Action Observation Therapy for Arm Recovery after Stroke: A Preliminary Investigation on a Novel Protocol with EEG Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Rehabilitative Intervention
2.3. EEG Recording and Pre-Processing
2.4. Statistics
3. Results
3.1. Clinical Outcome
3.2. EEG Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feigin, V.L.; Norrving, B.; Mensah, G.A. Global Burden of Stroke. Circ. Res. 2017, 120, 439–448. [Google Scholar] [CrossRef]
- Taub, E.; Uswatte, G.; Elbert, T. New Treatments in Neurorehabiliation Founded on Basic Research. Nat. Rev. Neurosci. 2002, 3, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Mehrholz, J.; Pohl, M.; Platz, T.; Kugler, J.; Elsner, B. Electromechanical and Robot-Assisted Arm Training for Improving Activities of Daily Living, Arm Function, and Arm Muscle Strength after Stroke. Cochrane Database Syst. Rev. 2018, 9, CD006876. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, R.B. Exercise and Training to Optimize Functional Motor Performance in Stroke: Driving Neural Reorganization? Neural Plast. 2001, 8, 121–129. [Google Scholar] [CrossRef]
- Högg, S.; Holzgraefe, M.; Wingendorf, I.; Mehrholz, J.; Herrmann, C.; Obermann, M. Upper Limb Strength Training in Subacute Stroke Patients: Study Protocol of a Randomised Controlled Trial. Trials 2019, 20, 168. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Kwong, P.W.H.; Lai, C.K.Y.; Ng, S.S.M. Comparison of Bilateral and Unilateral Upper Limb Training in People with Stroke: A Systematic Review and Meta-Analysis. PLoS ONE 2019, 14, e0216357. [Google Scholar] [CrossRef] [PubMed]
- Fadiga, L.; Fogassi, L.; Pavesi, G.; Rizzolatti, G. Motor Facilitation during Action Observation: A Magnetic Stimulation Study. J. Neurophysiol. 1995, 73, 2608–2611. [Google Scholar] [CrossRef]
- Gallese, V.; Fadiga, L.; Fogassi, L.; Rizzolatti, G. Action Recognition in the Premotor Cortex. Brain 1996, 119, 593–609. [Google Scholar] [CrossRef]
- di Pellegrino, G.; Fadiga, L.; Fogassi, L.; Gallese, V.; Rizzolatti, G. Understanding Motor Events: A Neurophysiological Study. Exp. Brain Res. 1992, 91, 176–180. [Google Scholar] [CrossRef]
- Buccino, G.; Binkofski, F.; Fink, G.R.; Fadiga, L.; Fogassi, L.; Gallese, V.; Seitz, R.J.; Zilles, K.; Rizzolatti, G.; Freund, H.-J. Action Observation Activates Premotor and Parietal Areas in a Somatotopic Manner: An FMRI Study: Cortical Activation during Action Observation. Eur. J. Neurosci. 2001, 13, 400–404. [Google Scholar] [CrossRef]
- Iacoboni, M.; Woods, R.P.; Brass, M.; Bekkering, H.; Mazziotta, J.C.; Rizzolatti, G. Cortical Mechanisms of Human Imitation. Science 1999, 286, 2526–2528. [Google Scholar] [CrossRef]
- Gazzola, V.; van der Worp, H.; Mulder, T.; Wicker, B.; Rizzolatti, G.; Keysers, C. Aplasics Born without Hands Mirror the Goal of Hand Actions with Their Feet. Curr. Biol. 2007, 17, 1235–1240. [Google Scholar] [CrossRef] [PubMed]
- Rizzolatti, G.; Fadiga, L.; Matelli, M.; Bettinardi, V.; Paulesu, E.; Perani, D.; Fazio, F. Localization of Grasp Representations in Humans by PET: 1. Observation versus Execution. Exp. Brain Res. 1996, 111, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Cochin, S.; Barthelemy, C.; Roux, S.; Martineau, J. Observation and Execution of Movement: Similarities Demonstrated by Quantified Electroencephalography: QEEG of Observation and Execution of Movement. Eur. J. Neurosci. 1999, 11, 1839–1842. [Google Scholar] [CrossRef]
- Rizzolatti, G.; Craighero, L. THE MIRROR-NEURON SYSTEM. Annu. Rev. Neurosci. 2004, 27, 169–192. [Google Scholar] [CrossRef]
- Buccino, G.; Solodkin, A.; Small, S.L. Functions of the Mirror Neuron System: Implications for Neurorehabilitation. Cogn. Behav. Neurol. 2006, 19, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Buccino, G.; Vogt, S.; Ritzl, A.; Fink, G.R.; Zilles, K.; Freund, H.-J.; Rizzolatti, G. Neural Circuits Underlying Imitation Learning of Hand Actions: An Event-Related FMRI Study. Neuron 2004, 42, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Stefan, K.; Cohen, L.G.; Duque, J.; Mazzocchio, R.; Celnik, P.; Sawaki, L.; Ungerleider, L.; Classen, J. Formation of a Motor Memory by Action Observation. J. Neurosci. 2005, 25, 9339–9346. [Google Scholar] [CrossRef]
- Ryan, D.; Fullen, B.; Rio, E.; Segurado, R.; Stokes, D.; O’Sullivan, C. Effect of Action Observation Therapy in the Rehabilitation of Neurologic and Musculoskeletal Conditions: A Systematic Review. Arch. Rehabil. Res. Clin. Transl. 2021, 3, 100106. [Google Scholar] [CrossRef]
- Sarasso, E.; Gemma, M.; Agosta, F.; Filippi, M.; Gatti, R. Action Observation Training to Improve Motor Function Recovery: A Systematic Review. Arch. Physiother. 2015, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Ertelt, D.; Small, S.; Solodkin, A.; Dettmers, C.; McNamara, A.; Binkofski, F.; Buccino, G. Action Observation Has a Positive Impact on Rehabilitation of Motor Deficits after Stroke. NeuroImage 2007, 36, T164–T173. [Google Scholar] [CrossRef] [PubMed]
- Franceschini, M.; Ceravolo, M.G.; Agosti, M.; Cavallini, P.; Bonassi, S.; Dall’Armi, V.; Massucci, M.; Schifini, F.; Sale, P. Clinical Relevance of Action Observation in Upper-Limb Stroke Rehabilitation: A Possible Role in Recovery of Functional Dexterity. A Randomized Clinical Trial. Neurorehabil. Neural Repair 2012, 26, 456–462. [Google Scholar] [CrossRef]
- Sale, P.; Ceravolo, M.G.; Franceschini, M. Action Observation Therapy in the Subacute Phase Promotes Dexterity Recovery in Right-Hemisphere Stroke Patients. BioMed Res. Int. 2014, 2014, 457538. [Google Scholar] [CrossRef] [PubMed]
- Straudi, S.; Baroni, A.; Mele, S.; Craighero, L.; Manfredini, F.; Lamberti, N.; Maietti, E.; Basaglia, N. Effects of a Robot-Assisted Arm Training Plus Hand Functional Electrical Stimulation on Recovery After Stroke: A Randomized Clinical Trial. Arch. Phys. Med. Rehabil. 2020, 101, 309–316. [Google Scholar] [CrossRef]
- Hobson, H.M.; Bishop, D.V.M. The Interpretation of Mu Suppression as an Index of Mirror Neuron Activity: Past, Present and Future. R. Soc. Open Sci. 2017, 4, 160662. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.Q.; Fong, K.N.K.; Welage, N.; Liu, K.P.Y. The Activation of the Mirror Neuron System during Action Observation and Action Execution with Mirror Visual Feedback in Stroke: A Systematic Review. Neural Plast. 2018, 2018, 2321045. [Google Scholar] [CrossRef] [PubMed]
- The Helsinki Declaration of the World Medical Association (WMA). Ethical principles of medical research involving human subjects. Pol. Merkur. Lek. 2014, 36, 298–301. [Google Scholar]
- Woodbury, M.L.; Velozo, C.A.; Richards, L.G.; Duncan, P.W. Rasch Analysis Staging Methodology to Classify Upper Extremity Movement Impairment After Stroke. Arch. Phys. Med. Rehabil. 2013, 94, 1527–1533. [Google Scholar] [CrossRef]
- Angelini, M.; Fabbri-Destro, M.; Lopomo, N.F.; Gobbo, M.; Rizzolatti, G.; Avanzini, P. Perspective-Dependent Reactivity of Sensorimotor Mu Rhythm in Alpha and Beta Ranges during Action Observation: An EEG Study. Sci. Rep. 2018, 8, 12429. [Google Scholar] [CrossRef] [PubMed]
- Oostenveld, R.; Fries, P.; Maris, E.; Schoffelen, J.-M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput. Intell. Neurosci. 2011, 2011, 156869. [Google Scholar] [CrossRef]
- Aridan, N.; Ossmy, O.; Buaron, B.; Reznik, D.; Mukamel, R. Suppression of EEG Mu Rhythm during Action Observation Corresponds with Subsequent Changes in Behavior. Brain Res. 2018, 1691, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Muthukumaraswamy, S.D.; Johnson, B.W.; McNair, N.A. Mu Rhythm Modulation during Observation of an Object-Directed Grasp. Cogn. Brain Res. 2004, 19, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Mathiowetz, V.; Volland, G.; Kashman, N.; Weber, K. Adult Norms for the Box and Block Test of Manual Dexterity. Am. J. Occup. Ther. 1985, 39, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Narayan Arya, K.; Verma, R.; Garg, R.K. Estimating the Minimal Clinically Important Difference of an Upper Extremity Recovery Measure in Subacute Stroke Patients. Top. Stroke Rehabil. 2011, 18, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Pichiorri, F.; Petti, M.; Caschera, S.; Astolfi, L.; Cincotti, F.; Mattia, D. An EEG Index of Sensorimotor Interhemispheric Coupling after Unilateral Stroke: Clinical and Neurophysiological Study. Eur. J. Neurosci. 2018, 47, 158–163. [Google Scholar] [CrossRef]
- Wallace, A.; Talelli, P.; Dileone, M.; Oliver, R.; Ward, N.; Cloud, G.; Greenwood, R.; Di Lazzaro, V.; Rothwell, J.; Marsden, J. Standardizing the Intensity of Upper Limb Treatment in Rehabilitation Medicine. Clin. Rehabil 2010, 24, 471–478. [Google Scholar] [CrossRef]
- Kim, J.-C.; Lee, H.-M. EEG-Based Evidence of Mirror Neuron Activity from App-Mediated Stroke Patient Observation. Medicina 2021, 57, 979. [Google Scholar] [CrossRef]
- Sale, P.; Franceschini, M. Action Observation and Mirror Neuron Network: A Tool for Motor Stroke Rehabilitation. Eur. J. Phys. Rehabil. Med. 2012, 48, 313–318. [Google Scholar]
- Buccino, G.; Molinaro, A.; Ambrosi, C.; Arisi, D.; Mascaro, L.; Pinardi, C.; Rossi, A.; Gasparotti, R.; Fazzi, E.; Galli, J. Action Observation Treatment Improves Upper Limb Motor Functions in Children with Cerebral Palsy: A Combined Clinical and Brain Imaging Study. Neural Plast. 2018, 2018, 4843985. [Google Scholar] [CrossRef]
- Zhu, M.-H.; Wang, J.; Gu, X.-D.; Shi, M.-F.; Zeng, M.; Wang, C.-Y.; Chen, Q.-Y.; Fu, J.-M. Effect of Action Observation Therapy on Daily Activities and Motor Recovery in Stroke Patients. Int. J. Nurs. Sci. 2015, 2, 279–282. [Google Scholar] [CrossRef]
- Fu, J.; Zeng, M.; Shen, F.; Cui, Y.; Zhu, M.; Gu, X.; Sun, Y. Effects of Action Observation Therapy on Upper Extremity Function, Daily Activities and Motion Evoked Potential in Cerebral Infarction Patients. Medicine 2017, 96, e8080. [Google Scholar] [CrossRef] [PubMed]
- Persson, H.C.; Opheim, A.; Lundgren-Nilsson, Å.; Alt Murphy, M.; Danielsson, A.; Sunnerhagen, K.S. Upper Extremity Recovery after Ischaemic and Haemorrhagic Stroke: Part of the SALGOT Study. Eur. Stroke J. 2016, 1, 310–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schepers, V.P.M.; Ketelaar, M.; Visser-Meily, A.J.M.; de Groot, V.; Twisk, J.W.R.; Lindeman, E. Functional Recovery Differs between Ischaemic and Haemorrhagic Stroke Patients. J. Rehabil. Med. 2008, 40, 487–489. [Google Scholar] [CrossRef]
- Kwakkel, G.; Kollen, B.; Twisk, J. Impact of Time on Improvement of Outcome After Stroke. Stroke 2006, 37, 2348–2353. [Google Scholar] [CrossRef]
- Milani, G.; Antonioni, A.; Baroni, A.; Malerba, P.; Straudi, S. Relation Between EEG Measures and Upper Limb Motor Recovery in Stroke Patients: A Scoping Review. Brain Topogr. 2022, 35, 651–666. [Google Scholar] [CrossRef] [PubMed]
- Marshall, P.J.; Bouquet, C.A.; Shipley, T.F.; Young, T. Effects of Brief Imitative Experience on EEG Desynchronization during Action Observation. Neuropsychologia 2009, 47, 2100–2106. [Google Scholar] [CrossRef]
- Frenkel-Toledo, S.; Bentin, S.; Perry, A.; Liebermann, D.G.; Soroker, N. Mirror-Neuron System Recruitment by Action Observation: Effects of Focal Brain Damage on Mu Suppression. NeuroImage 2014, 87, 127–137. [Google Scholar] [CrossRef]
- Rogers, J.; Middleton, S.; Wilson, P.H.; Johnstone, S.J. Predicting Functional Outcomes after Stroke: An Observational Study of Acute Single-Channel EEG. Top. Stroke Rehabil. 2020, 27, 161–172. [Google Scholar] [CrossRef]
- Hoshino, T.; Oguchi, K.; Inoue, K.; Hoshino, A.; Hoshiyama, M. Relationship between Upper Limb Function and Functional Neural Connectivity among Motor Related-Areas during Recovery Stage after Stroke. Top. Stroke Rehabil. 2020, 27, 57–66. [Google Scholar] [CrossRef]
- Sebastián-Romagosa, M.; Udina, E.; Ortner, R.; Dinarès-Ferran, J.; Cho, W.; Murovec, N.; Matencio-Peralba, C.; Sieghartsleitner, S.; Allison, B.Z.; Guger, C. EEG Biomarkers Related With the Functional State of Stroke Patients. Front. Neurosci. 2020, 14, 582. [Google Scholar] [CrossRef]
- Wilkinson, C.M.; Burrell, J.I.; Kuziek, J.W.P.; Thirunavukkarasu, S.; Buck, B.H.; Mathewson, K.E. Predicting Stroke Severity with a 3-Min Recording from the Muse Portable EEG System for Rapid Diagnosis of Stroke. Sci. Rep. 2020, 10, 18465. [Google Scholar] [CrossRef] [PubMed]
#Patient | Age | Sex | Plegic Side | Days from Stroke Onset | Type of Stroke | Severity * | Group |
---|---|---|---|---|---|---|---|
1 | 49 | M | Left | 31 | Haemorrhagic | mild/moderate | AOT |
2 | 59 | M | Left | 32 | Haemorrhagic | mild/moderate | AOT |
3 | 61 | F | Left | 14 | Haemorrhagic | mild/moderate | AOT |
4 | 77 | M | Right | 26 | Ischaemic | severe | AOT |
5 | 57 | F | Left | 27 | Haemorrhagic | mild/moderate | AOT |
6 | 79 | M | Left | 36 | Ischaemic | severe | AOT |
7 | 55 | M | Left | 23 | Ischaemic | severe | AOT |
8 | 50 | F | Left | 33 | Ischaemic | severe | AOT |
9 | 48 | M | Left | 25 | Ischaemic | severe | AOT |
10 | 60 | M | Right | 9 | Haemorrhagic | mild/moderate | AOT |
11 | 49 | M | Left | 41 | Haemorrhagic | severe | AOT |
12 | 66 | F | Right | 41 | Ischaemic | mild/moderate | ICT |
13 | 58 | M | Right | 37 | Ischaemic | mild/moderate | ICT |
14 | 73 | F | Left | 10 | Ischaemic | mild/moderate | ICT |
15 | 73 | M | Left | 18 | Ischaemic | mild/moderate | ICT |
16 | 77 | M | Right | 11 | Ischaemic | severe | ICT |
17 | 74 | M | Right | 18 | Ischaemic | mild/moderate | ICT |
18 | 45 | M | Left | 12 | Ischaemic | mild/moderate | ICT |
19 | 67 | F | Left | 24 | Ischaemic | mild/moderate | ICT |
20 | 69 | F | Left | 28 | Ischaemic | mild/moderate | ICT |
21 | 59 | M | Left | 39 | Ischaemic | mild/moderate | ICT |
22 | 71 | F | Right | 22 | Ischaemic | mild/moderate | ICT |
23 | 23 | M | Right | 24 | Ischaemic | mild/moderate | ICT |
24 | 68 | F | Left | 23 | Ischaemic | mild/moderate | RAT-FES |
25 | 68 | M | Right | 21 | Ischaemic | mild/moderate | RAT-FES |
26 | 39 | F | Left | 21 | Ischaemic | severe | RAT-FES |
27 | 79 | M | Left | 12 | Ischaemic | mild/moderate | RAT-FES |
28 | 43 | M | Left | 25 | Ischaemic | mild/moderate | RAT-FES |
29 | 55 | M | Left | 17 | Ischaemic | mild/moderate | RAT-FES |
30 | 59 | F | Right | 14 | Ischaemic | mild/moderate | RAT-FES |
31 | 71 | F | Left | 26 | Ischaemic | mild/moderate | RAT-FES |
32 | 62 | M | Right | 39 | Ischaemic | mild/moderate | RAT-FES |
33 | 69 | F | Left | 28 | Ischaemic | mild/moderate | RAT-FES |
#Patient | FMA_UE T0 | FMA_UE T1 | ΔFMA_UE | Normalised Improvement | BBT T0 | BBT T1 | Δ BBT | TREATMENT |
---|---|---|---|---|---|---|---|---|
1 | 19 | 49 | 30 | 0.64 | 0 | 18 | 18 | AOT |
2 | 46 | 54 | 8 | 0.4 | 17 | 19 | 2 | AOT |
3 | 31 | 56 | 25 | 0.71 | 2 | 35 | 33 | AOT |
4 | 9 | 10 | 1 | 0.02 | 0 | 0 | 0 | AOT |
5 | 54 | 66 | 12 | 1 | 47 | 55 | 8 | AOT |
6 | 11 | 15 | 4 | 0.07 | 0 | 0 | 0 | AOT |
7 | 13 | 15 | 2 | 0.04 | 0 | 0 | 0 | AOT |
8 | 12 | 14 | 2 | 0.04 | 0 | 0 | 0 | AOT |
9 | 14 | 21 | 7 | 0.13 | 0 | 0 | 0 | AOT |
10 | 19 | 52 | 33 | 0.7 | 0 | 13 | 13 | AOT |
11 | 13 | 15 | 2 | 0.04 | 0 | 0 | 0 | AOT |
12 | 27 | 53 | 26 | 0.67 | 11 | 29 | 18 | ICT |
13 | 43 | 49 | 6 | 0.26 | 33 | 40 | 7 | ICT |
14 | 28 | 44 | 16 | 0.42 | 6 | 32 | 26 | ICT |
15 | 37 | 40 | 3 | 0.1 | 9 | 25 | 16 | ICT |
16 | 13 | 18 | 5 | 0.09 | 0 | 0 | 0 | ICT |
17 | 41 | 53 | 12 | 0.48 | 30 | 25 | −5 | ICT |
18 | 25 | 42 | 17 | 0.41 | 0 | 13 | 13 | ICT |
19 | 47 | 52 | 5 | 0.26 | 16 | 38 | 22 | ICT |
20 | 49 | 54 | 5 | 0.29 | 47 | 52 | 5 | ICT |
21 | 33 | 42 | 9 | 0.27 | 0 | 5 | 5 | ICT |
22 | 26 | 37 | 11 | 0.28 | 0 | 2 | 2 | ICT |
23 | 45 | 54 | 9 | 0.43 | 22 | 30 | 8 | ICT |
24 | 37 | 37 | 0 | 0 | 3 | 7 | 4 | RAT-FES |
25 | 51 | 56 | 5 | 0.33 | 28 | 41 | 13 | RAT-FES |
26 | 12 | 16 | 4 | 0.07 | 0 | 0 | 0 | RAT-FES |
27 | 23 | 44 | 21 | 0.49 | 13 | 25 | 12 | RAT-FES |
28 | 42 | 59 | 17 | 0.71 | 20 | 47 | 27 | RAT-FES |
29 | 41 | 51 | 10 | 0.4 | 16 | 23 | 7 | RAT-FES |
30 | 38 | 52 | 14 | 0.5 | 12 | 41 | 29 | RAT-FES |
31 | 43 | 47 | 4 | 0.17 | 25 | 33 | 8 | RAT-FES |
32 | 48 | 56 | 8 | 0.44 | 30 | 30 | 0 | RAT-FES |
33 | 21 | 33 | 12 | 0.27 | 0 | 0 | 0 | RAT-FES |
All Patients (Mean ± SD) | Patients with Mild/Moderate Impairment (Mean ± SD) | |||||
---|---|---|---|---|---|---|
AOT | ICT | RAT-FES | AOT | ICT | RAT-FES | |
FMA_UE T0 | 21.91 ± 15.21 | 34.5 ± 10,97 | 35.6 ± 12.7 | 33.8 ± 15.83 | 36.45 ± 9.05 | 38.22 ± 10.21 |
FMA_UE T1 | 33.36 ± 21.63 | 44.83 ± 10.41 | 45.1 ± 13.24 | 55.4 ± 6.47 | 47.27 ± 6.37 | 48.33 ± 8.92 |
Δ FΜA_UΕ | 11.45 ± 12.07 | 10.33 ± 6.65 | 9.5 ± 6.57 | 21.6 ± 11.06 * | 10.82 ± 6.75 | 10.11 ± 6.66 |
Normalised Improvement FMA_UE | 0.34 ± 0.36 | 0.33 ± 0.16 | 0.34 ± 0.22 | 0.69 ± 0.21 * | 0.35 ± 0.15 | 0.37 ± 0.21 |
BBT T0 | 6 ± 14.51 | 14.5 ± 15.53 | 14.70 ± 11.19 | 13.2 ± 20.19 | 15.82 ± 15.57 | 16.33 ± 10.52 |
BBT T1 | 18.23 ± 12.73 | 24.25 ± 16.25 | 24.70 ± 17.20 | 28 ± 17.2 | 26.45 ± 15.04 | 27.44 ± 15.75 |
Δ ΒΒΤ | 6.73 ± 10.73 | 9.75 ± 9.34 | 10 ± 10.60 | 14.8 ± 11.78 | 10.64 ± 9.25 | 11.11 ± 10.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boni, S.; Galluccio, M.; Baroni, A.; Martinuzzi, C.; Milani, G.; Emanuele, M.; Straudi, S.; Fadiga, L.; Pozzo, T. Action Observation Therapy for Arm Recovery after Stroke: A Preliminary Investigation on a Novel Protocol with EEG Monitoring. J. Clin. Med. 2023, 12, 1327. https://doi.org/10.3390/jcm12041327
Boni S, Galluccio M, Baroni A, Martinuzzi C, Milani G, Emanuele M, Straudi S, Fadiga L, Pozzo T. Action Observation Therapy for Arm Recovery after Stroke: A Preliminary Investigation on a Novel Protocol with EEG Monitoring. Journal of Clinical Medicine. 2023; 12(4):1327. https://doi.org/10.3390/jcm12041327
Chicago/Turabian StyleBoni, Sara, Martina Galluccio, Andrea Baroni, Carlotta Martinuzzi, Giada Milani, Marco Emanuele, Sofia Straudi, Luciano Fadiga, and Thierry Pozzo. 2023. "Action Observation Therapy for Arm Recovery after Stroke: A Preliminary Investigation on a Novel Protocol with EEG Monitoring" Journal of Clinical Medicine 12, no. 4: 1327. https://doi.org/10.3390/jcm12041327
APA StyleBoni, S., Galluccio, M., Baroni, A., Martinuzzi, C., Milani, G., Emanuele, M., Straudi, S., Fadiga, L., & Pozzo, T. (2023). Action Observation Therapy for Arm Recovery after Stroke: A Preliminary Investigation on a Novel Protocol with EEG Monitoring. Journal of Clinical Medicine, 12(4), 1327. https://doi.org/10.3390/jcm12041327