Peripheral Regional Anesthesia Using Local Anesthetics: Old Wine in New Bottles?
Abstract
:1. Introduction
2. Strategies
2.1. Innovations in Pharmacology
2.1.1. Conventional LAs
2.1.2. Extended-Release Formulations
Liposomal Formulation of Extended Release
Biological Polymers
- Bupivacaine/Meloxicam (ZYNRELEF®; HERON Therapeutics, San Diego, CA, USA) is a synergistic fixed-dose combination of bupivacaine and the non-steroidal anti-inflammatory drug (NSAID) meloxicam that is incorporated into biodegradable polymers and was approved by the EMA in 2020 and by the FDA in 2021 for needle-free application at the surgical site [25,26,27]. Results from recent randomized phase III trials (EPOCHE I and EPOCHEII) indicate improved postoperative pain control and a reduced need for opioids, resulting in less opioid-related adverse events [50,51,52]. However, it should be noted that the primary endpoint was the mean area under the curve (AUC) of the numerous rating scale (NRS), with opioid consumption being just a secondary endpoint in both studies. Given the restricted number of randomized clinical trials, more data are needed to better evaluate its properties and efficacy.
- Sucrose acetate isobutyrate extended-release bupivacaine (POSIDURTM, SABER® Bupivacaine; DURECT, Cupertino, CA, USA) was approved by the FDA in 2021 for subacromial injection under direct arthroscopic guidance, following safety and efficacy determination in previous phase IIb and III trials [28,29,30]. Recently, a double-blinded randomized trial assessed pain intensity during 90° shoulder flexion with opioid consumption over 72 h in 78 patients undergoing arthroscopic subacromial decompression. The authors described a reduction in pain and opioid consumption, as well as prolonged time until rescue opioid analgesia for SABER® Bupivacaine when compared to placebo and local bupivacaine hydrochloride (HCl) infiltration [53].
- In 2021, a bioresorbable collagen implant containing bupivacaine hydrochloride (INL-001; XARACOLL®, Innocoll Holdings Limited, Princeton, NJ, USA) received US FDA approval for placement into the surgical area during open inguinal hernia repair [31]. Results from two double-blinded randomized phase III studies (MATRIX I and MATRIX II) with 624 patients scheduled for unilateral hernia repair assessed the sum of the pain intensity during the first 24 h (SPI24). Both trials reported a lower SPI24 and lower opioid consumption over 24 h for INL-001 compared to placebo [32]. A recently published trial assessing pharmacokinetic properties of INL-001 described a prompt and continuous release of bupivacaine over 96 h [54].
2.1.3. Sodium Channel Selectivity
3. Clinical Concepts
Mixture of LAs
4. Additives/Adjuvants
4.1. Imidazoline Derivates
4.1.1. Clonidine
4.1.2. Dexmedetomidine
4.2. Dexamethasone
4.3. Epinephrine
4.4. Opioids
5. Technical Measures to Prolong Analgesia
5.1. Continuous Techniques
5.2. Continuous Wound Infusion
5.3. Infusion Systems
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gan, T.J.; Habib, A.S.; Miller, T.E.; White, W.; Apfelbaum, J.L. Incidence, patient satisfaction, and perceptions of post-surgical pain: Results from a US national survey. Curr. Med. Res. Opin. 2014, 30, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Law, L.S.; Gan, T.J. Optimizing pain management to facilitate Enhanced Recovery After Surgery pathways. Can. J. Anaesth. 2015, 62, 203–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myles, P.S.; Williams, D.L.; Hendrata, M.; Anderson, H.; Weeks, A.M. Patient satisfaction after anaesthesia and surgery: Results of a prospective survey of 10,811 patients. Br. J. Anaesth. 2000, 84, 6–10. [Google Scholar] [CrossRef] [PubMed]
- American Society of Anesthesiologists Task Force on Acute Pain Management. Practice guidelines for acute pain management in the perioperative setting: An updated report by the American Society of Anesthesiologists Task Force on Acute Pain Management. Anesthesiology 2012, 116, 248–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devarajan, J.; Balasubramanian, S.; Nazarnia, S.; Lin, C.; Subramaniam, K. Regional Analgesia for Cardiac Surgery Part 1. Current status of neuraxial and paravertebral blocks for adult cardiac surgery. Semin. Cardiothorac. Vasc. Anesth. 2021, 25, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Rivat, C.; Ballantyne, J. The dark side of opioids in pain management: Basic science explains clinical observation. Pain Rep. 2016, 1, e570. [Google Scholar] [CrossRef]
- Hirji, S.; Landino, S.; Cote, C.; Lee, J.; Orhurhu, V.; Shah, R.; McGurk, S.; Kaneko, T.; Shekar, P.; Pelletier, M. Chronic opioid use after coronary bypass surgery. J. Card. Surg. 2019, 34, 67–73. [Google Scholar] [CrossRef]
- Xuan, C.; Yan, W.; Wang, D.; Li, C.; Ma, H.; Mueller, A.; Wang, J. The Facilitatory Effects of Adjuvant Pharmaceutics to Prolong the Duration of Local Anesthetic for Peripheral Nerve Block: A Systematic Review and Network Meta-analysis. Anesth. Analg. 2021, 133, 620–629. [Google Scholar] [CrossRef]
- Elsayed, H.; McKevith, J.; McShane, J.; Scawn, N. Thoracic epidural or paravertebral catheter for analgesia after lung resection: Is the outcome different? J. Cardiothorac. Vasc. Anesth. 2012, 26, 78–82. [Google Scholar] [CrossRef]
- Skidmore, R.A.; Patterson, J.D.; Tomsick, R.S. Local anesthetics. Dermatol. Surg. 1996, 22, 511–522. [Google Scholar] [CrossRef]
- Lirk, P.; Hollmann, M.W.; Strichartz, G. The Science of Local Anesthesia: Basic Research, Clinical Application, and Future Directions. Anesth. Analg. 2018, 126, 1381–1392. [Google Scholar] [CrossRef]
- He, Y.; Qin, L.; Huang, Y.; Ma, C. Advances of Nano-Structured Extended-Release Local Anesthetics. Nanoscale Res. Lett. 2020, 15, 13. [Google Scholar] [CrossRef] [Green Version]
- Weiniger, C.F.; Golovanevski, M.; Sokolsky-Papkov, M.; Domb, A.J. Review of prolonged local anesthetic action. Expert Opin. Drug Deliv. 2010, 7, 737–752. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, F.W.; Halpern, S.H.; Aoyama, K.; Brull, R. Will the Real Benefits of Single-Shot Interscalene Block Please Stand Up? A Systematic Review and Meta-Analysis. Anesth. Analg. 2015, 120, 1114–1129. [Google Scholar] [CrossRef]
- Gitman, M.; Barrington, M.J. Local Anesthetic Systemic Toxicity: A Review of Recent Case Reports and Registries. Reg. Anesth. Pain Med. 2018, 43, 124–130. [Google Scholar] [CrossRef]
- Neal, J.; Bernards, C.; Butterworth, J.; Di Gregorio, G.; Drasner, K.; Hejtmanek, M.; Mulroy, M.; Rosenquist, R.; Weinberg, G. ASRA practice advisory on local anesthetic systemic toxicity. Reg. Anesth. Pain Med. 2010, 35, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Lirk, P.; Picardi, S.; Hollmann, M.W. Local anaesthetics: 10 essentials. Eur. J. Anaesthesiol. 2014, 31, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Moller, R.A.; Covino, B.G. Cardiac electrophysiologic effects of lidocaine and bupivacaine. Anesth. Analg. 1988, 67, 107–114. [Google Scholar] [CrossRef]
- Knudsen, K.; Beckman Suurkula, M.; Blomberg, S.; Sjovall, J.; Edvardsson, N. Central nervous and cardiovascular effects of i.v. infusions of ropivacaine, bupivacaine and placebo in volunteers. Br. J. Anaesth. 1997, 78, 507–514. [Google Scholar] [CrossRef]
- Chamberlain, B.K.; Volpe, P.; Fleischer, S. Inhibition of calcium-induced calcium release from purified cardiac sarcoplasmic reticulum vesicles. J. Biol. Chem. 1984, 259, 7547–7553. [Google Scholar] [CrossRef]
- Prabhakar, A.; Ward, C.; Watson, M.; Sanford, J.; Fiza, B.; Moll, V.; Kaye, R.; Hall, M.; Cornett, E.; Urman, R.; et al. Liposomal bupivacaine and novel local anesthetic formulations. Best Pract. Res. Clin. Anaesthesiol. 2019, 33, 425–432. [Google Scholar] [CrossRef]
- Hussain, N.; Brull, R.; Sheehy, B.; Essandoh, M.; Stahl, D.; Weaver, T.; Abdallah, F. Perineural Liposomal Bupivacaine Is Not Superior to Nonliposomal Bupivacaine for Peripheral Nerve Block Analgesia. Anesthesiology 2021, 134, 147–164. [Google Scholar] [CrossRef] [PubMed]
- Abildgaard, J.T.; Chung, A.S.; Tokish, J.M.; Hattrup, S.J. Clinical Efficacy of Liposomal Bupivacaine: A Systematic Review of Prospective, Randomized Controlled Trials in Orthopaedic Surgery. JBJS Rev. 2019, 7, e8. [Google Scholar] [CrossRef]
- US Food and Drug Administration CfD, Research Ea. EXPAREL NDA 022496 Approval Letter. 2013. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/022496Orig1s000Approv.pdf (accessed on 11 October 2022).
- European Medicines Agency. Zynrelef (Bupivacaine/Meloxicam) Prolonged-Release Wound Solution: EU Summary of Product Characteristics. 2020. Available online: https://www.ema.europa.eu/en/documents/product-information/zynrelef-epar-product-information_en.pdf (accessed on 17 September 2022).
- Heron Therapeutics. ZYNRELEFTM (Bupivacaine and Meloxicam) Extended-Release Solution: US Prescribing Information. 2021. Available online: https://www.zynrelef.com/prescribing-information.pdf (accessed on 17 September 2022).
- Balocco, A.L.; Van Zundert, P.G.E.; Gan, S.S.; Gan, T.J.; Hadzic, A. Extended release bupivacaine formulations for postoperative analgesia: An update. Curr. Opin. Anaesthesiol. 2018, 31, 636–642. [Google Scholar] [CrossRef]
- Hadj, A.; Hadj, A.; Hadj, A.; Rosenfeldt, F.; Nicholson, D.; Moodie, J.; Turner, R.; Watts, R.; Fletcher, I.; Abrouk, N.; et al. Safety and efficacy of extended-release bupivacaine local anaesthetic in open hernia repair: A randomized controlled trial. ANZ J. Surg. 2012, 82, 251–257. [Google Scholar] [CrossRef]
- Skolnik, A.; Gan, T.J. New formulations of bupivacaine for the treatment of postoperative pain: Liposomal bupivacaine and SABER-Bupivacaine. Expert Opin. Pharmacother. 2014, 15, 1535–1542. [Google Scholar] [CrossRef]
- Coppens, S.J.R.; Zawodny, Z.; Dewinter, G.; Neyrinck, A.; Balocco, A.L.; Rex, S. In search of the Holy Grail: Poisons and extended release local anesthetics. Best Pract. Res. Clin. Anaesthesiol. 2019, 33, 3–21. [Google Scholar] [CrossRef]
- Brigham, N.C.; Ji, R.R.; Becker, M.L. Degradable polymeric vehicles for postoperative pain management. Nat. Commun. 2021, 12, 1367. [Google Scholar] [CrossRef] [PubMed]
- Velanovich, V.; Rider, P.; Deck, K.; Minkowitz, H.; Leiman, D.; Jones, N.; Niebler, G. Safety and Efficacy of Bupivacaine HCl Collagen-Matrix Implant (INL-001) in Open Inguinal Hernia Repair: Results from Two Randomized Controlled Trials. Adv. Ther. 2019, 36, 200–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lian, T.; Ho, R.J. Trends and developments in liposome drug delivery systems. J. Pharm. Sci. 2001, 90, 667–680. [Google Scholar] [CrossRef]
- Mantripragada, S. A lipid based depot (DepoFoam technology) for sustained release drug delivery. Prog. Lipid Res. 2002, 41, 392–406. [Google Scholar] [CrossRef]
- Angst, M.S.; Drover, D.R. Pharmacology of drugs formulated with DepoFoam: A sustained release drug delivery system for parenteral administration using multivesicular liposome technology. Clin. Pharmacokinet. 2006, 45, 1153–1176. [Google Scholar] [CrossRef] [PubMed]
- Dinges, H.C.; Wiesmann, T.; Otremba, B.; Wulf, H.; Eberhart, L.H.; Schubert, A.K. The analgesic efficacy of liposomal bupivacaine compared with bupivacaine hydrochloride for the prevention of postoperative pain: A systematic review and meta-analysis with trial sequential analysis. Reg. Anesth. Pain Med. 2021, 46, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Ilfeld, B.M.; Eisenach, J.C.; Gabriel, R.A. Clinical Effectiveness of Liposomal Bupivacaine Administered by Infiltration or Peripheral Nerve Block to Treat Postoperative Pain. Anesthesiology 2021, 134, 283–344. [Google Scholar] [CrossRef] [PubMed]
- Ellen, M.; McCann, M.D. Liposomal Bupivacaine. Anesthesiology 2021, 134, 139–142. [Google Scholar]
- Otremba, B.; Dinges, H.-C.; Schubert, A.-K.; Zink, W.; Steinfeldt, T.; Wulf, H.; Wiesmann, T. Liposomal bupivacaine-No breakthrough in postoperative pain management. Anaesthesiologie 2022, 71, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Kendall, M.C.; Castro Alves, L.J.; De Oliveira, G., Jr. Liposome Bupivacaine Compared to Plain Local Anesthetics to Reduce Postsurgical Pain: An Updated Meta-Analysis of Randomized Controlled Trials. Pain Res. Treat. 2018, 2018, 5710169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, C.L.; Gruber, D.D.; Fischer, J.R.; Leonard, K.; Hernandez, S.L. Liposomal bupivacaine efficacy for postoperative pain following posterior vaginal surgery: A randomized, double-blind, placebo-controlled trial. Am. J. Obstet. Gynecol. 2018, 219, 500.e1–500.e8. [Google Scholar] [CrossRef]
- Namdari, S.; Nicholson, T.; Abboud, J.; Lazarus, M.; Steinberg, D.; Williams, G. Interscalene Block with and without Intraoperative Local Infiltration with Liposomal Bupivacaine in Shoulder Arthroplasty: A Randomized Controlled Trial. J. Bone Jt. Surg. Am. 2018, 100, 1373–1378. [Google Scholar] [CrossRef]
- Prabhu, M.; Clapp, M.; McQuaid-Hanson, E.; Ona, S.; O’Donnell, T.; James, K.; Bateman, B.; Wylie, B.; Barth, W.H., Jr. Liposomal Bupivacaine Block at the Time of Cesarean Delivery to Decrease Postoperative Pain: A Randomized Controlled Trial. Obstet. Gynecol. 2018, 132, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Yeung, J.; Crisp, C.C.; Mazloomdoost, D.; Kleeman, S.D.; Pauls, R.N. Liposomal Bupivacaine During Robotic Colpopexy and Posterior Repair: A Randomized Controlled Trial. Obstet. Gynecol. 2018, 131, 39–46. [Google Scholar] [CrossRef]
- Dale, E.; Kluemper, C.; Cowart, J.; Jemison, M.; Kennedy, W.; Gao, L.; Brzezienski, M.; Rehm, J. Bupivacaine Extended-Release Liposomal Injection Versus Bupivacaine HCl for Early Postoperative Pain Control Following Wrist Operations: A Prospective, Randomized Control Trial. J. Hand Surg. Am. 2020, 45, 550.e1–550.e8. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Lloyd, A.; McGrath, M.; Cung, A.S.; Akusoba, I.; Jackson, A.; Swartz, D.; Boone, K.; Higa, K. Efficacy of liposomal bupivacaine versus bupivacaine in port site injections on postoperative pain within enhanced recovery after bariatric surgery program: A randomized clinical trial. Surg. Obes. Relat. Dis. 2019, 15, 1554–1562. [Google Scholar] [CrossRef] [PubMed]
- Perets, I.; Walsh, J.; Mu, B.; Yuen, L.; Ashberg, L.; Battaglia, M.; Domb, B. Intraoperative Infiltration of Liposomal Bupivacaine vs. Bupivacaine Hydrochloride for Pain Management in Primary Total Hip Arthroplasty: A Prospective Randomized Trial. J. Arthroplast. 2018, 33, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Iwanoff, C.; Salamon, C. Liposomal Bupivacaine Versus Bupivacaine Hydrochloride with Lidocaine during Midurethral Sling Placement: A Randomized Controlled Trial. J. Minim. Invasive Gynecol. 2019, 26, 1133–1138. [Google Scholar] [CrossRef] [PubMed]
- Hyland, S.J.; Deliberato, D.G.; Fada, R.A.; Romanelli, M.J.; Collins, C.L.; Wasielewski, R.C. Liposomal Bupivacaine Versus Standard Periarticular Injection in Total Knee Arthroplasty with Regional Anesthesia: A Prospective Randomized Controlled Trial. J. Arthroplast. 2019, 34, 488–494. [Google Scholar] [CrossRef] [PubMed]
- Blair, H.A. Bupivacaine/Meloxicam Prolonged Release: A Review in Postoperative Pain. Drugs 2021, 81, 1203–1211. [Google Scholar] [CrossRef] [PubMed]
- Viscusi, E.; Gimbel, J.S.; Pollack, R.A.; Hu, J.; Lee, G.C. HTX-011 reduced pain intensity and opioid consumption versus bupivacaine HCl in bunionectomy: Phase III results from the randomized EPOCH 1 study. Reg. Anesth. Pain Med. 2019, 44, 700–706. [Google Scholar] [CrossRef]
- Viscusi, E.; Minkowitz, H.; Winkle, P.; Ramamoorthy, S.; Hu, J.; Singla, N. HTX-011 reduced pain intensity and opioid consumption versus bupivacaine HCl in herniorrhaphy: Results from the phase 3 EPOCH 2 study. Hernia 2019, 23, 1071–1080. [Google Scholar] [CrossRef] [Green Version]
- Ekelund, A.; Peredistijs, A.; Grohs, J.; Meisner, J.; Verity, N.; Rasmussen, S. SABER-Bupivacaine Reduces Postoperative Pain and Opioid Consumption After Arthroscopic Subacromial Decompression: A Randomized, Placebo-Controlled Trial. J. Am. Acad. Orthop. Surg. Glob. Res. Rev. 2022, 6, e21.00287. [Google Scholar] [CrossRef]
- Leiman, D.; Niebler, G.; Minkowitz, H.S. Pharmacokinetics and Safety of INL-001 (Bupivacaine HCl) Implants Compared with Bupivacaine HCl Infiltration After Open Unilateral Inguinal Hernioplasty. Adv. Ther. 2021, 38, 691–706. [Google Scholar] [CrossRef]
- Chen, R.; Coppes, O.J.M.; Urman, R.D. Receptor and Molecular Targets for the Development of Novel Opioid and Non-Opioid Analgesic Therapies. Pain Physician 2021, 24, 153–163. [Google Scholar]
- Bennett, D.L.; Woods, C.G. Painful and painless channelopathies. Lancet Neurol. 2014, 13, 587–599. [Google Scholar] [CrossRef]
- Catterall, W.A.; Goldin, A.L.; Waxman, S.G. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol. Rev. 2005, 57, 397–409. [Google Scholar] [CrossRef]
- Cardoso, F.C.; Lewis, R.J. Sodium channels and pain: From toxins to therapies. Br. J. Pharmacol. 2018, 175, 2138–2157. [Google Scholar] [CrossRef] [Green Version]
- Mulcahy, J.V.; Pajouhesh, H.; Beckley, J.T.; Delwig, A.; Du Bois, J.; Hunter, J.C. Challenges and Opportunities for Therapeutics Targeting the Voltage-Gated Sodium Channel Isoform NaV1.7. J. Med. Chem. 2019, 62, 8695–8710. [Google Scholar] [CrossRef]
- Hameed, S. Nav1.7 and Nav1.8: Role in the pathophysiology of pain. Mol. Pain 2019, 15, 1744806919858801. [Google Scholar] [CrossRef] [Green Version]
- De Lera Ruiz, M.; Kraus, R.L. Voltage-Gated Sodium Channels: Structure, Function, Pharmacology, and Clinical Indications. J. Med. Chem. 2015, 58, 7093–7118. [Google Scholar] [CrossRef]
- Narahashi, T.; Deguchi, T.; Urakawa, N.; Ohkubo, Y. Stabilization and rectification of muscle fiber membrane by tetrodotoxin. Am. J. Physiol. 1960, 198, 934–938. [Google Scholar] [CrossRef] [Green Version]
- Mattei, C. Tetrodotoxin, a Candidate Drug for Nav1.1-Induced Mechanical Pain? Mar. Drugs 2018, 16, 72. [Google Scholar] [CrossRef] [Green Version]
- Obeng, S.; Hiranita, T.; Leon, F.; McMahon, L.R.; McCurdy, C.R. Novel Approaches, Drug Candidates, and Targets in Pain Drug Discovery. J. Med. Chem. 2021, 64, 6523–6548. [Google Scholar] [CrossRef] [PubMed]
- Kohane, D.; Smith, S.; Louis, D.; Colombo, G.; Ghoroghchian, P.; Hunfeld, N.; Berde, C.; Langer, R. Prolonged duration local anesthesia from tetrodotoxin-enhanced local anesthetic microspheres. Pain 2003, 104, 415–421. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, A.; Lagos, N.; Lagos, M.; Braghetto, I.; Csendes, A.; Hamilton, J.; Figueroa, C.; Truan, D.; Garcia, C.; Rojas, A. Neosaxitoxin as a local anesthetic: Preliminary observations from a first human trial. Anesthesiology 2007, 106, 339–345. [Google Scholar] [CrossRef]
- Rodríguez-Navarro, A.; Berde, C.; Wiedmaier, G.; Mercado, A.; Garcia, C.; Iglesias, V.; Zurakowski, D. Comparison of neosaxitoxin versus bupivacaine via port infiltration for postoperative analgesia following laparoscopic cholecystectomy: A randomized, double-blind trial. Reg. Anesth. Pain Med. 2011, 36, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Lobo, K.; Donado, C.; Cornelissen, L.; Kim, J.; Ortiz, R.; Peake, R.; Kellogg, M.; Alexander, M.; Zurakowski, D.; Kurgansky, K.; et al. A Phase 1, Dose-escalation, Double-blind, Block-randomized, Controlled Trial of Safety and Efficacy of Neosaxitoxin Alone and in Combination with 0.2% Bupivacaine, with and without Epinephrine, for Cutaneous Anesthesia. Anesthesiology 2015, 123, 873–885. [Google Scholar] [CrossRef] [Green Version]
- Moore, D.C.; Bridenbaugh, L.D.; Bridenbaugh, P.O.; Thompson, G.E.; Tucker, G.T. Does compounding of local anesthetic agents increase their toxicity in humans? Anesth. Analg. 1972, 51, 579–585. [Google Scholar] [CrossRef]
- Roberman, D.; Arora, H.; Sessler, D.I.; Ritchey, M.; You, J.; Kumar, P. Combined versus sequential injection of mepivacaine and ropivacaine for supraclavicular nerve blocks. Reg. Anesth. Pain Med. 2011, 36, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Gunjiyal, M.S.; Mohammed, S.; Bhatia, P.; Chhabra, S.; Kumar, M.; Sharma, A. Effect of combined versus sequential injection of 2% lidocaine and 0.5% bupivacaine on the onset and duration of supraclavicular brachial plexus block: A double blinded randomised controlled trial. J. Clin. Anesth. 2021, 72, 110313. [Google Scholar] [CrossRef]
- Nestor, C.C.; Ng, C.; Sepulveda, P.; Irwin, M.G. Pharmacological and clinical implications of local anaesthetic mixtures: A narrative review. Anaesthesia 2022, 77, 339–350. [Google Scholar] [CrossRef]
- Siddique, Z.; Nestor, C.C. Letter to the editor: Dexamethasone and ropivacaine—Potential for physiochemical incompatibility. J. Clin. Anesth. 2022, 82, 110934. [Google Scholar] [CrossRef]
- Cohen, S.E.; Thurlow, A. Comparison of a chloroprocaine-bupivacaine mixture with chloroprocaine and bupivacaine used individually for obstetric epidural analgesia. Anesthesiology 1979, 51, 288–292. [Google Scholar] [CrossRef]
- Seow, L.T.; Lips, F.J.; Cousins, M.J.; Mather, L.E. Lidocaine and bupivacaine mixtures for epidural blockade. Anesthesiology 1982, 56, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Cuvillon, P.; Nouvellon, E.; Ripart, J.; Boyer, J.-C.; Dehour, L.; Mahamat, A.; L’hermite, J.; Boisson, C.; Vialles, N.; Lefrant, J.Y.; et al. A comparison of the pharmacodynamics and pharmacokinetics of bupivacaine, ropivacaine (with epinephrine) and their equal volume mixtures with lidocaine used for femoral and sciatic nerve blocks: A double-blind randomized study. Anesth. Analg. 2009, 108, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Bobik, P.; Kosel, J.; Swirydo, P.; Talalaj, M.; Czaban, I.; Radziwon, W. Comparison of the pharmacological properties of 0.375% bupivacaine with epinephrine, 0.5% ropivacaine and a mixture of bupivacaine with epinephrine and lignocaine—A randomized prospective study. J. Plast. Surg. Hand Surg. 2020, 54, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Munirama, S.; McLeod, G. A systematic review and meta-analysis of ultrasound versus electrical stimulation for peripheral nerve location and blockade. Anaesthesia 2015, 70, 1084–1091. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.S.; Ngeow, J.; John, R.S. Evidence basis for ultrasound-guided block characteristics: Onset, quality, and duration. Reg. Anesth. Pain Med. 2010, 35 (Suppl. S2), S26–S35. [Google Scholar] [CrossRef]
- Barrington, M.J.; Uda, Y. Did ultrasound fulfill the promise of safety in regional anesthesia? Curr. Opin. Anaesthesiol. 2018, 31, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Mather, L.E.; Copeland, S.E.; Ladd, L.A. Acute toxicity of local anesthetics: Underlying pharmacokinetic and pharmacodynamic concepts. Reg. Anesth. Pain Med. 2005, 30, 553–566. [Google Scholar] [CrossRef]
- Zhao, G.; Ding, X.; Guo, Y.; Chen, W. Intrathecal lidocaine neurotoxicity: Combination with bupivacaine and ropivacaine and effect of nerve growth factor. Life Sci. 2014, 112, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Marhofer, P.; Hopkins, P.M. Dexamethasone in regional anaesthesia: Travelling up a blind alley? Anaesthesia 2019, 74, 969–972. [Google Scholar] [CrossRef]
- Desai, N.; Kirkham, K.R.; Albrecht, E. Local anaesthetic adjuncts for peripheral regional anaesthesia: A narrative review. Anaesthesia 2021, 76 (Suppl. S1), 100–109. [Google Scholar] [CrossRef] [PubMed]
- Hoerner, E.; Stundner, O.; Putz, G.; Steinfeldt, T.; Mathis, S.; Gasteiger, L. Crystallization of ropivacaine and bupivacaine when mixed with different adjuvants: A semiquantitative light microscopy analysis. Reg. Anesth. Pain Med. 2022, 47, 625–629. [Google Scholar] [CrossRef] [PubMed]
- Emelife, P.I.; Eng, M.; Menard, B.; Myers, A.; Cornett, E.; Urman, R.; Kaye, A. Adjunct medications for peripheral and neuraxial anesthesia. Best Pract. Res. Clin. Anaesthesiol. 2018, 32, 83–99. [Google Scholar] [CrossRef] [PubMed]
- Brummett, C.M.; Williams, B.A. Additives to local anesthetics for peripheral nerve blockade. Int. Anesthesiol. Clin. 2011, 49, 104–116. [Google Scholar] [CrossRef] [Green Version]
- McCartney, C.J.; Duggan, E.; Apatu, E. Should we add clonidine to local anesthetic for peripheral nerve blockade? A qualitative systematic review of the literature. Reg. Anesth. Pain. Med. 2007, 32, 330–338. [Google Scholar] [CrossRef]
- Fournier, R.; Faust, A.; Chassot, O.; Gamulin, Z. Perineural clonidine does not prolong levobupivacaine 0.5% after sciatic nerve block using the Labat approach in foot and ankle surgery. Reg Anesth Pain Med. 2012, 37, 521–524. [Google Scholar] [CrossRef]
- YaDeau, J.; LaSala, V.; Paroli, L.; Kahn, R.; Jules-Elysée, K.; Levine, D.; Wukovits, B.; Lipnitsky, J. Clonidine and analgesic duration after popliteal fossa nerve blockade: Randomized, double-blind, placebo-controlled study. Anesth. Analg. 2008, 106, 1916–1920. [Google Scholar] [CrossRef]
- Kirksey, M.A.; Haskins, S.C.; Cheng, J.; Liu, S.S. Local Anesthetic Peripheral Nerve Block Adjuvants for Prolongation of Analgesia: A Systematic Qualitative Review. PLoS ONE 2015, 10, e0137312. [Google Scholar] [CrossRef]
- Popping, D.M.; Elia, N.; Marret, E.; Wenk, M.; Tramer, M.R. Clonidine as an adjuvant to local anesthetics for peripheral nerve and plexus blocks: A meta-analysis of randomized trials. Anesthesiology 2009, 111, 406–415. [Google Scholar] [CrossRef] [Green Version]
- Gertler, R.; Brown, H.C.; Mitchell, D.H.; Silvius, E.N. Dexmedetomidine: A novel sedative-analgesic agent. Proc. (Bayl. Univ. Med. Cent.) 2001, 14, 13–21. [Google Scholar] [CrossRef]
- Schnabel, A.; Reichl, S.; Weibel, S.; Kranke, P.; Zahn, P.; Pogatzki-Zahn, E.; Meyer-Frießem, C. Efficacy and safety of dexmedetomidine in peripheral nerve blocks: A meta-analysis and trial sequential analysis. Eur. J. Anaesthesiol. 2018, 35, 745–758. [Google Scholar] [CrossRef] [PubMed]
- Vorobeichik, L.; Brull, R.; Abdallah, F.W. Evidence basis for using perineural dexmedetomidine to enhance the quality of brachial plexus nerve blocks: A systematic review and meta-analysis of randomized controlled trials. Br. J. Anaesth. 2017, 118, 167–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, S.; Rodseth, R.; McCartney, C.J. Effects of dexamethasone as a local anaesthetic adjuvant for brachial plexus block: A systematic review and meta-analysis of randomized trials. Br. J. Anaesth. 2014, 112, 427–439. [Google Scholar] [CrossRef] [Green Version]
- Kirkham, K.R.; Jacot-Guillarmod, A.; Albrecht, E. Optimal Dose of Perineural Dexamethasone to Prolong Analgesia After Brachial Plexus Blockade: A Systematic Review and Meta-analysis. Anesth. Analg. 2018, 126, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Jaeger, P.; Grevstad, U.; Koscielniak-Nielsen, Z.J.; Sauter, A.R.; Sorensen, J.K.; Dahl, J.B. Does dexamethasone have a perineural mechanism of action? A paired, blinded, randomized, controlled study in healthy volunteers. Br. J. Anaesth. 2016, 117, 635–641. [Google Scholar] [CrossRef] [Green Version]
- Sehmbi, H.; Brull, R.; Ceballos, K.R.; Shah, U.J.; Martin, J.; Tobias, A.; Solo, K.; Abdallah, F.W. Perineural and intravenous dexamethasone and dexmedetomidine: Network meta-analysis of adjunctive effects on supraclavicular brachial plexus block. Anaesthesia 2021, 76, 974–990. [Google Scholar] [CrossRef]
- Hoerner, E.; Gasteiger, L.; Ortler, M.; Pustilnik, V.; Mathis, S.; Brunner, C.; Neururer, S.; Schlager, A.; Egle, D.; Putz, G. The impact of dexamethasone as a perineural additive to ropivacaine for PECS II blockade in patients undergoing unilateral radical mastectomy—A prospective, randomized, controlled and double-blinded trial. J. Clin. Anesth. 2022, 77, 110622. [Google Scholar] [CrossRef]
- Marhofer, P.; Columb, M.; Hopkins, P.; Greher, M.; Marhofer, D.; Bienzle, M.; Zeitlinger, M. Dexamethasone as an adjuvant for peripheral nerve blockade: A randomised, triple-blinded crossover study in volunteers. Br. J. Anaesth. 2019, 122, 525–531. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.A.; Hough, K.A.; Tsui, B.Y.; Ibinson, J.W.; Gold, M.S.; Gebhart, G.F. Neurotoxicity of adjuvants used in perineural anesthesia and analgesia in comparison with ropivacaine. Reg. Anesth. Pain Med. 2011, 36, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Niemi, G. Advantages and disadvantages of adrenaline in regional anaesthesia. Best Pract. Res. Clin. Anaesthesiol. 2005, 19, 229–245. [Google Scholar] [CrossRef]
- Murphy, D.B.; McCartney, C.J.; Chan, V.W. Novel analgesic adjuncts for brachial plexus block: A systematic review. Anesth. Analg. 2000, 90, 1122–1128. [Google Scholar] [CrossRef] [Green Version]
- Leffler, A.; Frank, G.; Kistner, K.; Niedermirtl, F.; Koppert, W.; Reeh, P.; Nau, C. Local anesthetic-like inhibition of voltage-gated Na(+) channels by the partial mu-opioid receptor agonist buprenorphine. Anesthesiology 2012, 116, 1335–1346. [Google Scholar] [CrossRef] [Green Version]
- Schnabel, A.; Reichl, S.U.; Zahn, P.K.; Pogatzki-Zahn, E.M.; Meyer-Friessem, C.H. Efficacy and safety of buprenorphine in peripheral nerve blocks: A meta-analysis of randomised controlled trials. Eur. J. Anaesthesiol. 2017, 34, 576–586. [Google Scholar] [CrossRef] [PubMed]
- Pöpping, D.; Elia, N.; Van Aken, H.; Marret, E.; Schug, S.; Kranke, P.; Wenk, M.; Tramèr, M. Impact of epidural analgesia on mortality and morbidity after surgery: Systematic review and meta-analysis of randomized controlled trials. Ann. Surg. 2014, 259, 1056–1067. [Google Scholar] [CrossRef] [PubMed]
- Bos, E.M.E.; Hollmann, M.W.; Lirk, P. Safety and efficacy of epidural analgesia. Curr. Opin. Anaesthesiol. 2017, 30, 736–742. [Google Scholar] [CrossRef] [PubMed]
- Anim-Somuah, M.; Smyth, R.M.; Cyna, A.M.; Cuthbert, A. Epidural versus non-epidural or no analgesia for pain management in labour. Cochrane Database Syst. Rev. 2018, 5, CD000331. [Google Scholar] [CrossRef]
- Toma, O.; Persoons, B.; Pogatzki-Zahn, E.; Van de Velde, M.; Joshi, G.P.; PROSPECT Working Group Collaborators. PROSPECT guideline for rotator cuff repair surgery: Systematic review and procedure-specific postoperative pain management recommendations. Anaesthesia 2019, 74, 1320–1331. [Google Scholar] [CrossRef] [Green Version]
- Bleckner, L.L.; Bina, S.; Kwon, K.H.; McKnight, G.; Dragovich, A.; Buckenmaier, C.C., 3rd. Serum ropivacaine concentrations and systemic local anesthetic toxicity in trauma patients receiving long-term continuous peripheral nerve block catheters. Anesth. Analg. 2010, 110, 630–634. [Google Scholar] [CrossRef]
- Marhofer, D.; Marhofer, P.; Triffterer, L.; Leonhardt, M.; Weber, M.; Zeitlinger, M. Dislocation rates of perineural catheters: A volunteer study. Br. J. Anaesth. 2013, 111, 800–806. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.Z.; Zhao, J.H.; Gao, P.; Chen, X.W.; Song, Y.X.; Xu, Y.; Xiao, Q.; Dai, S.C.; Li, J.Y.; Wang, Z.N. Continuous Wound Infiltration with Local Anesthetic Is an Effective and Safe Postoperative Analgesic Strategy: A Meta-Analysis. Pain Ther. 2021, 10, 525–538. [Google Scholar] [CrossRef]
- Mungroop, T.; Bond, M.; Lirk, P.; Busch, O.; Hollmann, M.; Veelo, D.; Besselink, M. Preperitoneal or Subcutaneous Wound Catheters as Alternative for Epidural Analgesia in Abdominal Surgery: A Systematic Review and Meta-analysis. Ann. Surg. 2019, 269, 252–260. [Google Scholar] [CrossRef]
- Jagannathan, R.; Niesen, A.D.; D’Souza, R.S.; Johnson, R.L. Intermittent bolus versus continuous infusion techniques for local anesthetic delivery in peripheral and truncal nerve analgesia: The current state of evidence. Reg. Anesth. Pain Med. 2019, 44, 447–451. [Google Scholar] [CrossRef]
- Taketa, Y.; Irisawa, Y.; Fujitani, T. Programmed intermittent bolus infusion versus continuous infusion of 0.2% levobupivacaine after ultrasound-guided thoracic paravertebral block for video-assisted thoracoscopic surgery: A randomised controlled trial. Eur. J. Anaesthesiol. 2019, 36, 272–278. [Google Scholar] [CrossRef]
- Wong, C.A.; Ratliff, J.T.; Sullivan, J.T.; Scavone, B.M.; Toledo, P.; McCarthy, R.J. A randomized comparison of programmed intermittent epidural bolus with continuous epidural infusion for labor analgesia. Anesth. Analg. 2006, 102, 904–909. [Google Scholar] [CrossRef] [PubMed]
- Capogna, G.; Camorcia, M.; Stirparo, S.; Farcomeni, A. Programmed intermittent epidural bolus versus continuous epidural infusion for labor analgesia: The effects on maternal motor function and labor outcome. A randomized double-blind study in nulliparous women. Anesth. Analg. 2011, 113, 826–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Zhou, J.; Xiao, H.; Pan, S.; Liu, J.; Shang, Y.; Yao, S. A Systematic Review and Meta-Analysis Comparing Programmed Intermittent Bolus and Continuous Infusion as the Background Infusion for Parturient-Controlled Epidural Analgesia. Sci. Rep. 2019, 9, 2583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Trade Name | LA/Analgetic | Polymer Class | Approved Application | Year of Approval |
---|---|---|---|---|
EXPAREL® | Liposolmal Bupivacaine | Liposome | Field block infiltration, brachial block, femoral block [22,23,24] | 2020 |
ZYNRELEF® | Bupivacaine/Meloxicam | Biological polymer | Needle-free wound application [25,26,27] | 2020 |
SABER® Bupivacaine | Sucrose acetate isobutyrate extended-release bupivacaine | Biological polymer | Subacromial injection [28,29,30] | 2021 |
XARACOLL® INL-001 | Bupivacaine | Biological polymer | Needle-free wound application for inguinal-hernia repair [31,32] | 2021 |
Adjuvants | Mechanism of Action | Prolongation of Sensory Block | Side Effects |
---|---|---|---|
Clonidine | Inhibition of hyperpolarization-activated cation current (Ih); vasoconstriction | 2.8 to 3.3 h | Sedation, hypotension, bradycardia |
Dexmedetomidine | Inhibition of hyperpolarization-activated cation current (Ih); | Up to 5 h | Sedation, hypotension, bradycardia |
Dexamethasone | None | Contradictory results | Increased LA neurotoxicity Precipitation with long-acting LA |
Epinephrine | vasoconstriction | Up to 60 min | Increased LA neurotoxicity |
Opioids | μ − opioid receptor agonist generated action on C-fibers | Up to 9 h (low evidence) | Nausea, vomiting, pruritus |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gasteiger, L.; Kirchmair, L.; Hoerner, E.; Stundner, O.; Hollmann, M.W. Peripheral Regional Anesthesia Using Local Anesthetics: Old Wine in New Bottles? J. Clin. Med. 2023, 12, 1541. https://doi.org/10.3390/jcm12041541
Gasteiger L, Kirchmair L, Hoerner E, Stundner O, Hollmann MW. Peripheral Regional Anesthesia Using Local Anesthetics: Old Wine in New Bottles? Journal of Clinical Medicine. 2023; 12(4):1541. https://doi.org/10.3390/jcm12041541
Chicago/Turabian StyleGasteiger, Lukas, Lukas Kirchmair, Elisabeth Hoerner, Ottokar Stundner, and Markus W. Hollmann. 2023. "Peripheral Regional Anesthesia Using Local Anesthetics: Old Wine in New Bottles?" Journal of Clinical Medicine 12, no. 4: 1541. https://doi.org/10.3390/jcm12041541
APA StyleGasteiger, L., Kirchmair, L., Hoerner, E., Stundner, O., & Hollmann, M. W. (2023). Peripheral Regional Anesthesia Using Local Anesthetics: Old Wine in New Bottles? Journal of Clinical Medicine, 12(4), 1541. https://doi.org/10.3390/jcm12041541