Microcirculation Improvement in Diabetic Foot Patients after Treatment with Sucrose Octasulfate-Impregnated Dressings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Clinical Assessment
2.3. Wound Management and Follow-Up
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prompers, L.; Schaper, N.; Apelqvist, J.; Edmonds, M.; Jude, E.; Mauricio, D.; Uccioli, L.; Urbancic, V.; Bakker, K.; Holstein, P.; et al. Prediction of outcome in individuals with diabetic foot ulcers: Focus on the differences between individuals with and without peripheral arterial disease. The EURODIALE Study. Diabetologia 2008, 51, 747–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammedi, K.; Woodward, M.; Marre, M.; Colagiuri, S.; Cooper, M.; Harrap, S.; Mancia, G.; Poulter, N.; Williams, B.; Zoungas, S.; et al. Comparative effects of microvascular and macrovascular disease on the risk of major outcomes in patients with type 2 diabetes. Cardiovasc. Diabetol. 2017, 16, 95. [Google Scholar] [CrossRef] [PubMed]
- Chao, C.Y.L.; Cheing, G.L.Y. Microvascular dysfunction in diabetic foot disease and ulceration. Diabetes Metab. Res. Rev. 2009, 25, 604–614. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Schaper, N.; Rayman, G. Microangiopathy: Is it relevant to wound healing in diabetic foot disease? Diabetes Metab. Res. Rev. 2019, 36, e3244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Moral, M.; Garcia-Alvarez, Y.; Molines-Barroso, R.J.; Tardaguila-Garcia, A.; Garcia-Madrid, M.; Lazaro-Martinez, J.L. A comparison of hyperspectral imaging with routine vascular non-invasive techniques to assess the healing prognosis in patients with diabetic foot ulcers. J. Vasc. Surg. 2022, 75, 255–261. [Google Scholar] [CrossRef]
- Eleftheriadou, I.; Tentolouris, A.; Grigoropoulou, P.; Tsilingiris, D.; Anastasiou, I.; Kokkinos, A.; Perrea, D.; Katsilambros, N.; Tentolouris, N. The association of diabetic microvascular and macrovascular disease with cutaneous circulation in patients with type 2 diabetes mellitus. J. Diabetes Its Complicat. 2018, 33, 165–170. [Google Scholar] [CrossRef]
- Wang, Z.; Hasan, R.; Firwana, B.; Elraiyah, T.; Tsapas, A.; Prokop, L.; Mills, J.; Murad, M.H. A systematic review and meta-analysis of tests to predict wound healing in diabetic foot. J. Vasc. Surg. 2016, 63, 29S–36S. [Google Scholar] [CrossRef] [Green Version]
- Lázaro-Martínez, J.; Sánchez-Ríos, J.; García-Morales, E.; Cecilia-Matilla, A.; Segovia-Gómez, T. Increased Transcutaneous Oxygen Tension in the Skin Dorsum Over the Foot in Patients with Diabetic Foot Disease in Response to the Topical Use of an Emulsion of Hyperoxygenated Fatty Acids. Int. J. Low. Extrem. Wounds 2009, 8, 187–193. [Google Scholar] [CrossRef]
- Lázaro-Martínez, J.L.; López-Moral, M.; García-Alamino, J.M.; Bohbot, S.; Sanz-Corbalán, I.; García-Álvarez, Y. Evolution of the TcPO2 values following hyperoxygenated fatty acids emulsion application in patients with diabetic foot disease: Results of a clinical trial. J. Wound Care 2021, 30, 74–79. [Google Scholar] [CrossRef]
- Schindl, A.; Schindl, M.; Schön, H.; Knobler, R.; Havelec, L.; Schindl, L. Low-Intensity Laser Irradiation Improves Skin Circulation in Patients with Diabetic Microangiopathy. Diabetes Care 1998, 21, 580–584. [Google Scholar] [CrossRef]
- Moon, K.-C.; Chung, H.-Y.; Han, S.-K.; Jeong, S.-H.; Dhong, E.-S. Possibility of Injecting Adipose-Derived Stromal Vascular Fraction Cells to Accelerate Microcirculation in Ischemic Diabetic Feet: A Pilot Study. Int. J. Stem Cells 2019, 12, 107–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belcaro, G.; Cesarone, M.R.; Errichi, B.M.; Ledda, A.; Di Renzo, A.; Stuard, S.; Dugall, M.; Pellegrini, L.; Gizzi, G.; Rohdewald, P.; et al. Diabetic Ulcers: Microcirculatory Improvement and Faster Healing with Pycnogenol. Clin. Appl. Thromb. 2006, 12, 318–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalani, M.; Silveira, A.; Blombäck, M.; Apelqvist, J.; Eliasson, B.; Eriksson, J.W.; Fagrell, B.; Torffvit, O.; Hamsten, A.; Jörneskog, G. Beneficial effects of dalteparin on haemostatic function and local tissue oxygenation in patients with diabetes, severe vascular disease and foot ulcers. Thromb. Res. 2007, 120, 653–661. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, M.; Lázaro-Martínez, J.L.; Alfayate-García, J.M.; Martini, J.; Petit, J.-M.; Rayman, G.; Lobmann, R.; Uccioli, L.; Sauvadet, A.; Bohbot, S.; et al. Sucrose octasulfate dressing versus control dressing in patients with neuroischaemic diabetic foot ulcers (Explorer): An international, multicentre, double-blind, randomised, controlled trial. Lancet Diabetes Endocrinol. 2017, 6, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Lázaro-Martínez, J.L.; García-Madrid, M.; García-Alamino, J.M.; Bohbot, S.; García-Klepzig, J.L.; García-Álvarez, Y. Increasing Transcutaneous Oxygen Pressure in Patients with Neuroischemic Diabetic Foot Ulcers Treated With a Sucrose Octasulfate Dressing: A Pilot Study. Int. J. Low. Extrem. Wounds 2020, 21, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Hinchliffe, R.J.; Forsythe, R.O.; Apelqvist, J.; Boyko, E.J.; Fitridge, R.; Hong, J.P.; Katsanos, K.; Mills, J.L.; Nikol, S.; Reekers, J.; et al. Guidelines on diagnosis, prognosis, and management of peripheral artery disease in patients with foot ulcers and diabetes (IWGDF 2019 update). Diabetes Metab. Res. Rev. 2020, 36, e3276. [Google Scholar] [CrossRef] [PubMed]
- World Medical, A. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar]
- Bus, S.A.; Lavery, L.A.; Monteiro-Soares, M.; Rasmussen, A.; Raspovic, A.; Sacco, I.C.; van Netten, J.J.; on behalf of the International Working Group on the Diabetic Foot. Guidelines on the prevention of foot ulcers in persons with diabetes (IWGDF 2019 update). Diabetes Metab. Res. Rev. 2020, 36, e3269. [Google Scholar] [CrossRef] [Green Version]
- Ballard, J.L.; Eke, C.C.; Bunt, T.; Killeen, J. A prospective evaluation of transcutaneous oxygen measurements in the management of diabetic foot problems. J. Vasc. Surg. 1995, 22, 485–492. [Google Scholar] [CrossRef] [Green Version]
- Bus, S.A.; Armstrong, D.G.; Gooday, C.; Jarl, G.; Caravaggi, C.; Viswanathan, V.; Lazzarini, P.A.; International Working Group on the Diabetic Foot (IWGDF). Guidelines on off-loading foot ulcers in persons with diabetes (IWGDF 2019 update). Diabetes Metab. Res. Rev. 2020, 36, e3274. [Google Scholar]
- Izzo, V.; Meloni, M.; Fabiano, S.; Morosetti, D.; Giurato, L.; Chiaravalloti, A.; Ruotolo, V.; Gandini, R.; Uccioli, L. Rearfoot Transcutaneous Oximetry is a Useful Tool to Highlight Ischemia of the Heel. Cardiovasc. Interv. Radiol. 2016, 40, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Rayman, G.; Vas, P.; Dhatariya, K.; Driver, V.; Hartemann, A.; Londahl, M.; Piaggesi, A.; Apelqvist, J.; Attinger, C.; Game, F.; et al. Guidelines on use of interventions to enhance healing of chronic foot ulcers in diabetes (IWGDF 2019 update). Diabetes Metab. Res. Rev. 2020, 36, e3283. [Google Scholar] [CrossRef] [PubMed]
- Ruffini, I.; Belcaro, G.; Cesarone, M.; Geroulakos, G.; Di Renzo, A.; Milani, M.; Coen, L.; Ricci, A.; Brandolini, R.; Dugall, M.; et al. Evaluation of the Local Effects of Vitamin E (E-Mousse®) on Free Radicals in Diabetic Microangiopathy: A Randomized, Controlled Trial. Angiology 2003, 54, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Reyes, G.; García-Ulloa, A.C.; Hernández-Jiménez, S.; Alessi-Montero, A.; Carrera, L.N.; Rojas-Torres, F.; Infanzón-Talango, H.; Clark, P.; Miranda-Duarte, A.; Gómez-Díaz, R.A. Effect of whole-body vibration training on transcutaneous oxygen levels of the foot in patients with type 2 diabetes: A randomized controlled trial. J. Biomech. 2021, 139, 110871. [Google Scholar] [CrossRef]
- Wadee, A.N.; Aref, M.H.F.; Nassar, A.A.; Aboughaleb, I.H.; Fahmy, S.M. The influence of low- intensity laser irradiation versus hyperbaric oxygen therapy on transcutaneous oxygen tension in chronic diabetic foot ulcers: A controlled randomized trial. J. Diabetes Metab. Disord. 2021, 20, 1489–1497. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, Z.; Chen, L.; Li, L.; Yang, H.; Luo, B.; Mai, L.; Yan, L.; Yang, C. Cilostazol Can Increase Skin Oxygen Supply Assessed by Transcutaneous Oxygen Pressure Measurement in Type 2 Diabetes with Lower Limb Ischemic Disease: A Randomized Trial. J. Wound Ostomy Cont. Nurs. 2016, 43, 254–259. [Google Scholar] [CrossRef]
- Papa, G.; Spazzapan, L.; Pangos, M.; Delpin, A.; Arnez, Z.M. Compared to coverage by STSG grafts only reconstruction by the dermal substitute Integra(R) plus STSG increases TcPO2 values in diabetic feet at 3 and 6 months after reconstruction. G. Chir. 2014, 35, 141–145. [Google Scholar] [CrossRef]
- Dubský, M.; Husáková, J.; Bem, R.; Jirkovská, A.; Němcová, A.; Fejfarová, V.; Sutoris, K.; Kahle, M.; Jude, E.B. Comparison of the impact of autologous cell therapy and conservative standard treatment on tissue oxygen supply and course of the diabetic foot in patients with chronic limb-threatening ischemia: A randomized controlled trial. Front. Endocrinol. 2022, 13, 888809. [Google Scholar] [CrossRef]
Variables | Patients (n = 50) |
---|---|
Male, n (%) | 45 (90%) |
Female, n (%) | 5 (10%) |
Mean age ± SD (years) | 62.60 ± 8.94 |
Type 1 diabetes, n (%) | 4 (8%) |
Type 2 diabetes, n (%) | 46 (92%) |
Glycated hemoglobin (%) | 7.81 ± 1.47 |
Duration of diabetes ± SD (years) | 20.04 ± 11.43 |
Risk factors | |
Retinopathy, n (%) | 18 (36%) |
Nephropathy, n (%) | 9 (18%) |
Cardiopathy, n (%) | 22 (44%) |
Hypertension, n (%) | 39 (78%) |
Hypercholesterolemia, n (%) | 28 (56%) |
Tobacco use, n (%) | 7 (14%) |
Previous ulceration, n (%) | 45 (90%) |
Previous amputation, n (%) | 40 (80%) |
Vascular assessment | |
History of revascularization, n (%) | 16 (32%) |
Bypass surgery, n (%) | 3 (18.75%) |
Endovascular surgery, n (%) | 13 (81.25%) |
Presence of dorsalis pedis pulse, n (%) | 19 (38%) |
Presence of posterior tibial pulse, n (%) | 13 (26%) |
Ankle brachial pressure index, mean ± SD | 1.08 ± 0.36 |
Toe brachial pressure index, mean ± SD | 0.69 ± 0.28 |
TcpO2 Day 0 (mmHg) ± SD | 33.04 ± 12.27 |
Systemic antiplatelet treatments | 35 (70%) |
Wound Characteristics | Patients (n = 50) |
---|---|
Wound duration (weeks), median (IQR) | 2.50 (2–8) |
Wound area (cm2), median (IQR) | 1.55 (1.20–2.35) |
Pollina score, mean ± SD | 4.60 ± 1.80 |
University of Texas Diabetic Wound Grade Classification | |
IC: Ischemic, not infected, superficial wound, n (%) | 44 (88%) |
IIC: Ischemic not infected wound penetrating to tendon or capsule, n (%) | 6 (12%) |
Visit | All Patients (n = 50) | p Value | Impairment Microcirculation Patients (n = 20) | p Value |
---|---|---|---|---|
Day 0 | 33.04 ± 12.27 | - | 20.20 ± 5.38 | - |
Week 4 | 33.87 ± 12.58 | <0.001 * | 26.53 ± 10.21 | 0.002 * |
Week 8 | 30.60 ± 11.83 | 0.402 | 24.67 ± 10.02 | 0.390 |
Week 12 | 44.30 ± 11.79 | 0.046 * | 41.50 ± 7.77 | <0.001 * |
Week 16 | 44.85 ± 5.89 | <0.001 * | 44.50 ± 12.02 | <0.001 * |
Week 20 | 49.50 ± 2.12 | <0.001 * | 51.00 | - |
Wound closure | 40.89 ± 13.06 | <0.001 * | 31.28 ± 13.74 | 0.023 * |
Visit | Forefoot Location (n = 40) | p Value | Rearfoot Location (n = 10) | p Value |
---|---|---|---|---|
Day 0 | 32.85 ± 12.76 | - | 33.80 ± 10.66 | - |
Week 4 | 34.69 ± 13.57 | <0.001 * | 30.85 ± 7.9 | 0.914 |
Week 8 | 29.29 ± 10.82 | 0.277 | 34.33 ± 14.8 | 0.007 * |
Week 12 | 44.16 ± 10.34 | 0.287 | 44.50 ± 15.45 | 0.523 |
Week 16 | 47.6 ± 4.15 | 0.854 | 38.00 ± 2.82 | <0.001 * |
Week 20 | 48.00 | - | 51.00 | - |
Wound closure | 41.34 ± 12.02 | 0.002 * | 39.25 ± 17.21 | 0.071 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lázaro-Martínez, J.L.; García-Madrid, M.; Bohbot, S.; López-Moral, M.; Álvaro-Afonso, F.J.; García-Álvarez, Y. Microcirculation Improvement in Diabetic Foot Patients after Treatment with Sucrose Octasulfate-Impregnated Dressings. J. Clin. Med. 2023, 12, 1040. https://doi.org/10.3390/jcm12031040
Lázaro-Martínez JL, García-Madrid M, Bohbot S, López-Moral M, Álvaro-Afonso FJ, García-Álvarez Y. Microcirculation Improvement in Diabetic Foot Patients after Treatment with Sucrose Octasulfate-Impregnated Dressings. Journal of Clinical Medicine. 2023; 12(3):1040. https://doi.org/10.3390/jcm12031040
Chicago/Turabian StyleLázaro-Martínez, José Luis, Marta García-Madrid, Serge Bohbot, Mateo López-Moral, Francisco Javier Álvaro-Afonso, and Yolanda García-Álvarez. 2023. "Microcirculation Improvement in Diabetic Foot Patients after Treatment with Sucrose Octasulfate-Impregnated Dressings" Journal of Clinical Medicine 12, no. 3: 1040. https://doi.org/10.3390/jcm12031040
APA StyleLázaro-Martínez, J. L., García-Madrid, M., Bohbot, S., López-Moral, M., Álvaro-Afonso, F. J., & García-Álvarez, Y. (2023). Microcirculation Improvement in Diabetic Foot Patients after Treatment with Sucrose Octasulfate-Impregnated Dressings. Journal of Clinical Medicine, 12(3), 1040. https://doi.org/10.3390/jcm12031040