Effects of High-Intensity Interval Training Using the 3/7 Resistance Training Method on Metabolic Stress in People with Heart Failure and Coronary Artery Disease: A Randomized Cross-Over Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Outcomes
2.2.1. Blood Samples
2.2.2. RPE
2.3. Interventions
2.3.1. High-Intensity Interval Training
2.3.2. Resistance Training
2.4. Statistical Analyses
3. Results
3.1. Metabolic Effects in HfrEF
3.2. Metabolic Effects in CAD
3.3. Hormonal Effect in HFrEF
3.4. Hormonal Effect on CAD
3.5. Rating of Perceived Exertion
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Cardiopulmonary Exercise Testing (CPET)
Appendix A.2. Metabolic Effects in HFrEF
Appendix A.3. Metabolic Effects in CAD
References
- Taylor, R.S.; Dalal, H.M.; Zwisler, A.-D. Cardiac Rehabilitation for Heart Failure: ‘Cinderella’ or Evidence-Based Pillar of Care? Eur. Heart J. 2023, 44, 1511–1518. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.S.; Newby, L.K.; Arnold, S.V.; Bittner, V.; Brewer, L.C.; Demeter, S.H.; Dixon, D.L.; Fearon, W.F.; Hess, B.; Johnson, H.M.; et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients with Chronic Coronary Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation 2023, 148, e9–e119. [Google Scholar] [CrossRef] [PubMed]
- Cattadori, G.; Picozzi, A.; Di Marco, S. It’s Time to Run! J. Clin. Med. 2023, 12, 5758. [Google Scholar] [CrossRef] [PubMed]
- Cacciatore, S.; Spadafora, L.; Bernardi, M.; Galli, M.; Betti, M.; Perone, F.; Nicolaio, G.; Marzetti, E.; Martone, A.M.; Landi, F.; et al. Management of Coronary Artery Disease in Older Adults: Recent Advances and Gaps in Evidence. J. Clin. Med. 2023, 12, 5233. [Google Scholar] [CrossRef] [PubMed]
- Hansen, D.; Abreu, A.; Ambrosetti, M.; Cornelissen, V.; Gevaert, A.; Kemps, H.; Laukkanen, J.A.; Pedretti, R.; Simonenko, M.; Wilhelm, M.; et al. Exercise Intensity Assessment and Prescription in Cardiovascular Rehabilitation and beyond: Why and How: A Position Statement from the Secondary Prevention and Rehabilitation Section of the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2022, 29, 230–245. [Google Scholar] [CrossRef] [PubMed]
- Hansen, D.; Beckers, P.; Neunhäuserer, D.; Bjarnason-Wehrens, B.; Piepoli, M.F.; Rauch, B.; Völler, H.; Corrà, U.; Garcia-Porrero, E.; Schmid, J.-P.; et al. Standardised Exercise Prescription for Patients with Chronic Coronary Syndrome and/or Heart Failure: A Consensus Statement from the EXPERT Working Group. Sports Med. 2023, 53, 2013–2037. [Google Scholar] [CrossRef]
- Gomes-Neto, M.; Durães, A.R.; Reis, H.F.C.D.; Neves, V.R.; Martinez, B.P.; Carvalho, V.O. High-Intensity Interval Training versus Moderate-Intensity Continuous Training on Exercise Capacity and Quality of Life in Patients with Coronary Artery Disease: A Systematic Review and Meta-Analysis. Eur. J. Prev. Cardiol. 2017, 24, 1696–1707. [Google Scholar] [CrossRef]
- Edwards, J.J.; Griffiths, M.; Deenmamode, A.H.P.; O’Driscoll, J.M. High-Intensity Interval Training and Cardiometabolic Health in the General Population: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Sports Med. 2023, 53, 1753–1763. [Google Scholar] [CrossRef]
- Grgic, J.; Schoenfeld, B.J.; Davies, T.B.; Lazinica, B.; Krieger, J.W.; Pedisic, Z. Effect of Resistance Training Frequency on Gains in Muscular Strength: A Systematic Review and Meta-Analysis. Sports Med. 2018, 48, 1207–1220. [Google Scholar] [CrossRef]
- Bjarnason-Wehrens, B.; Schwaab, B.; Reiss, N.; Schmidt, T. Resistance Training in Patients with Coronary Artery Disease, Heart Failure, and Valvular Heart Disease: A Review with Special Emphasis on Old Age, Frailty, and Physical Limitations. J. Cardiopulm. Rehabil. Prev. 2022, 42, 304–315. [Google Scholar] [CrossRef] [PubMed]
- Way, K.L.; Thomas, H.J.; Parker, L.; Maiorana, A.; Keske, M.A.; Scott, D.; Reed, J.L.; Tieng, J.; Hackett, D.; Hawkins, T.; et al. Cluster Sets to Prescribe Interval Resistance Training: A Potential Method to Optimise Resistance Training Safety, Feasibility and Efficacy in Cardiac Patients. Sports Med.—Open 2023, 9, 86. [Google Scholar] [CrossRef] [PubMed]
- Feiereisen, P.; Delagardelle, C.; Vaillant, M.; Lasar, Y.; Beissel, J. Is Strength Training the More Efficient Training Modality in Chronic Heart Failure? Med. Sci. Sports Exerc. 2007, 39, 1910–1917. [Google Scholar] [CrossRef] [PubMed]
- Volterrani, M.; Caminiti, G.; Perrone, M.A.; Cerrito, A.; Franchini, A.; Manzi, V.; Iellamo, F. Effects of Concurrent, Within-Session, Aerobic and Resistance Exercise Training on Functional Capacity and Muscle Performance in Elderly Male Patients with Chronic Heart Failure. J. Clin. Med. 2023, 12, 750. [Google Scholar] [CrossRef]
- Anderson, L.; Thompson, D.R.; Oldridge, N.; Zwisler, A.-D.; Rees, K.; Martin, N.; Taylor, R.S. Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease. Cochrane Database Syst. Rev. 2016, CD001800. [Google Scholar] [CrossRef]
- Kambic, T.; Šarabon, N.; Hadžić, V.; Lainscak, M. High-Load and Low-Load Resistance Exercise in Patients with Coronary Artery Disease: Feasibility and Safety of a Randomized Controlled Clinical Trial. J. Clin. Med. 2022, 11, 3567. [Google Scholar] [CrossRef]
- Hansen, D.; Abreu, A.; Doherty, P.; Völler, H. Dynamic Strength Training Intensity in Cardiovascular Rehabilitation: Is It Time to Reconsider Clinical Practice? A Systematic Review. Eur. J. Prev. Cardiol. 2019, 26, 1483–1492. [Google Scholar] [CrossRef]
- Fisher, S.; Smart, N.A.; Pearson, M.J. Resistance Training in Heart Failure Patients: A Systematic Review and Meta-Analysis. Heart Fail. Rev. 2022, 27, 1665–1682. [Google Scholar] [CrossRef]
- Fidalgo, A.S.F.; Farinatti, P.; Borges, J.P.; De Paula, T.; Monteiro, W. Institutional Guidelines for Resistance Exercise Training in Cardiovascular Disease: A Systematic Review. Sports Med. 2019, 49, 463–475. [Google Scholar] [CrossRef]
- Taylor, J.L.; Myers, J.; Bonikowske, A.R. Practical Guidelines for Exercise Prescription in Patients with Chronic Heart Failure. Heart Fail. Rev. 2023, 28, 1285–1296. [Google Scholar] [CrossRef]
- Lamotte, M.; Niset, G.; van de Borne, P. The Effect of Different Intensity Modalities of Resistance Training on Beat-to-Beat Blood Pressure in Cardiac Patients. Eur. J. Cardiovasc. Prev. Rehabil. 2005, 12, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Douin, C.; Forton, K.; Lamotte, M.; Gillet, A.; Van De Borne, P. Benefits of Cardio-Pulmonary Rehabilitation in Moderate to Severe Forms of COVID-19 Infection. Healthcare 2022, 10, 2044. [Google Scholar] [CrossRef] [PubMed]
- Hellebrandt, F.A.; Houtz, S.J. Mechanisms of Muscle Training in Man: Experimental Demonstration of the Overload Principle. Phys. Ther. 1956, 36, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Rooney, K.J.; Herbert, R.D.; Balnave, R.J. Fatigue Contributes to the Strength Training Stimulus. Med. Sci. Sports Exerc. 1994, 26, 1160–1164. [Google Scholar] [PubMed]
- Mang, Z.A.; Realzola, R.A.; Ducharme, J.; Bellissimo, G.F.; Beam, J.R.; Mermier, C.; De Castro Magalhaes, F.; Kravitz, L.; Amorim, F.T. The Effect of Repetition Tempo on Cardiovascular and Metabolic Stress When Time under Tension Is Matched during Lower Body Exercise. Eur. J. Appl. Physiol. 2022, 122, 1485–1495. [Google Scholar] [CrossRef] [PubMed]
- Parry, H.A.; Roberts, M.D.; Kavazis, A.N. Human Skeletal Muscle Mitochondrial Adaptations Following Resistance Exercise Training. Int. J. Sports Med. 2020, 41, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Holloway, T.M.; Snijders, T.; Van Kranenburg, J.; Van Loon, L.J.C.; Verdijk, L.B. Temporal Response of Angiogenesis and Hypertrophy to Resistance Training in Young Men. Med. Sci. Sports Exerc. 2018, 50, 36–45. [Google Scholar] [CrossRef]
- Robergs, R.A. Invited Review: Quantifying Proton Exchange from Chemical Reactions—Implications for the Biochemistry of Metabolic Acidosis. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2019, 235, 29–45. [Google Scholar] [CrossRef]
- Lopes, C.R.; Harley Crisp, A.; Schoenfeld, B.; Ramos, M.; Diego Germano, M.; Verlengia, R.; Da Mota, G.R.; Henrique Marchetti, P.; Saldanha Aoki, M. Effect of Rest Interval Length between Sets on Total Load Lifted and Blood Lactate Response During Total-Body Resistance Exercise Session. Asian J. Sports Med. 2018, 9, 2. [Google Scholar] [CrossRef]
- Realzola, R.A.; Mang, Z.A.; Millender, D.J.; Beam, J.R.; Bellovary, B.N.; Wells, A.D.; Houck, J.M.; Kravitz, L. Metabolic Profile of Reciprocal Supersets in Young, Recreationally Active Women and Men. J. Strength Cond. Res. 2022, 36, 2709–2716. [Google Scholar] [CrossRef]
- Egan, B.; Sharples, A.P. Molecular Responses to Acute Exercise and Their Relevance for Adaptations in Skeletal Muscle to Exercise Training. Physiol. Rev. 2023, 103, 2057–2170. [Google Scholar] [CrossRef] [PubMed]
- Crewther, B.; Keogh, J.; Cronin, J.; Cook, C. Possible Stimuli for Strength and Power Adaptation: Acute Hormonal Responses. Sports Med. 2006, 36, 215–238. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Ratamess, N.A. Hormonal Responses and Adaptations to Resistance Exercise and Training. Sports Med. 2005, 35, 339–361. [Google Scholar] [CrossRef] [PubMed]
- Egan, B.; Zierath, J.R. Exercise Metabolism and the Molecular Regulation of Skeletal Muscle Adaptation. Cell Metab. 2013, 17, 162–184. [Google Scholar] [CrossRef] [PubMed]
- Rogatzki, M.J.; Wright, G.A.; Mikat, R.P.; Brice, A.G. Blood Ammonium and Lactate Accumulation Response to Different Training Protocols Using the Parallel Squat Exercise. J. Strength Cond. Res. 2014, 28, 1113–1118. [Google Scholar] [CrossRef]
- Tanimoto, M.; Ishii, N. Effects of Low-Intensity Resistance Exercise with Slow Movement and Tonic Force Generation on Muscular Function in Young Men. J. Appl. Physiol. 2006, 100, 1150–1157. [Google Scholar] [CrossRef]
- Tanimoto, M.; Sanada, K.; Yamamoto, K.; Kawano, H.; Gando, Y.; Tabata, I.; Ishii, N.; Miyachi, M. Effects of Whole-Body Low-Intensity Resistance Training with Slow Movement and Tonic Force Generation on Muscular Size and Strength in Young Men. J. Strength Cond. Res. 2008, 22, 1926–1938. [Google Scholar] [CrossRef]
- Weakley, J.; McLaren, S.; Ramirez-Lopez, C.; García-Ramos, A.; Dalton-Barron, N.; Banyard, H.; Mann, B.; Weaving, D.; Jones, B. Application of Velocity Loss Thresholds during Free-Weight Resistance Training: Responses and Reproducibility of Perceptual, Metabolic, and Neuromuscular Outcomes. J. Sports Sci. 2020, 38, 477–485. [Google Scholar] [CrossRef]
- Laurent, C.; Penzer, F.; Letroye, B.; Carpentier, A.; Baudry, S.; Duchateau, J. Effect of a Strength Training Method Characterized by an Incremental Number of Repetitions across Sets and a Very Short Rest Interval. Sci. Sports 2016, 31, e115–e121. [Google Scholar] [CrossRef]
- Stragier, S.; Baudry, S.; Carpentier, A.; Duchateau, J. Efficacy of a New Strength Training Design: The 3/7 Method. Eur. J. Appl. Physiol. 2019, 119, 1093–1104. [Google Scholar] [CrossRef]
- Penzer, F.; Cabrol, A.; Baudry, S.; Duchateau, J. Comparison of Muscle Activity and Tissue Oxygenation during Strength Training Protocols That Differ by Their Organisation, Rest Interval between Sets, and Volume. Eur. J. Appl. Physiol. 2016, 116, 1795–1806. [Google Scholar] [CrossRef] [PubMed]
- Duchateau, J.; Stragier, S.; Baudry, S.; Carpentier, A. Strength Training: In Search of Optimal Strategies to Maximize Neuromuscular Performance. Exerc. Sport Sci. Rev. 2021, 49, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Gillet, A.; Lamotte, M.; Forton, K.; Roussoulières, A.; Dewachter, C.; Bouziotis, J.; Deboeck, G.; Van De Borne, P. Hemodynamic Tolerance of New Resistance Training Methods in Patients with Heart Failure and Coronary Artery Disease: A Randomized Crossover Study. J. Cardiopulm. Rehabil. Prev. 2023, 43, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, L.K.; Kraemer, W.J.; Post, E.M.; Volek, J.S.; Focht, B.C.; Newton, R.U.; Häkkinen, K.; Maresh, C.M. Acute Floatation-REST Improves Perceived Recovery After a High-Intensity Resistance Exercise Stress in Trained Men. Med. Sci. Sports Exerc. 2022, 54, 1371–1381. [Google Scholar] [CrossRef] [PubMed]
- Chaumont, M.; Forton, K.; Gillet, A.; Tcheutchoua Nzokou, D.; Lamotte, M. How Does the Method Used to Measure the VE/VCO2 Slope Affect Its Value? A Cross-Sectional and Retrospective Cohort Study. Healthcare 2023, 11, 1292. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, M.; Takeda, M. Lactate as a Signaling Molecule That Regulates Exercise-Induced Adaptations. Biology 2016, 5, 38. [Google Scholar] [CrossRef] [PubMed]
- Lawson, D.; Vann, C.; Schoenfeld, B.J.; Haun, C. Beyond Mechanical Tension: A Review of Resistance Exercise-Induced Lactate Responses & Muscle Hypertrophy. J. Funct. Morphol. Kinesiol. 2022, 7, 81. [Google Scholar] [CrossRef] [PubMed]
- Fulster, S.; Tacke, M.; Sandek, A.; Ebner, N.; Tschope, C.; Doehner, W.; Anker, S.D.; Von Haehling, S. Muscle Wasting in Patients with Chronic Heart Failure: Results from the Studies Investigating Co-Morbidities Aggravating Heart Failure (SICA-HF). Eur. Heart J. 2013, 34, 512–519. [Google Scholar] [CrossRef]
- Harrington, D.; Anker, S.D.; Chua, T.P.; Webb-Peploe, K.M.; Ponikowski, P.P.; Poole-Wilson, P.A.; Coats, A.J.S. Skeletal Muscle Function and Its Relation to Exercise Tolerance in Chronic Heart Failure. J. Am. Coll. Cardiol. 1997, 30, 1758–1764. [Google Scholar] [CrossRef]
- Esposito, F.; Mathieu-Costello, O.; Wagner, P.D.; Richardson, R.S. Acute and Chronic Exercise in Patients with Heart Failure with Reduced Ejection Fraction: Evidence of Structural and Functional Plasticity and Intact Angiogenic Signalling in Skeletal Muscle. J. Physiol. 2018, 596, 5149–5161. [Google Scholar] [CrossRef]
- Deboeck, G.; Niset, G.; Lamotte, M.; Vachiéry, J.; Naeije, R. Exercise Testing in Pulmonary Arterial Hypertension and in Chronic Heart Failure. Eur. Respir. J. 2004, 23, 747–751. [Google Scholar] [CrossRef] [PubMed]
- Jondeau, G.; Katz, S.D.; Zohman, L.; Goldberger, M.; McCarthy, M.; Bourdarias, J.P.; LeJemtel, T.H. Active Skeletal Muscle Mass and Cardiopulmonary Reserve. Failure to Attain Peak Aerobic Capacity during Maximal Bicycle Exercise in Patients with Severe Congestive Heart Failure. Circulation 1992, 86, 1351–1356. [Google Scholar] [CrossRef] [PubMed]
- Von Haehling, S.; Steinbeck, L.; Doehner, W.; Springer, J.; Anker, S.D. Muscle Wasting in Heart Failure: An Overview. Int. J. Biochem. Cell Biol. 2013, 45, 2257–2265. [Google Scholar] [CrossRef] [PubMed]
- Melenovsky, V.; Hlavata, K.; Sedivy, P.; Dezortova, M.; Borlaug, B.A.; Petrak, J.; Kautzner, J.; Hajek, M. Skeletal Muscle Abnormalities and Iron Deficiency in Chronic Heart Failure: An Exercise 31P Magnetic Resonance Spectroscopy Study of Calf Muscle. Circ: Heart Fail. 2018, 11, e004800. [Google Scholar] [CrossRef] [PubMed]
- Karlsdottir, A.E.; Foster, C.; Porcari, J.P.; Palmer-McLean, K.; White-Kube, R.; Backes, R.C. Hemodynamic Responses During Aerobic and Resistance Exercise. J. Cardiopulm. Rehabil. 2002, 22, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Nyberg, M.; Jones, A.M. Matching of O2 Utilization and O2 Delivery in Contracting Skeletal Muscle in Health, Aging, and Heart Failure. Front. Physiol. 2022, 13, 898395. [Google Scholar] [CrossRef] [PubMed]
- Magnani, S.; Roberto, S.; Sainas, G.; Milia, R.; Palazzolo, G.; Cugusi, L.; Pinna, V.; Doneddu, A.; Kakhak, S.A.H.; Tocco, F.; et al. Metaboreflex-Mediated Hemodynamic Abnormalities in Individuals with Coronary Artery Disease without Overt Signs or Symptoms of Heart Failure. Am. J. Physiol. Heart Circ. Physiol. 2018, 314, H452–H463. [Google Scholar] [CrossRef] [PubMed]
- Wan, H.-Y.; Bunsawat, K.; Amann, M. Autonomic Cardiovascular Control during Exercise. Am. J. Physiol.-Heart Circ. Physiol. 2023, 325, H675–H686. [Google Scholar] [CrossRef]
- Giannoni, A.; Borrelli, C.; Gentile, F.; Sciarrone, P.; Spießhöfer, J.; Piepoli, M.; Richerson, G.B.; Floras, J.S.; Coats, A.J.S.; Javaheri, S.; et al. Autonomic and Respiratory Consequences of Altered Chemoreflex Function: Clinical and Therapeutic Implications in Cardiovascular Diseases. Eur. J. Heart Fail. 2023, 25, 642–656. [Google Scholar] [CrossRef]
- Milanović, Z.; Sporiš, G.; Weston, M. Effectiveness of High-Intensity Interval Training (HIT) and Continuous Endurance Training for VO2max Improvements: A Systematic Review and Meta-Analysis of Controlled Trials. Sports Med. 2015, 45, 1469–1481. [Google Scholar] [CrossRef]
- Haykowsky, M.J.; Timmons, M.P.; Kruger, C.; McNeely, M.; Taylor, D.A.; Clark, A.M. Meta-Analysis of Aerobic Interval Training on Exercise Capacity and Systolic Function in Patients with Heart Failure and Reduced Ejection Fractions. Am. J. Cardiol. 2013, 111, 1466–1469. [Google Scholar] [CrossRef] [PubMed]
- Gomes Neto, M.; Durães, A.R.; Conceição, L.S.R.; Saquetto, M.B.; Ellingsen, Ø.; Carvalho, V.O. High Intensity Interval Training versus Moderate Intensity Continuous Training on Exercise Capacity and Quality of Life in Patients with Heart Failure with Reduced Ejection Fraction: A Systematic Review and Meta-Analysis. Int. J. Cardiol. 2018, 261, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Ellingsen, Ø.; Halle, M.; Conraads, V.; Støylen, A.; Dalen, H.; Delagardelle, C.; Larsen, A.-I.; Hole, T.; Mezzani, A.; Van Craenenbroeck, E.M.; et al. High-Intensity Interval Training in Patients with Heart Failure with Reduced Ejection Fraction. Circulation 2017, 135, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Marchitelli, L.; Gordon, S.E.; Harman, E.; Dziados, J.E.; Mello, R.; Frykman, P.; McCurry, D.; Fleck, S.J. Hormonal and Growth Factor Responses to Heavy Resistance Exercise Protocols. J. Appl. Physiol. 1990, 69, 1442–1450. [Google Scholar] [CrossRef] [PubMed]
- Loenneke, J.P.; Wilson, G.J.; Wilson, J.M. A Mechanistic Approach to Blood Flow Occlusion. Int. J. Sports Med. 2010, 31, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Kanaley, J.A.; Weltman, J.Y.; Veldhuis, J.D.; Rogol, A.D.; Hartman, M.L.; Weltman, A. Human Growth Hormone Response to Repeated Bouts of Aerobic Exercise. J. Appl. Physiol. 1997, 83, 1756–1761. [Google Scholar] [CrossRef]
- Arcopinto, M.; Salzano, A.; Giallauria, F.; Bossone, E.; Isgaard, J.; Marra, A.M.; Bobbio, E.; Vriz, O.; Åberg, D.N.; Masarone, D.; et al. Growth Hormone Deficiency Is Associated with Worse Cardiac Function, Physical Performance, and Outcome in Chronic Heart Failure: Insights from the T.O.S.CA. GHD Study. PLoS ONE 2017, 12, e0170058. [Google Scholar] [CrossRef]
- Kissow, J.; Jacobsen, K.J.; Gunnarsson, T.P.; Jessen, S.; Hostrup, M. Effects of Follicular and Luteal Phase-Based Menstrual Cycle Resistance Training on Muscle Strength and Mass. Sports Med. 2022, 52, 2813–2819. [Google Scholar] [CrossRef]
Characteristic | HFrEF n = 11 | CAD n = 14 | p-Value |
---|---|---|---|
Age (years) | 59 ± 17 | 61 ± 13 | 0.238 |
Weight (kg) | 83 ± 21 | 86 ± 13 | 0.428 |
Height (cm) | 172 ± 8 | 175 ± 3 | 0.428 |
BMI (kg/m2) | 28.06 ± 6.84 | 28.02 ± 3.43 | 0.428 |
Diabetes mellitus, n (%) | 2 (18) | 2 (14) | 0.796 |
Smoking, n (%) | 3 (27) | 6 (43) | 0.442 |
EF < 40%, n (%) | 11 (100) | - | <0.001 |
Heart failure caused by ischemic heart disease, n (%) | 5 (45) | - | - |
Antiplatelet agents, n (%) | 8 (73) | 13 (93) | 0.182 |
Statins, n (%) | 8 (73) | 14 (100) | 0.041 |
β-Adrenergic antagonists, n (%) | 11 (100) | 11 (79) | 0.109 |
Diuretics, n (%) | 10 (91) | 1 (7) | <0.001 |
ACE inhibitors, n (%) | 3 (27) | 7 (50) | 0.337 |
Angiotensin II receptor antagonists, n (%) | 2 (18) | 1 (7) | 0.358 |
Sacubitril/valsartan, n (%) | 8 (73) | - | <0.001 |
Empaglifozine/dapagliflozin, n (%) | 4 (36) | 1 (7) | 0.076 |
Previous CABG, n (%) | 2 (18) | 2 (14) | 0.796 |
Previous PCI, n (%) | 3 (27) | 12 (86) | 0.004 |
Time | Characteristic | HfrEF | CAD | p-Value |
---|---|---|---|---|
Rest | VO2 (L/min) | 0.333 (0.3–0.484) | 0.285 (0.213–0.386) | 0.680 |
VO2 (mL/kg) | 4.4 (3.2–6.5) | 3.1 (2.6–4.4) | 0.680 | |
RER | 0.84 ± 0.05 | 0.84 ± 0.07 | 0.489 | |
VE (L/min) | 15 ± 8 | 16 ± 10 | 0.642 | |
SpO2 | 97 ± 2 | 97 ± 2 | 0.899 | |
HR (bpm) | 78 ± 12 | 76 ± 10 | 0.452 | |
SBP (mm Hg) | 100 ± 19 | 112 ± 10 | 0.192 | |
DBP (mm Hg) | 68 ± 9 | 72 ± 10 | 0.571 | |
VT1 | Workload (Watt) | 75 (65–100) | 90 (75–100) | 0.202 |
VO2 (L/min) | 0.971 (0.901–1.541) | 1.223 (1.03–1.35) | 0.326 | |
VO2 (mL/kg·min) | 13.1 (11.5–16.5) | 14.2 (12.3–17.3) | 0.978 | |
% VO2p (mL/kg·min) | 76 (69–80) | 69 (63–73) | 0.160 | |
% VO2p predicted (mL/kg·min) | 54 ± 17 | 55 ± 17 | 0.451 | |
RER | 0.96 ± 0.05 | 0.97 ± 0.07 | 0.314 | |
VE (L/min) | 46 ± 12 | 42 ± 11 | 0.181 | |
EqCO2 | 40 ± 9 | 35 ± 5 | 0.06 | |
PetCO2 (mm Hg) | 34 ± 5 | 38 ± 4 | 0.06 | |
SpO2 (%) | 97 ± 4 | 97 ± 2 | 0.8 | |
HR (bpm) | 97 (91–103) | 102 (90–108) | 0.468 | |
SBP (mm Hg) | 132 ± 36 | 133 ± 24 | 0.927 | |
DBP (mm Hg) | 75 ± 19 | 76 ± 22 | 0.940 | |
Peak | Workload (watt) | 125 ± 40 | 156 ± 48 | 0.208 |
VO2 (L/min) | 1.6 ± 0.6 | 1.8 ± 0.6 | 0.428 | |
VO2 (mL/kg) | 17.2 (16.2–21.1) | 20.3 ± (19.8–25.4) | 0.605 | |
%VO2 predicted | 72 (61–77) | 73 (62–87) | 0.900 | |
RER | 1.24 ± 0.11 | 1.21 ± 0.12 | 0.705 | |
VE (L/min) | 80 ± 17 | 84 ± 18 | 0.644 | |
BR (%) | 36 ± 15 | 35 ± 22 | 0.931 | |
SpO2 (%) | 96 ± 4 | 96 ± 3 | 0.356 | |
HR (bpm) | 126 ± 26 | 132 ± 18 | 0.484 | |
%Hrmax | 78 ± 11 | 83 ± 9 | 0.218 | |
SBP (mm Hg) | 166 ± 55 | 190 ± 26 | 0.169 | |
DBP (mm Hg) | 82 ± 19 | 100 ± 31 | 0.113 | |
Slope | Workload/VO2 | 9 ± 2 | 9 ± 1 | 0.690 |
HR/VO2 | 3.2 ± 0.9 | 3.2 ± 1 | 0.906 | |
VE/VCO2 | 42 ± 11 | 35 ± 6 | 0.082 | |
HR recovery 1 min (bpm) | 19 ± 9 | 20 ± 8 | 0.794 | |
HR recovery 2 min (bpm) | 32 ± 10 | 32 ± 9 | 0.917 |
Participant | Hormone | t0 | t1 | t2 |
---|---|---|---|---|
Growth hormone 3/7 | 0.08 (0.05–0.16) | 2.93 (2.04–3.52) | 1.62 (0.66–2.83) | |
HFrEF | Growth hormone 3x9 | 0.19 (0.07–0.44) | 2.8 (1.71–6.35) ** | 1.68 (0.64–2.63) |
Cortisol 3/7 | 222 (190–326) | 295 (236–432) | 266 (246–428) | |
Cortisol 3x9 | 277 (254–346) | 389 (289–515) | 374 (255–389) | |
Growth hormone 3/7 | 0.24 (0.06–0.61) | 3.42 (1.53–6.74) *** | 1.79 (0.79–3.2) | |
CAD | Growth hormone 3x9 | 0.12 (0.07–0.44) | 3.45 (1.11–4.67) ** | 1.37 (0.45–2.14) |
Cortisol 3/7 | 212 (148–243) | 330 (174–396) * | 361 (171–416) | |
Cortisol 3x9 | 180 (128–271) | 324 (262–371) * | 336 (242–366) |
Participant | HFrEF | CAD | ||||
---|---|---|---|---|---|---|
RT Method | 3x9 | 3/7 | p Value | 3x9 | 3/7 | p Value |
RPE | 4.6 ± 3.1 | 5.2 ± 2.8 | 0.295 | 5.5 ± 2.6 | 6.7 ± 1.7 | 0.124 |
Enjoyment | 8 (7.5–9) | 9 (8–9) | 0.053 | 7.6 ± 1.6 | 7.9 ± 1.7 | 0.720 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gillet, A.; Forton, K.; Lamotte, M.; Macera, F.; Roussoulières, A.; Louis, P.; Ibrahim, M.; Dewachter, C.; van de Borne, P.; Deboeck, G. Effects of High-Intensity Interval Training Using the 3/7 Resistance Training Method on Metabolic Stress in People with Heart Failure and Coronary Artery Disease: A Randomized Cross-Over Study. J. Clin. Med. 2023, 12, 7743. https://doi.org/10.3390/jcm12247743
Gillet A, Forton K, Lamotte M, Macera F, Roussoulières A, Louis P, Ibrahim M, Dewachter C, van de Borne P, Deboeck G. Effects of High-Intensity Interval Training Using the 3/7 Resistance Training Method on Metabolic Stress in People with Heart Failure and Coronary Artery Disease: A Randomized Cross-Over Study. Journal of Clinical Medicine. 2023; 12(24):7743. https://doi.org/10.3390/jcm12247743
Chicago/Turabian StyleGillet, Alexis, Kevin Forton, Michel Lamotte, Francesca Macera, Ana Roussoulières, Pauline Louis, Malko Ibrahim, Céline Dewachter, Philippe van de Borne, and Gaël Deboeck. 2023. "Effects of High-Intensity Interval Training Using the 3/7 Resistance Training Method on Metabolic Stress in People with Heart Failure and Coronary Artery Disease: A Randomized Cross-Over Study" Journal of Clinical Medicine 12, no. 24: 7743. https://doi.org/10.3390/jcm12247743
APA StyleGillet, A., Forton, K., Lamotte, M., Macera, F., Roussoulières, A., Louis, P., Ibrahim, M., Dewachter, C., van de Borne, P., & Deboeck, G. (2023). Effects of High-Intensity Interval Training Using the 3/7 Resistance Training Method on Metabolic Stress in People with Heart Failure and Coronary Artery Disease: A Randomized Cross-Over Study. Journal of Clinical Medicine, 12(24), 7743. https://doi.org/10.3390/jcm12247743