportunities. Transl. Res. 2014, 164, 323–335. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.F.; Hussain, S.; Mirzoyev, S.A.; Edwards, W.D.; Maleszewski, J.J.; Redfield, M.M. Coronary Microvascular Rarefaction and Myocardial Fibrosis in Heart Failure with Preserved Ejection Fraction. Circulation 2015, 131, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Persson, C.E.; Björck, L.; Lagergren, J.; Lappas, G.; Giang, K.W.; Rosengren, A. Risk of Heart Failure in Obese Patients With and Without Bariatric Surgery in Sweden—A Registry-Based Study. J. Card. Fail. 2017, 23, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Soucek, F.; Covassin, N.; Singh, P.; Ruzek, L.; Kara, T.; Suleiman, M.; Lerman, A.; Koestler, C.; Friedman, P.A.; Lopez-Jimenez, F.; et al. Effects of Atorvastatin (80 Mg) Therapy on Quantity of Epicardial Adipose Tissue in Patients Undergoing Pulmonary Vein Isolation for Atrial Fibrillation. Am. J. Cardiol. 2015, 116, 1443–1446. [Google Scholar] [CrossRef] [PubMed]
- Iacobellis, G.; Mohseni, M.; Bianco, S.D.; Banga, P.K. Liraglutide Causes Large and Rapid Epicardial Fat Reduction. Obesity 2017, 25, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Dutour, A.; Abdesselam, I.; Ancel, P.; Kober, F.; Mrad, G.; Darmon, P.; Ronsin, O.; Pradel, V.; Lesavre, N.; Martin, J.C.; et al. Exenatide Decreases Liver Fat Content and Epicardial Adipose Tissue in Patients with Obesity and Type 2 Diabetes: A Prospective Randomized Clinical Trial Using Magnetic Resonance Imaging and Spectroscopy. Diabetes Obes. Metab. 2016, 18, 882–891. [Google Scholar] [CrossRef]
- Guo, C.; Ricchiuti, V.; Lian, B.Q.; Yao, T.M.; Coutinho, P.; Romero, J.R.; Li, J.; Williams, G.H.; Adler, G.K. Mineralocorticoid Receptor Blockade Reverses Obesity-Related Changes in Expression of Adiponectin, Peroxisome Proliferator-Activated Receptor-γ, and Proinflammatory Adipokines. Circulation 2008, 117, 2253–2261. [Google Scholar] [CrossRef]
- Marx, N.; Federici, M.; Schütt, K.; Müller-Wieland, D.; Ajjan, R.A.; Antunes, M.J.; Christodorescu, R.M.; Crawford, C.; Di Angelantonio, E.; Eliasson, B.; et al. 2023 ESC Guidelines for the Management of Cardiovascular Disease in Patients with Diabetes: Developed by the Task Force on the Management of Cardiovascular Disease in Patients with Diabetes of the European Society of Cardiology (ESC). Eur. Heart J. 2023, 44, 4043–4140. [Google Scholar] [CrossRef]
- Visseren, F.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice: Developed by the Task Force for Cardiovascular Disease Prevention in Clinical Practice with Representatives of the European Society of Cardiology and 12 Medical Societies With the Special Contribution of the European Association of Preventive Cardiology (EAPC). Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Steffel, J.; Eikelboom, J.W.; Anand, S.S.; Shestakovska, O.; Yusuf, S.; Fox, K.A.A. The COMPASS Trial: Net Clinical Benefit of Low-Dose Rivaroxaban Plus Aspirin as Compared With Aspirin in Patients With Chronic Vascular Disease. Circulation 2020, 142, 40–48. [Google Scholar] [CrossRef]
- Zannad, F.; Anker, S.D.; Byra, W.M.; Cleland, J.G.F.; Fu, M.; Gheorghiade, M.; Lam, C.S.P.; Mehra, M.R.; Neaton, J.D.; Nessel, C.C.; et al. Rivaroxaban in Patients with Heart Failure, Sinus Rhythm, and Coronary Disease. New Engl. J. Med. 2018, 379, 1332–1342. [Google Scholar] [CrossRef] [PubMed]
- Eikelboom, J.W.; Connolly, S.J.; Bosch, J.; Dagenais, G.R.; Hart, R.G.; Shestakovska, O.; Diaz, R.; Alings, M.; Lonn, E.M.; Anand, S.S.; et al. Rivaroxaban with or without Aspirin in Stable Cardiovascular Disease. N. Engl. J. Med. 2017, 377, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Andersson, C.; Johnson, A.D.; Benjamin, E.J.; Levy, D.; Vasan, R.S. 70-Year Legacy of the Framingham Heart Study. Nat. Rev. Cardiol. 2019, 16, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Feinberg, A.P. The Key Role of Epigenetics in Human Disease Prevention and Mitigation. N. Engl. J. Med. 2018, 378, 1323–1334. [Google Scholar] [CrossRef] [PubMed]
- Achour, M.; Jacq, X.; Rondé, P.; Alhosin, M.; Charlot, C.; Chataigneau, T.; Jeanblanc, M.; Macaluso, M.; Giordano, A.; Hughes, A.D.; et al. The Interaction of the SRA Domain of ICBP90 with a Novel Domain of DNMT1 Is Involved in the Regulation of VEGF Gene Expression. Oncogene 2008, 27, 2187–2197. [Google Scholar] [CrossRef]
- Madsen, A.; Höppner, G.; Krause, J.; Hirt, M.N.; Laufer, S.D.; Schweizer, M.; Tan, W.L.; Mosqueira, D.; Anene-Nzelu, C.G.; Lim, I.; et al. An important role for DNMT3A-mediated DNA methylation in cardiomyocyte metabolism and contractility. Circulation 2020, 142, 1562–1578. [Google Scholar] [CrossRef]
- Glezeva, N.; Moran, B.; Collier, P.; Moravec, C.S.; Phelan, D.; Donnellan, E.; Russell-Hallinan, A.; O’connor, D.P.; Gallagher, W.M.; Gallagher, J.; et al. Targeted DNA Methylation Profiling of Human Cardiac Tissue Reveals Novel Epigenetic Traits and Gene Deregulation Across Different Heart Failure Patient Subtypes. Circ. Heart Fail. 2019, 12. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, X.; Meng, X.; Kong, Y.; Li, Y.; Yang, C.; Guo, Y.; Wang, X.; Yang, H.; Liu, Z.; et al. Selenium Supplementation Improved Cardiac Functions by Suppressing DNMT2-Mediated GPX1 Promoter DNA Methylation in AGE-Induced Heart Failure. Oxid. Med. Cell Longev. 2022, 2022. [Google Scholar] [CrossRef]
- Millán-Zambrano, G.; Burton, A.; Bannister, A.J.; Schneider, R. Histone Post-Translational Modifications - Cause and Consequence of Genome Function. Nat. Rev. Genet. 2022, 23, 563–580. [Google Scholar] [CrossRef]
- Tang, X.; Chen, X.F.; Wang, N.Y.; Wang, X.M.; Liang, S.T.; Zheng, W.; Lu, Y.B.; Zhao, X.; Hao, D.L.; Zhang, Z.Q.; et al. SIRT2 Acts as a Cardioprotective Deacetylase in Pathological Cardiac Hypertrophy. Circulation 2017, 136, 2051–2067. [Google Scholar] [CrossRef]
- Luo, Y.X.; Tang, X.; An, X.Z.; Xie, X.M.; Chen, X.F.; Zhao, X.; Hao, D.L.; Chen, H.Z.; Liu, D.P. SIRT4 Accelerates Ang II-Induced Pathological Cardiac Hypertrophy by Inhibiting Manganese Superoxide Dismutase Activity. Eur. Heart J. 2017, 38, 1389–1398. [Google Scholar] [CrossRef] [PubMed]
- Baldi, A.; Abbate, A.; Bussani, R.; Patti, G.; Melfi, R.; Angelini, A.; Dobrina, A.; Rossiello, R.; Silvestri, F.; Baldi, F.; et al. Apoptosis and Post-Infarction Left Ventricular Remodeling. J. Mol. Cell Cardiol. 2002, 34, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.M.; Chen, Y.Q. Principles and Innovative Technologies for Decrypting Noncoding RNAs: From Discovery and Functional Prediction to Clinical Application. J. Hematol. Oncol. 2020, 13, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Chen, Y.; Du, Y.; Tao, J.; Li, W.; Zhou, Z.; Yang, Z. Circulating Exosomal MiR-92b-5p Is a Promising Diagnostic Biomarker of Heart Failure with Reduced Ejection Fraction Patients Hospitalized for Acute Heart Failure. J. Thorac. Dis. 2018, 10, 6211–6220. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Xu, B.; Liu, Y.L.; Liu, Z. Reduced Exosome MiR-425 and MiR-744 in the Plasma Represents the Progression of Fibrosis and Heart Failure. Kaohsiung J. Med. Sci. 2018, 34, 626–633. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, H.; Huang, S.; Yin, L.; Wang, F.; Luo, P.; Huang, H. Epigenetic Regulation in Cardiovascular Disease: Mechanisms and Advances in Clinical Trials. Signal Transduct. Target. Ther. 2022, 7, 200. [Google Scholar] [CrossRef]
Target | Trial Acronym and Reference | Study Population | Sample Size | Intervention | Drug Mechanism of Action | Follow-Up | Outcomes |
---|---|---|---|---|---|---|---|
TNF α | ATTACH (Anti-TNF-α Therapy Against Congestive Heart Failure) Chung et al., 2003 [44] | HFrEF patients with III or IV NYHA functional class and LVEF ≤35% | 150 | Intervention group: 2 h intravenous infusion of infliximab 5 mg/kg (n = 50), 10 mg/kg (n = 51) at 0.2 and 6 weeks Placebo group (n = 49) | TNF-α inhibitor (anti-TNF mouse–human chimeric monoclonal antibody) | 28 weeks | -No clinical status improvement at 14 weeks -10 mg/kg infliximab: ↑ death from any cause or hospitalization for HF -5 mg/kg: ↓ CRP, IL-6; LVEF ↑ |
RENEWAL (Randomized Etanercept Worldwide Evaluation): combined data of RENAISSANCE and RECOVER trials in a prespecified study Mann et al., 2004 [17] | HFrEF patients with II to IV NYHA functional class and LVEF ≤ 30% | 1673 | Intervention group: etanercept subcutaneous injection 25 mg 3× weekly (n = 308), 25 mg 2× weekly (n = 683) Placebo group (n= 682) | TNF-α inhibitor (dimeric recombinant protein fusing the TNF receptor 2 to the Fc region of the human IgG1 antibody) | 24 weeks | -No effect on the rate of death or hospitalization | |
IL-1 | CANTOS (Canakinumab Anti-Inflammatory Thrombosis Outcome Study) Ridker et al., 2017 [148] | Patients with prior acute myocardial infarction and hsCRP ≥ 2 mg/L | 10,061 | canakinumab 50, 100 or 300 mg every 3 months | IL-1β inhibitor (monoclonal antibody blocking interaction between IL-1β and IL-1 receptors | 48 months | -↓rate of recurrent cardiovascular events, independent of lipid level lowering |
MRC-ILA Morton et al., 2014 [149] | Acute NSTEMI (<48 h) | 182 | anakinra 100 mg daily | Inhibits IL-1 binding to the IL-1 type I receptor (recombinant, non-glycosylated form of the endogenous IL-1 receptor antagonist peptide) | 2-week treatment (1 year follow-up) | -↓ CRP at 7 and 14 days (no effect on ischemic events at 30 days and 3 months, but ↑ at 1 year) | |
VCUART/VCUART 2/VCUART 3 Abbate et al., 2022 [150] | Acute STEMI (<12 h) | 139 | anakinra, once or twice daily | Inhibits IL-1 binding to the IL-1 type I receptor (recombinant, non-glycosylated form of the endogenous IL-1 receptor antagonist peptide) | 2-week treatment (3 months and 1 year follow up) | -↓ CRP, ↓ incidence of HF, ↓ hospitalization for HF (no effect on ischemic events) | |
D-HART (Diastolic Heart Failure Anakinra Response Trial) Van Tassell et al., 2014 [151] | HFpEF | 12 | anakinra, 100 subcutaneous daily for 28 days | Inhibits IL-1 binding to the IL-1 type I receptor (recombinant, non-glycosylated form of the endogenous IL-1 receptor antagonist peptide) | 28 days | -↓ in CRP -↑ peak aerobic exercise capacity and quality of life at 2 weeks | |
Van Tassell et al., 2016 [151] | Acute decompensated heart failure patients with LVEF ≤ 40% | 30 | anakinra, twice daily for 3 days, followed by once daily for 11 days | Inhibits IL-1 binding to the IL-1 type I receptor (recombinant, non-glycosylated form of the endogenous IL-1 receptor antagonist peptide) | 14 days | -↓ systemic inflammatory response | |
REDHART (Recently Decompensated Heart Failure Anakinra Response Trial) Van Tassell et al., 2017 [152] | Acute decompensated heart failure patients with LVEF ≤ 50% | 60 | anakinra, daily subcutaneous injection for 2 weeks, 12 weeks, or placebo | Inhibits IL-1 binding to the IL-1 type I receptor (recombinant, non-glycosylated form of the endogenous IL-1 receptor antagonist peptide) | 24 weeks | -↓ CRP values -↑ peak VO2 (volume of oxygen consumption) | |
D-HART 2 (Diastolic Heart Failure Anakinra Response Trial 2) [151] | HFpEF patients | 31 | anakinra, 100 mg daily or placebo for 12 weeks | Inhibits IL-1 binding to the IL-1 type I receptor (recombinant, non-glycosylated form of the endogenous IL-1 receptor antagonist peptide) | 24 weeks | -↓ CRP -↓ NT pro-BNP | |
AIR-HF Van Tassell et al., 2012 [153] | Stable NYHA II-III HF patients with LVEF≤ 50% and CRP ≥ 2 mg/L | 10 | anakinra, single arm 200 mg daily for 14 days | Inhibits IL-1 binding to the IL-1 type I receptor (recombinant, non-glycosylated form of the endogenous IL-1 receptor antagonist peptide) | 12 days | -↓ in CRP -↑ aerobic exercise capacity and ventilatory efficiency | |
IL-6 | RESCUE (Reduction in Inflammation in Patients with Advanced Chronic Renal Disease Utilizing Antibody Mediated IL-6 Inhibition) Ridker et al., 2021 [154] | Moderate to severe patients with chronic kidney disease and hsCRP ≥ 2 mg/L, 9 high cardiovascular risk) | 264 | ziltivekimab 7.5 mg, 15 mg, 30 mg or placebo every 4 weeks | IL-6 antibody (monoclonal antibody directed against the IL-6 ligand) | 24 weeks | -↓ hsCRP |
CRP | CORONA (Controlled Rosuvastatin Multinational Trial in Heart Failure) Kjekshus et al., 2017 [155] | NYHA II to IV functional class HFrEF patients with LVEF ≤ 35% | 5011 | rosuvastatin 10 mg daily for at least 3 months or placebo | HMC-CoA reductase inhibitor with pleiotropic actions (antioxidant, anti-inflammatory, improvement of endothelial function) | 32.8 months | -↓ CRP -↓ hospitalization for HF -No effect on the composite of cardiovascular-related death, non-fatal MI or stroke |
GISSI-HF (Gruppo Italiano Per Lo Studio Della Sopravvivenza Nell’Insufficienza Caridiaca-Heart Failure) Tavazzi et al., 2008 [156] | NYHA II to IV functional class ischemic and dilated cardiomyopathy with mean LVEF ≤ 45% | 4574 | rosuvastatin 10 mg daily for at least 3 months or placebo | HMC-CoA reductase inhibitor with pleiotropic actions (antioxidant, anti-inflammatory, improvement of endothelial function) | 46.8 months | -↓ hsCRP values at 3 months -No effect on all-cause death or composite of all-cause death or hospitalization for cardiovascular causes | |
NOS | LINCS (L-NAME [a NO synthase inhibitor] in the treatment of refractory Cardiogenic Shock) Cotter et al., 2003 [157] | Refractory cardiogenic shock patients | 30 | Intervention group (n = 15): Supportive care in addition to L-NAME—1 mg/kg bolus 1 mg/kg/h continuous drip for 5 h; Control group (n = 15): supportive care alone | L-NAME (Non- selective NOS inhibitor) | 4 months | -↑ blood pressure -↑ urinary output -↓ time of mechanical ventilation -↓ time of intra-aortic balloon pump support |
SHOCK 2 (Should we inhibit NO in Cardiogenic Shock 2) Dzavik et al., 2007 [158] | Acute MI patients complicated by persistent cardiogenic shock despite PCI | 79 | Intervention groups (n = 15/15/15/14): L-NMMA 0.15/0.5/1/1.5 mg/kg/h infusion for 5 h; Placebo group (n = 20): 0.9% normal saline IV bolus | L-NAME (Non- selective NOS inhibitor) | 2 h after study initiation (mean arterial pressure outcome) or 30 days (mortality outcome) | -↑ blood pressure at 15 min -No effect on blood pressure at 2 h -No effect on urinary output -No significant differences on mortality at 30 days | |
TRIUMPH (Tilarginine Acetate Injection in a Randomized International Study in Unstable MI patients with Cardiogenic Shock) TRIUMPH Investigators et al., 2007 [159] | Acute MI patients complicated by persistent cardiogenic shock despite PCI | 398 | Intervention group (n = 206): Tilarginine (LNMMA)—1 mg/kg bolus and 1 mg/kg/h infusion for 5 h; Placebo group (n = 190) | L-NAME (Non- selective NOS inhibitor) | 6 months | -No effect on 30-day all-cause mortality -↑ systolic blood pressure at 2 h -No effect on the resolution of shock, on reinfarction or on renal function |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arvunescu, A.M.; Ionescu, R.F.; Cretoiu, S.M.; Dumitrescu, S.I.; Zaharia, O.; Nanea, I.T. Inflammation in Heart Failure—Future Perspectives. J. Clin. Med. 2023, 12, 7738. https://doi.org/10.3390/jcm12247738
Arvunescu AM, Ionescu RF, Cretoiu SM, Dumitrescu SI, Zaharia O, Nanea IT. Inflammation in Heart Failure—Future Perspectives. Journal of Clinical Medicine. 2023; 12(24):7738. https://doi.org/10.3390/jcm12247738
Chicago/Turabian StyleArvunescu, Alexandru Mircea, Ruxandra Florentina Ionescu, Sanda Maria Cretoiu, Silviu Ionel Dumitrescu, Ondin Zaharia, and Ioan Tiberiu Nanea. 2023. "Inflammation in Heart Failure—Future Perspectives" Journal of Clinical Medicine 12, no. 24: 7738. https://doi.org/10.3390/jcm12247738
APA StyleArvunescu, A. M., Ionescu, R. F., Cretoiu, S. M., Dumitrescu, S. I., Zaharia, O., & Nanea, I. T. (2023). Inflammation in Heart Failure—Future Perspectives. Journal of Clinical Medicine, 12(24), 7738. https://doi.org/10.3390/jcm12247738