Pregnancy after Kidney Transplantation—Impact of Functional Renal Reserve, Slope of eGFR before Pregnancy, and Intensity of Immunosuppression on Kidney Function and Maternal Health
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patient Selection and Data Acquisition
2.2. Matched-Pair Analysis
2.3. Statistics
3. Results
3.1. Pregnancy Outcome
3.2. Maternal Outcome
3.3. Allograft Function
3.4. Long-Term Follow-Up and Allograft Loss
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Holley, J.L.; Schmidt, R.J. Changes in fertility and hormone replacement therapy in kidney disease. Adv. Chronic Kidney Dis. 2013, 20, 240–245. [Google Scholar] [CrossRef]
- McKay, D.B.; Josephson, M.A.; Armenti, V.T.; August, P.; Coscia, L.A.; Davis, C.L.; Davison, J.M.; Easterling, T.; Friedman, J.E.; Hou, S.; et al. Reproduction and transplantation: Report on the AST Consensus Conference on Reproductive Issues and Transplantation. Am. J. Transplant. 2005, 5, 1592–1599. [Google Scholar] [CrossRef] [Green Version]
- Deshpande, N.A.; James, N.T.; Kucirka, L.M.; Boyarsky, B.J.; Garonzik-Wang, J.M.; Montgomery, R.A.; Segev, D.L. Pregnancy outcomes in kidney transplant recipients: A systematic review and meta-analysis. Am. J. Transplant. 2011, 11, 2388–2404. [Google Scholar] [CrossRef] [PubMed]
- Sibanda, N.; Briggs, J.D.; Davison, J.M.; Johnson, R.J.; Rudge, C.J. Pregnancy after organ transplantation: A report from the UK Transplant pregnancy registry. Transplantation 2007, 83, 1301–1307. [Google Scholar] [CrossRef] [PubMed]
- Wyld, M.L.; Clayton, P.A.; Jesudason, S.; Chadban, S.J.; Alexander, S.I. Pregnancy outcomes for kidney transplant recipients. Am. J. Transplant. 2013, 13, 3173–3182. [Google Scholar] [CrossRef] [PubMed]
- Bramham, K.; Nelson-Piercy, C.; Gao, H.; Pierce, M.; Bush, N.; Spark, P.; Brocklehurst, P.; Kurinczuk, J.J.; Knight, M. Pregnancy in renal transplant recipients: A UK national cohort study. Clin. J. Am Soc. Nephrol. 2013, 8, 290–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majak, G.B.; Reisaeter, A.V.; Weedon-Fekjaer, H.; Henriksen, T.; Michelsen, T.M. The Effect of Pregnancy on the Long-term Risk of Graft Loss, Cardiovascular Disease, and Death in Kidney Transplanted Women in Norway: A Retrospective Cohort Study. Transplantation 2018, 102, e391–e396. [Google Scholar] [CrossRef] [PubMed]
- Alkhunaizi, A.; Melamed, N.; Hladunewich, M.A. Pregnancy in advanced chronic kidney disease and end-stage renal disease. Curr. Opin. Nephrol. Hypertens. 2015, 24, 252–259. [Google Scholar] [CrossRef]
- Jones, D.C.; Hayslett, J.P. Outcome of pregnancy in women with moderate or severe renal insufficiency. N. Engl. J. Med. 1996, 335, 226–232. [Google Scholar] [CrossRef]
- Piccoli, G.B.; Cabiddu, G.; Attini, R.; Gerbino, M.; Todeschini, P.; Perrino, M.L.; Manzione, A.M.; Piredda, G.B.; Gnappi, E.; Caputo, F.; et al. Outcomes of Pregnancies After Kidney Transplantation: Lessons Learned From CKD. A Comparison of Transplanted, Nontransplanted Chronic Kidney Disease Patients and Low-Risk Pregnancies: A Multicenter Nationwide Analysis. Transplantation 2017, 101, 2536–2544. [Google Scholar] [CrossRef]
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S.; et al. Hypertensive Disorders of Pregnancy: ISSHP Classification, Diagnosis, and Management Recommendations for International Practice. Hypertension 2018, 72, 24–43. [Google Scholar] [CrossRef] [Green Version]
- Maynard, S.E.; Min, J.Y.; Merchan, J.; Lim, K.H.; Li, J.; Mondal, S.; Libermann, T.A.; Morgan, J.P.; Sellke, F.W.; Stillman, I.E.; et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Investig. 2003, 111, 649–658. [Google Scholar] [CrossRef] [Green Version]
- Levine, R.J.; Lam, C.; Qian, C.; Yu, K.F.; Maynard, S.E.; Sachs, B.P.; Sibai, B.M.; Epstein, F.H.; Romero, R.; Thadhani, R.; et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N. Engl. J. Med. 2006, 355, 992–1005. [Google Scholar] [CrossRef] [PubMed]
- Levine, R.J.; Maynard, S.E.; Qian, C.; Lim, K.H.; England, L.J.; Yu, K.F.; Schisterman, E.F.; Thadhani, R.; Sachs, B.P.; Epstein, F.H.; et al. Circulating angiogenic factors and the risk of preeclampsia. N. Engl. J. Med. 2004, 350, 672–683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiettecatte, J.; Russcher, H.; Anckaert, E.; Mees, M.; Leeser, B.; Tirelli, A.S.; Fiedler, G.M.; Luthe, H.; Denk, B.; Smitz, J. Multicenter evaluation of the first automated Elecsys sFlt-1 and PlGF assays in normal pregnancies and preeclampsia. Clin. Biochem. 2010, 43, 768–770. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.; Powe, C.E.; Salahuddin, S.; Verlohren, S.; Perschel, F.H.; Levine, R.J.; Lim, K.H.; Wenger, J.B.; Thadhani, R.; Karumanchi, S.A. Angiogenic factors and the risk of adverse outcomes in women with suspected preeclampsia. Circulation 2012, 125, 911–919. [Google Scholar] [CrossRef] [Green Version]
- Zeisler, H.; Llurba, E.; Chantraine, F.; Vatish, M.; Staff, A.C.; Sennstrom, M.; Olovsson, M.; Brennecke, S.P.; Stepan, H.; Allegranza, D.; et al. Predictive Value of the sFlt-1:PlGF Ratio in Women with Suspected Preeclampsia. N. Engl. J. Med. 2016, 374, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Magee, L.A.; Brown, M.A.; Hall, D.R.; Gupte, S.; Hennessy, A.; Karumanchi, S.A.; Kenny, L.C.; McCarthy, F.; Myers, J.; Poon, L.C.; et al. The 2021 International Society for the Study of Hypertension in Pregnancy classification, diagnosis & management recommendations for international practice. Pregnancy Hypertens. 2022, 27, 148–169. [Google Scholar] [CrossRef]
- Bachmann, F.; Budde, K.; Gerland, M.; Wiechers, C.; Heyne, N.; Nadalin, S.; Brucker, S.; Bachmann, C. Pregnancy following kidney transplantation—Impact on mother and graft function and focus on childrens’ longitudinal development. BMC Pregnancy Childbirth 2019, 19, 376. [Google Scholar] [CrossRef]
- Schmidt, D.; Osmanodja, B.; Pfefferkorn, M.; Graf, V.; Raschke, D.; Duettmann, W.; Naik, M.G.; Gethmann, C.J.; Mayrdorfer, M.; Halleck, F.; et al. TBase—An Integrated Electronic Health Record and Research Database for Kidney Transplant Recipients. J. Vis. Exp. 2021, 170, e61971. [Google Scholar] [CrossRef]
- Bornstein, E.; Eliner, Y.; Chervenak, F.A.; Grunebaum, A. Concerning trends in maternal risk factors in the United States: 1989–2018. EClinicalMedicine 2020, 29–30, 100657. [Google Scholar] [CrossRef] [PubMed]
- Lo, J.O.; Mission, J.F.; Caughey, A.B. Hypertensive disease of pregnancy and maternal mortality. Curr. Opin. Obstet. Gynecol. 2013, 25, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C.L.; Ford, J.B.; Algert, C.S.; Antonsen, S.; Chalmers, J.; Cnattingius, S.; Gokhale, M.; Kotelchuck, M.; Melve, K.K.; Langridge, A.; et al. Population-based trends in pregnancy hypertension and pre-eclampsia: An international comparative study. BMJ Open 2011, 1, e000101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hebral, A.L.; Cointault, O.; Connan, L.; Congy-Jolivet, N.; Esposito, L.; Cardeau-Desangles, I.; Del Bello, A.; Lavayssiere, L.; Nogier, M.B.; Ribes, D.; et al. Pregnancy after kidney transplantation: Outcome and anti-human leucocyte antigen alloimmunization risk. Nephrol. Dial. Transplant. 2014, 29, 1786–1793. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.; Venkatesan, R.L.; Gupta, A.; Sanghavi, M.K.; Welge, J.; Johansen, R.; Kean, E.B.; Kaur, T.; Gupta, A.; Grant, T.J.; et al. Pregnancy outcomes in women with kidney transplant: Metaanalysis and systematic review. BMC Nephrol. 2019, 20, 24. [Google Scholar] [CrossRef]
- Vannevel, V.; Claes, K.; Baud, D.; Vial, Y.; Golshayan, D.; Yoon, E.W.; Hodges, R.; Le Nepveu, A.; Kerr, P.G.; Kennedy, C.; et al. Preeclampsia and Long-term Renal Function in Women Who Underwent Kidney Transplantation. Obstet. Gynecol. 2018, 131, 57–62. [Google Scholar] [CrossRef]
- Thompson, B.C.; Kingdon, E.J.; Tuck, S.M.; Fernando, O.N.; Sweny, P. Pregnancy in renal transplant recipients: The Royal Free Hospital experience. QJM 2003, 96, 837–844. [Google Scholar] [CrossRef] [Green Version]
- Wiles, K.; Chappell, L.; Clark, K.; Elman, L.; Hall, M.; Lightstone, L.; Mohamed, G.; Mukherjee, D.; Nelson-Piercy, C.; Webster, P.; et al. Clinical practice guideline on pregnancy and renal disease. BMC Nephrol. 2019, 20, 401. [Google Scholar] [CrossRef] [Green Version]
- Dunlop, W. Serial changes in renal haemodynamics during normal human pregnancy. Br. J. Obstet. Gynaecol. 1981, 88, 1–9. [Google Scholar] [CrossRef]
- Fischer, T.; Neumayer, H.H.; Fischer, R.; Barenbrock, M.; Schobel, H.P.; Lattrell, B.C.; Jacobs, V.R.; Paepke, S.; von Steinburg, S.P.; Schmalfeldt, B.; et al. Effect of pregnancy on long-term kidney function in renal transplant recipients treated with cyclosporine and with azathioprine. Am. J. Transplant. 2005, 5, 2732–2739. [Google Scholar] [CrossRef]
- Conrad, K.P. Mechanisms of renal vasodilation and hyperfiltration during pregnancy. J. Soc. Gynecol. Investig. 2004, 11, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Davison, J.M.; Homuth, V.; Jeyabalan, A.; Conrad, K.P.; Karumanchi, S.A.; Quaggin, S.; Dechend, R.; Luft, F.C. New aspects in the pathophysiology of preeclampsia. J. Am. Soc. Nephrol. 2004, 15, 2440–2448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helal, I.; Fick-Brosnahan, G.M.; Reed-Gitomer, B.; Schrier, R.W. Glomerular hyperfiltration: Definitions, mechanisms and clinical implications. Nat. Rev. Nephrol. 2012, 8, 293–300. [Google Scholar] [CrossRef]
- Harel, Z.; McArthur, E.; Hladunewich, M.; Dirk, J.S.; Wald, R.; Garg, A.X.; Ray, J.G. Serum Creatinine Levels Before, During, and After Pregnancy. JAMA 2019, 321, 205–207. [Google Scholar] [CrossRef] [Green Version]
- Wiles, K.; Webster, P.; Seed, P.T.; Bennett-Richards, K.; Bramham, K.; Brunskill, N.; Carr, S.; Hall, M.; Khan, R.; Nelson-Piercy, C.; et al. The impact of chronic kidney disease Stages 3-5 on pregnancy outcomes. Nephrol. Dial. Transplant. 2021, 36, 2008–2017. [Google Scholar] [CrossRef]
- McKay, D.B.; Josephson, M.A. Pregnancy in recipients of solid organs—Effects on mother and child. N. Engl. J. Med. 2006, 354, 1281–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richman, K.; Gohh, R. Pregnancy after renal transplantation: A review of registry and single-center practices and outcomes. Nephrol. Dial. Transplant. 2012, 27, 3428–3434. [Google Scholar] [CrossRef] [Green Version]
- Van Buren, M.C.; Schellekens, A.; Groenhof, T.K.J.; van Reekum, F.; van de Wetering, J.; Paauw, N.D.; Lely, A.T. Long-term Graft Survival and Graft Function Following Pregnancy in Kidney Transplant Recipients: A Systematic Review and Meta-analysis. Transplantation 2020, 104, 1675–1685. [Google Scholar] [CrossRef]
- Gorgulu, N.; Yelken, B.; Caliskan, Y.; Turkmen, A.; Sever, M.S. Does pregnancy increase graft loss in female renal allograft recipients? Clin. Exp. Nephrol. 2010, 14, 244–247. [Google Scholar] [CrossRef]
- Rahamimov, R.; Ben-Haroush, A.; Wittenberg, C.; Mor, E.; Lustig, S.; Gafter, U.; Hod, M.; Bar, J. Pregnancy in renal transplant recipients: Long-term effect on patient and graft survival. A single-center experience. Transplantation 2006, 81, 660–664. [Google Scholar] [CrossRef]
- Svetitsky, S.; Baruch, R.; Schwartz, I.F.; Schwartz, D.; Nakache, R.; Goykhman, Y.; Katz, P.; Grupper, A. Long-Term Effects of Pregnancy on Renal Graft Function in Women After Kidney Transplantation Compared With Matched Controls. Transplant. Proc. 2018, 50, 1461–1465. [Google Scholar] [CrossRef] [PubMed]
- Barros, T.; Braga, J.; Correia, A.; Correia, S.; Martins, S.; Braga, A. Pregnancy in kidney transplantation women: Perinatal outcomes and impact on kidney function. J. Matern.-Fetal Neonatal Med. 2022, 35, 10355–10361. [Google Scholar] [CrossRef]
- Gutierrez, M.J.; Gonzalez, P.; Delgado, I.; Gutierrez, E.; Gonzalez, E.; Siqueira, R.C.; Andres, A.; Morales, J.M. Renal allograft function and cardiovascular risk in recipients of kidney transplantation after successful pregnancy. Transplant. Proc. 2009, 41, 2399–2402. [Google Scholar] [CrossRef]
- Fernandez-Fresnedo, G.; Plaza, J.J.; Sanchez-Plumed, J.; Sanz-Guajardo, A.; Palomar-Fontanet, R.; Arias, M. Proteinuria: A new marker of long-term graft and patient survival in kidney transplantation. Nephrol. Dial. Transplant. 2004, 19 (Suppl. S3), iii47–iii51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queipo-Zaragoza, J.A.; Vera-Donoso, C.D.; Soldevila, A.; Sanchez-Plumed, J.; Broseta-Rico, E.; Jimenez-Cruz, J.F. Impact of pregnancy on kidney transplant. Transplant. Proc. 2003, 35, 866–867. [Google Scholar] [CrossRef] [PubMed]
- Rocha, A.; Cardoso, A.; Malheiro, J.; Martins, L.S.; Fonseca, I.; Braga, J.; Henriques, A.C. Pregnancy after kidney transplantation: Graft, mother, and newborn complications. Transplant. Proc. 2013, 45, 1088–1091. [Google Scholar] [CrossRef] [PubMed]
- Gumus, I.I.; Uz, E.; Bavbek, N.; Kargili, A.; Yanik, B.; Turgut, F.H.; Akcay, A.; Turhan, N.O. Does glomerular hyperfiltration in pregnancy damage the kidney in women with more parities? Int. Urol. Nephrol. 2009, 41, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Lee, S.M.; Park, J.S.; Hong, J.S.; Chin, H.J.; Na, K.Y.; Kim, D.K.; Oh, K.H.; Joo, K.W.; Kim, Y.S.; et al. Midterm eGFR and Adverse Pregnancy Outcomes: The Clinical Significance of Gestational Hyperfiltration. Clin. J. Am. Soc. Nephrol. 2017, 12, 1048–1056. [Google Scholar] [CrossRef] [Green Version]
- Gosselink, M.E.; van Buren, M.C.; Kooiman, J.; Groen, H.; Ganzevoort, W.; van Hamersvelt, H.W.; van der Heijden, O.W.H.; van de Wetering, J.; Lely, A.T. A nationwide Dutch cohort study shows relatively good pregnancy outcomes after kidney transplantation and finds risk factors for adverse outcomes. Kidney Int. 2022, 102, 866–875. [Google Scholar] [CrossRef]
- Cadnapaphornchai, M.A.; Ohara, M.; Morris, K.G., Jr.; Knotek, M.; Rogachev, B.; Ladtkow, T.; Carter, E.P.; Schrier, R.W. Chronic NOS inhibition reverses systemic vasodilation and glomerular hyperfiltration in pregnancy. Am. J. Physiol. Renal Physiol. 2001, 280, F592–F598. [Google Scholar] [CrossRef] [Green Version]
- Deng, A.; Conrad, K.; Baylis, C. Relaxin-mediated renal vasodilation in the rat is associated with falls in glomerular blood pressure. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 314, R147–R152. [Google Scholar] [CrossRef]
- Kattah, A.G.; Albadri, S.; Alexander, M.P.; Smith, B.; Parashuram, S.; Mai, M.L.; Khamash, H.A.; Cosio, F.G.; Garovic, V.D. Impact of Pregnancy on GFR Decline and Kidney Histology in Kidney Transplant Recipients. Kidney Int. Rep. 2022, 7, 28–35. [Google Scholar] [CrossRef]
- Kolonko, A.; Chudek, J.; Wiecek, A. Nephron underdosing as a risk factor for impaired early kidney graft function and increased graft loss during the long-term follow-up period. Transplant. Proc. 2013, 45, 1639–1643. [Google Scholar] [CrossRef] [PubMed]
- Malvezzi, P.; Rostaing, L. The safety of calcineurin inhibitors for kidney-transplant patients. Expert Opin. Drug Saf. 2015, 14, 1531–1546. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues-Diez, R.; Gonzalez-Guerrero, C.; Ocana-Salceda, C.; Rodrigues-Diez, R.R.; Egido, J.; Ortiz, A.; Ruiz-Ortega, M.; Ramos, A.M. Calcineurin inhibitors cyclosporine A and tacrolimus induce vascular inflammation and endothelial activation through TLR4 signaling. Sci. Rep. 2016, 6, 27915. [Google Scholar] [CrossRef] [Green Version]
- Majak, G.B.; Reisaeter, A.V.; Zucknick, M.; Lorentzen, B.; Vangen, S.; Henriksen, T.; Michelsen, T.M. Preeclampsia in kidney transplanted women; Outcomes and a simple prognostic risk score system. PLoS ONE 2017, 12, e0173420. [Google Scholar] [CrossRef] [PubMed]
- Koenjer, L.M.; Meinderts, J.R.; van der Heijden, O.W.H.; Lely, T.; de Jong, M.F.C.; van der Molen, R.G.; van Hamersvelt, H.W.; Members of the PARTOUT Network. Comparison of pregnancy outcomes in Dutch kidney recipients with and without calcineurin inhibitor exposure: A retrospective study. Transpl. Int. 2021, 34, 2669–2679. [Google Scholar] [CrossRef]
- Jain, A.B.; Shapiro, R.; Scantlebury, V.P.; Potdar, S.; Jordan, M.L.; Flohr, J.; Marcos, A.; Fung, J.J. Pregnancy after kidney and kidney-pancreas transplantation under tacrolimus: A single center’s experience. Transplantation 2004, 77, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Levidiotis, V.; Chang, S.; McDonald, S. Pregnancy and maternal outcomes among kidney transplant recipients. J. Am. Soc. Nephrol. 2009, 20, 2433–2440. [Google Scholar] [CrossRef] [Green Version]
- Lopez Del Moral, C.; Wu, K.; Naik, M.; Osmanodja, B.; Akifova, A.; Lachmann, N.; Stauch, D.; Hergovits, S.; Choi, M.; Bachmann, F.; et al. The natural history of de novo donor-specific HLA antibodies after kidney transplantation. Front. Med. 2022, 9, 943502. [Google Scholar] [CrossRef]
- MacDonald, T.M.; Walker, S.P.; Hannan, N.J.; Tong, S.; Kaitu’u-Lino, T.J. Clinical tools and biomarkers to predict preeclampsia. EBioMedicine 2022, 75, 103780. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics * | Pregnancy Group n = 40 | Control Group n = 40 | Statistical Group Difference (p-Value) |
---|---|---|---|
Age at pregnancy (y) | 32.5 ± 4.4 | 32.9 ± 4.9 | n.s. |
Age at TX (y) | 25.6 ± 6.9 | 27.2 ± 6.4 | n.s. |
Kidney Disease | n.s. | ||
IgA nephropathy | 11 | 5 | |
Other glomerulonephritis | 6 | 8 | |
Diabetic nephropathy | 4 | 2 | |
Polycystic kidney disease | 0 | 2 | |
Reflux or hypoplastic kidney disease | 4 | 7 | |
Other reasons | 6 | 10 | |
Unknown | 9 | 5 | |
Type of transplant | n.s. | ||
Single kidney | 37 | 38 | |
Combined pancreas–kidney | 3 | 2 | |
Time between kidney failure and transplantation (m) | 34.8 ± 48.2 | 37.8 ± 42.3 | n.s. |
Time after transplantation (y) | 5.8 ± 4.8 | 4.6 ± 4.1 | n.s. |
Donor age (y) | 39.6 ± 17.2 | 47.6 ± 9.3 | 0.005 |
Type of donation | n.s. | ||
Postmortem | 20 | 18 | |
ABO compatible living donation | 18 | 20 | |
ABO incompatible living donation | 2 | 2 | |
Immunosuppressive regimen | |||
Triple IS | 18 | 26 | 0.072 |
Dual IS | 21 | 13 | 0.07 |
Steroids | 26 | 28 | 0.633 |
Calcineurin inhibitor | 35 | 39 | 0.201 |
Mycophenolic acid | 29 | 33 | 0.284 |
Others (mTORi, belatacept, or azathioprine) | 7 | 4 | 0.33 |
Induction therapy at TX | n.s. | ||
Basiliximab | 25 | 20 | |
Thymoglobulin | 4 | 2 | |
HLA class I at time of pregnancy | 8 | 10 | n.s. |
HLA class II at time of pregnancy | 7 | 7 | |
DSA | 2/35 | 4/40 | |
Co-morbidities | n.s. | ||
Hypertension | 24 | 22 | |
Diabetes mellitus | 4 | 7 | |
Systolic BP (mmHg) | 123 ± 12 | 120 ± 11 | n.s. |
Diastolic BP (mmHg) | 84 ± 9 | 81 ± 8 | |
History of pregnancy | N/A | ||
Previous successful pregnancy | 10 | ||
Previous miscarriage | 15 | ||
Kidney function at start of pregnancy/observation | n.s. | ||
eGFR (mL/min) | 64 ± 22 | 61 ± 22 | |
Creatinine (mg/dL) | 1.2 ± 0.5 | 1.3 ± 0.4 | |
Proteinuria (mg/g creatinine) | 218 ± 278 | 186 ± 163 |
Patient Characteristics * | Pregnancy Group n = 40 |
---|---|
Pregnancy ≥ 12 weeks | 38 |
Median gestational weeks (IQR) | 35.15 (31.5, 37.225) |
Adverse pregnancy outcome | 18 |
Severe hypertension ** | 3 |
Acute kidney injury (AKIN) II | 6 |
Acute kidney injury (AKIN) III | 2 |
Gestational thrombocytopenia | 12 |
Abortion ≥ 12 weeks | 4 |
Stillbirth | 1 |
Early preterm delivery ≤ 32 weeks | 3 |
Intrauterine growth restriction | 8 |
Kidney function at end of pregnancy | |
eGFR (mL/min) | 57.5 ± 27.1 |
Proteinuria (mg/g creatinine) | 1051 ± 1541 |
>500 mg/g creatinine (%) | 42.5 |
>1000 mg/g creatinine (%) | 30 |
ΔeGFR (mL/min) | −5.5 ± 17.7 |
ΔProteinuria (mg/g creatinine) | 830 ± 1498 |
Deterioration of eGFR > 5 mL/min (%) | 50 |
Variable * | Pregnancy Group Wo APE n = 26 | Pregnancy Group with APE n = 18 | Statistical Group Difference (p-Value) |
---|---|---|---|
Age at pregnancy (y) | 32.7 ± 4.3 | 33.1 ± 4.3 | n.s. |
Age at TX (y) | 25.8 ± 7.2 | 25.3 ± 6.7 | n.s. |
Time after TX (y) | 5.6 ± 4.4 | 6.8 ± 5.3 | n.s. |
Donor age (y) | 39.3 ± 17.4 | 39.7 ± 19.4 | n.s. |
Living donation | 15 | 6 | n.s. |
Systolic BP (mmHg) | 124 ± 11 | 127 ± 14 | n.s. |
Diastolic BP (mmHg) | 84 ± 10 | 86 ± 13 | |
Previous pregnancy | 12 | 8 | n.s. |
Previous miscarriage | 12 | 7 | n.s. |
Basal IS | |||
Triple IS | 9 | 9 | n.s. |
Dual IS | 15 | 9 | |
Steroids | 14 | 13 | |
Calcineurin inhibitor | 23 | 16 | |
Mycophenolic acid | 16 | 15 | |
mTOR inhibitor | 4 | 2 | |
Azathioprin | 1 | 0 | |
IS during pregnancy | |||
Triple IS | 2 | 7 | 0.021 |
Dual IS | 23 | 10 | 0.031 |
Steroids | 23 | 17 | n.s. |
Calcineurin inhibitor | 25 | 17 | n.s. |
Mycophenolic acid | 0 | 1 | n.s. |
Azathioprin | 5 | 6 | n.s. |
Co-morbidities | |||
Chronic hypertension | 14 | 8 | n.s. |
Diabetes mellitus | 1 | 4 | |
Diabetes during pregnancy | 2 | 5 | |
Weeks of gestation | 36.7 ± 2.2 | 29.4 ± 7.3 | <0.001 |
Childbirth parameters | |||
Newborn weight | 2514 ± 524 | 1566 ± 762 | <0.001 |
Newborn height | 47.3 ± 3.3 | 39.5 ± 7.1 | <0.001 |
Allograft function at pregnancy | |||
eGFR (mL/min) | |||
at start | 64.5 ±16.3 | 61.5 ±23.6 | n.s. |
month 3 | 77.9 ± 22 | 69.1 ± 30.3 | n.s. |
at end of pregnancy | 61.7 ± 24.9 | 53.28 ± 31.29 | n.s. |
pre-pregn eGFR < 60 | 11 | 7 | n.s. |
Hyperfiltration during pregn | 15 | 5 | n.s. |
Renal reserve capacity (mL/min) | 16.6 ± 11.3 | 7.8 ± 13.9 | 0.021 |
eGFR increase (%) | 25 ± 17 | 10 ± 24 | 0.008 |
Increase >20% (%) | 65% | 17% | 0.002 |
Proteinuria (mg/g creatinine) | |||
at start | 240 ± 306 | 172 ± 222 | n.s. |
at end of pregnancy | 1176 ± 1775 | 780 ± 1109 | n.s. |
Rise during pregn >500 mg/g creatinine | 8 | 7 | n.s. |
Fetal ultrasound | |||
PI uterine artery | |||
week 22–23 | 1.02 ± 0.27 | 1.10 ± 0.31 | n.s. |
week 24–26 | 0.81 ± 0.20 | 1.10 ± 0.37 | 0.027 |
week 27–30 | 0.83 ± 0.40 | 0.93 ± 0.35 | n.s. |
PI umbilical artery | |||
week 22–23 | 1.13 ± 0.18 | 1.25 ± 0.39 | n.s. |
week 24–26 | 1.05 ± 0.26 | 1.60 ± 1.24 | n.s. |
week 27–30 | 1.05 ± 0.17 | 1.19 ± 0.54 | n.s. |
Corticosteroid pulse peripartum | 7 | 2 | n.s. |
sFlt-1/PlGF (highest value) | |||
at 2nd trimester (n) | 8.4 ± 9.5 (8) | 54.3 ± 55.2 (4) | 0.085 |
at 3rd trimester (n) | 65.4 ± 76.3 (7) | 68.4 ± 43.6 (7) | 0.528 |
Patient Characteristics | Pregnancy Group n = 40 | Control Group n = 40 | Statistical Group Difference (p-Value) |
---|---|---|---|
12 months FU | |||
eGFR (mL/min) | 59.1 ± 21.5 | 56.6 ± 23.2 | n.s. |
Proteinuria (mg/g creatinine) | 268 ± 474 | 337 ± 741 | n.s. |
>500 mg/g creatinine (%) | 9.5 | 14.3 | n.s. |
>1000 mg/g creatinine (%) | 4.8 | 3.2 | n.s. |
ΔeGFR(mL/min) | −4.2 ± 9.6 | −4.5 ± 13.4 | n.s. |
ΔProteinuria (mg/g creatinine) | 52 ± 487 | 172 ± 694 | n.s. |
Deterioration in eGFR > 5 mL/min (%) | 54.5 | 32.5 | n.s. |
24 months FU | |||
eGFR (mL/min) | 57.7 ± 24.5 | 53.6 ± 23.4 | n.s. |
Proteinuria (mg/g creatinine) | 321 ± 442 | 308 ± 506 | n.s. |
>500 mg/g creatinine (%) | 17.1 | 16.2 | n.s. |
>1000 mg/g creatinine (%) | 9.8 | 10.8 | n.s. |
ΔeGFR | −5.4 ± 14.3 | −7.6 ± 14.1 | n.s. |
ΔProteinuria | 143 ± 424 | 169 ± 446 | n.s. |
Deterioration in eGFR > 5 mL/min (%) | 56.8 | 57.8 | n.s. |
Renal graft loss | 1 | 0 | n.s. |
Variable * | Stable eGFR n = 36 | Worsening eGFR n = 49 | Statistical Group Difference (p-Value) |
---|---|---|---|
Pregnancy | 20 | 26 | n.s. |
Pregnancy with APE | 6/20 | 12/26 | |
Age at TX | 26.8 ± 5.8 | 25.9 ± 7.4 | n.s. |
Living donation | 20 | 25 | n.s. |
Donor age (y) | 43 ± 16 | 43 ± 4 | n.s. |
Time between kidney failure and TX (m) | 43.8 ± 54.6 | 37.2 ± 43.3 | n.s. |
Time after TX (y) | 4.7 ± 4.2 | 5.7 ± 4.7 | n.s. |
GN as kidney disease | 14 | 15 | n.s. |
Basal IS | |||
Steroids | 26 | 30 | n.s. |
Calcineurin inhibitor | 34 | 44 | |
Mycophenolic acid | 27 | 38 | |
Co-Morbidities | |||
Hypertension | 20 | 22 | n.s. |
Diabetes mellitus | 3 | 8 | |
Kidney function | |||
Baseline eGFR | 66.3 ± 19.2 | 61.2 ± 23.3 | n.s. |
ΔeGFR −12 months to start | 4.9 ± 12.0 | −3.9 ± 11.0 | 0.001 |
ΔeGFR −18 months to start | 4.6 ± 18.8 | −1.4 ± 18.1 | 0.127 |
ΔeGFR −24 months to start | −0.6 ± 20.6 | −7.5 ± 14.7 | n.s. |
Baseline proteinuria (mg/g creatinine) | 152 ± 19 | 213 ± 254 | n.s. |
Proteinuria at end of pregnancy/observation (mg/g creatinine) | 277 ± 460 | 340 ± 482 | n.s. |
DSA pre | 4 | 3 | n.s. |
DSA 24FU | 6 | 3 | |
eGFR variability during pregnancy | |||
Hyperfiltration during | 15/20 | 6/26 | 0.001 |
pregn (of n pregn) | |||
Renal reserve capacity | 18.4 ± 13.1 | 8.7 ± 11.7 | 0.002 |
(mL/min) | |||
Increase from baseline | 27 ± 23 | 12 ± 17 | 0.002 |
eGFR (%) | |||
Increase >20% (n) | 15/20 | 6/26 | 0.001 |
Follow up of allograft function | |||
ΔeGFR 12 m FU | 0.1 ± 8.3 | −7.6 ± 12.8 | 0.004 |
ΔeGFR 24 m FU | 3.3 ± 11.2 | −13.3 ± 11.4 | <0.01 |
Stable proteinuria 12 m FU | 31/34 | 42/48 | n.s. |
Stable proteinuria 24 m FU | 28/34 | 39/47 | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaatz, R.; Latartara, E.; Bachmann, F.; Lachmann, N.; Koch, N.; Zukunft, B.; Wu, K.; Schmidt, D.; Halleck, F.; Nickel, P.; et al. Pregnancy after Kidney Transplantation—Impact of Functional Renal Reserve, Slope of eGFR before Pregnancy, and Intensity of Immunosuppression on Kidney Function and Maternal Health. J. Clin. Med. 2023, 12, 1545. https://doi.org/10.3390/jcm12041545
Kaatz R, Latartara E, Bachmann F, Lachmann N, Koch N, Zukunft B, Wu K, Schmidt D, Halleck F, Nickel P, et al. Pregnancy after Kidney Transplantation—Impact of Functional Renal Reserve, Slope of eGFR before Pregnancy, and Intensity of Immunosuppression on Kidney Function and Maternal Health. Journal of Clinical Medicine. 2023; 12(4):1545. https://doi.org/10.3390/jcm12041545
Chicago/Turabian StyleKaatz, Rebecca, Elisabetta Latartara, Friederike Bachmann, Nils Lachmann, Nadine Koch, Bianca Zukunft, Kaiyin Wu, Danilo Schmidt, Fabian Halleck, Peter Nickel, and et al. 2023. "Pregnancy after Kidney Transplantation—Impact of Functional Renal Reserve, Slope of eGFR before Pregnancy, and Intensity of Immunosuppression on Kidney Function and Maternal Health" Journal of Clinical Medicine 12, no. 4: 1545. https://doi.org/10.3390/jcm12041545
APA StyleKaatz, R., Latartara, E., Bachmann, F., Lachmann, N., Koch, N., Zukunft, B., Wu, K., Schmidt, D., Halleck, F., Nickel, P., Eckardt, K. -U., Budde, K., Verlohren, S., & Choi, M. (2023). Pregnancy after Kidney Transplantation—Impact of Functional Renal Reserve, Slope of eGFR before Pregnancy, and Intensity of Immunosuppression on Kidney Function and Maternal Health. Journal of Clinical Medicine, 12(4), 1545. https://doi.org/10.3390/jcm12041545