Characteristics of Spatial Changes in Molars and Alveolar Bone Resorption among Patients with Loss of Mandibular First Molars: A CBCT-Based Morphometric Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of Coordinate Planes
2.2. Measurements
2.2.1. Angulations of Bilateral Mandibular Posterior Teeth
Mesiodistal Angulation
Buccolingual Angulation
2.2.2. Extrusion of Maxillary First Molars
2.2.3. Alveolar Bone Loss in the Missing Tooth Region
Vertical Alveolar Bone Loss in Missing Tooth Region
Horizontal Alveolar Bone Loss in Missing Tooth Region
2.2.4. Evaluation of the Capability of Second Molar Protraction
Capability of Mesialization through Simulation of Molar Protraction
- The required mesialization distances of second molars
- The available mesialization distances of second molars
Bone Defects of Second Molar Protraction through 3D Simulation
3. Results
3.1. Tipping of Mandibular Posterior Teeth
3.2. The Extrusion of Maxillary First Molars
3.3. Alveolar Bone Loss in Missing Tooth Region
3.4. Evaluation of the Capability of Second Molar Protraction
3.5. Evaluation of the Correlation of Parameters and the Duration of Tooth Loss
4. Discussion
5. Conclusions
- Mesial and lingual tipping of mandibular second molars and extrusion of maxillary first molars may occur among patients with missing mandibular first molars.
- Alveolar bone resorption is exhibited in both the vertical and horizontal dimensions following the loss of mandibular first molars.
- Alveolar bone resorption is greater on the buccal side than on the lingual side.
- The quantity of the buccal bone at the CEJ level is the limiting factor in determining the capability of second molar protraction, and alveolar bone augmentation may be indicated for molar protraction.
- Molar uprighting and lingual root torque of mandibular second molars and intrusion of maxillary first molars are recommended for the protraction of mandibular second molars (Figure 10).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Almugla, Y.M. Prevalence of Missing First Permanent Molars in a Selected Population in a University Dental Clinic Setting: A Retrospective Radiographic Study. Int. J. Clin. Pediatr. Dent. 2021, 14, 269–272. [Google Scholar] [CrossRef]
- Rezaie, M.; Ghapanchi, J.; Haghnegahdar, A.; Khojastehpour, L.; Khorshidi, H.; Heidari, H. A Radiographic Evaluation of Missing of Permanent First Molars in a Group of Iranian Children and Adults: A Retrospective Study. Int. J. Dent. 2018, 2018, 5253965. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, M.; Ajami, B.A.; Sarraf Shirazi, A.R.; Afzal Aghaee, M.; Rashidi, S. Dental treatment needs of permanent first molars in mashhad schoolchildren. J. Dent. Res. Dent. Clin. Dent. Prospect. 2010, 4, 52–55. [Google Scholar] [CrossRef]
- Chidagam, P.; Gande, V.C.; Yadlapalli, S.; Venkata, R.Y.; Kondaka, S.; Chedalawada, S. Immediate Versus Delayed Loading of Implant for Replacement of Missing Mandibular First Molar: A Randomized Prospective Six Years Clinical Study. J. Clin. Diagn. Res. 2017, 11, Zc35–Zc39. [Google Scholar] [CrossRef]
- de Carvalho, E.B.; Herbst, P.E.; Faria, A.C.L.; Ribeiro, R.F.; Costa, P.P.; Tiossi, R. Strain transfer behavior of different planning options for mandibular single-molar replacement. J. Prosthet. Dent. 2018, 119, 250–256. [Google Scholar] [CrossRef]
- Kumar, Y.; Chand, P.; Arora, V.; Singh, S.V.; Mishra, N.; Alvi, H.A.; Verma, U.P. Comparison of Rehabilitating Missing Mandibular First Molars with Implant- or Tooth-Supported Prostheses Using Masticatory Efficiency and Patient Satisfaction Outcomes. J. Prosthodont. 2017, 26, 376–380. [Google Scholar] [CrossRef]
- Sreeram, R.R.; Prasad, L.K.; Chakravarthi, P.S.; Devi, N.N.; Kattimani, V.S.; Sreeram, S.K. Evaluation of Hi-Tec Implant Restoration in Mandibular First Molar Region- A Prospective Clinical Study. J. Clin. Diagn. Res. 2015, 9, Zc75–Zc79. [Google Scholar] [CrossRef]
- Levin, L.; Laviv, A.; Schwartz-Arad, D. Long-term success of implants replacing a single molar. J. Periodontol. 2006, 77, 1528–1532. [Google Scholar] [CrossRef]
- Schwendicke, F.; Kramer, E.J.; Krois, J.; Meyer-Lueckel, H.; Wierichs, R.J. Long-term costs of post-restorations: 7-year practice-based results from Germany. Clin. Oral Investig. 2021, 25, 2175–2181. [Google Scholar] [CrossRef]
- Baik, U.B.; Chun, Y.S.; Jung, M.H.; Sugawara, J. Protraction of mandibular second and third molars into missing first molar spaces for a patient with an anterior open bite and anterior spacing. Am. J. Orthod. Dentofac. Orthop. 2012, 141, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Baik, U.B.; Kim, M.R.; Yoon, K.H.; Kook, Y.A.; Park, J.H. Orthodontic uprighting of a horizontally impacted third molar and protraction of mandibular second and third molars into the missing first molar space for a patient with posterior crossbites. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Sung, E.H.; Kim, J.W.; Baik, H.S.; Lee, K.J. Mandibular molar protraction as an alternative treatment for edentulous spaces: Focus on changes in root length and alveolar bone height. J. Am. Dent. Assoc. 2015, 146, 820–829. [Google Scholar] [CrossRef] [PubMed]
- Nagaraj, K.; Upadhyay, M.; Yadav, S. Titanium screw anchorage for protraction of mandibular second molars into first molar extraction sites. Am. J. Orthod. Dentofac. Orthop. 2008, 134, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Baek, E.S.; Hwang, S.; Kim, K.H.; Chung, C.J. Nonsurgical and nonprosthetic camouflage treatment of skeletal Class II open bite with bilaterally missing lower first molars. Angle Orthod. 2019, 89, 505–517. [Google Scholar] [CrossRef] [Green Version]
- Saga, A.Y.; Maruo, I.T.; Maruo, H.; Guariza Filho, O.; Camargo, E.S.; Tanaka, O.M. Treatment of an adult with several missing teeth and atrophic old mandibular first molar extraction sites. Am. J. Orthod. Dentofac. Orthop. 2011, 140, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.C.; Zheng, Y.T.; Dai, Y.J. Protraction of mandibular molars through a severely atrophic edentulous space in a case of juvenile periodontitis. Korean J. Orthod. 2020, 50, 145–154. [Google Scholar] [CrossRef]
- Christou, P.; Kiliaridis, S. Three-dimensional changes in the position of unopposed molars in adults. Eur. J. Orthod. 2007, 29, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Craddock, H.L.; Youngson, C.C. A study of the incidence of overeruption and occlusal interferences in unopposed posterior teeth. Br. Dent. J. 2004, 196, 341–348; discussion 337. [Google Scholar] [CrossRef]
- Golshah, A.; Rezaei, N.; Heshmati, S. Buccolingual Inclination of Canine and First and Second Molar Teeth and the Curve of Wilson in different Sagittal Skeletal Patterns of Adults Using Cone-Beam Computed Tomography. Int. J. Dent. 2020, 2020, 8893778. [Google Scholar] [CrossRef]
- Yang, B.; Chung, C.H. Buccolingual inclination of molars in untreated children and adults: A cone beam computed tomography study. Angle Orthod. 2019, 89, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Craddock, H.L. An investigation of overeruption of posterior teeth with partial occlusal contact. J. Oral Rehabil. 2007, 34, 246–250. [Google Scholar] [CrossRef]
- Alkhatib, R.; Chung, C.H. Buccolingual inclination of first molars in untreated adults: A CBCT study. Angle Orthod. 2017, 87, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Wang, R.Y.; Liu, H.; Zhu, X.J.; Wei, F.L.; Lv, T.; Wang, N.N.; Hu, L.H.; Li, G.J.; Liu, D.X.; et al. Association between mandibular posterior alveolar morphology and growth pattern in a Chinese population with normal occlusion. J. Zhejiang Univ. Sci. B 2013, 14, 25–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Normando, A.D.; Maia, F.A.; Ursi, W.J.; Simone, J.L. Dentoalveolar changes after unilateral extractions of mandibular first molars and their influence on third molar development and position. World J. Orthod. 2010, 11, 55–60. [Google Scholar] [PubMed]
- Baik, U.B.; Choi, H.B.; Kim, Y.J.; Lee, D.Y.; Sugawara, J.; Nanda, R. Change in alveolar bone level of mandibular second and third molars after second molar protraction into missing first molar or second premolar space. Eur. J. Orthod. 2019, 41, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sun, X.; Yu, J.; Wang, J.; Zhai, P.; Chen, S.; Liu, M.; Zhou, Y. Platelet-Rich Fibrin as a Bone Graft Material in Oral and Maxillofacial Bone Regeneration: Classification and Summary for Better Application. BioMed Res. Int. 2019, 2019, 3295756. [Google Scholar] [CrossRef] [Green Version]
- Baker, R.D.; Terry, B.C.; Davis, W.H.; Connole, P.W. Long-term results of alveolar ridge augmentation. J. Oral Surg. 1979, 37, 486–489. [Google Scholar]
- Tolstunov, L.; Hamrick, J.F.E.; Broumand, V.; Shilo, D.; Rachmiel, A. Bone Augmentation Techniques for Horizontal and Vertical Alveolar Ridge Deficiency in Oral Implantology. Oral Maxillofac. Surg. Clin. N. Am. 2019, 31, 163–191. [Google Scholar] [CrossRef]
- Bravi, F.; Bruschi, G.B.; Ferrini, F. A 10-year multicenter retrospective clinical study of 1715 implants placed with the edentulous ridge expansion technique. Int. J. Periodontics Restor. Dent. 2007, 27, 557–565. [Google Scholar]
- Jensen, O.T.; Bell, W.; Cottam, J. Osteoperiosteal flaps and local osteotomies for alveolar reconstruction. Oral Maxillofac. Surg. Clin. N. Am. 2010, 22, 331–346. [Google Scholar] [CrossRef]
- Casap, N.; Brand, M.; Mogyros, R.; Alterman, M.; Jensen, O.T. Island osteoperiosteal flaps with interpositional bone grafting in rabbit tibia: Preliminary study for development of new bone augmentation technique. J. Oral Maxillofac. Surg. 2011, 69, 3045–3051. [Google Scholar] [CrossRef]
- Yates, D.M.; Brockhoff, H.C., 2nd; Finn, R.; Phillips, C. Comparison of intraoral harvest sites for corticocancellous bone grafts. J. Oral Maxillofac. Surg. 2013, 71, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Derton, N.; Perini, A.; Mutinelli, S.; Gracco, A. Mandibular molar uprighting using mini-implants: Different approaches for different clinical cases—Two case reports. Orthodontics 2012, 13, 138–145. [Google Scholar]
- Metzner, R.; Schwestka-Polly, R.; Helms, H.J.; Wiechmann, D. Comparison of anchorage reinforcement with temporary anchorage devices or a Herbst appliance during lingual orthodontic protraction of mandibular molars without maxillary counterbalance extraction. Head Face Med. 2015, 11, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruellas, A.C.; Pithon, M.M.; dos Santos, R.L. Miniscrew-supported coil spring for molar uprighting: Description. Dent. Press J. Orthod. 2013, 18, 45–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sbricoli, L.; Ricci, S.; Cattozzo, A.; Favero, R.; Bressan, E.; Sivolella, S. Mandibular Molar Uprighting Using Skeletal Anchorage: A Novel Approach. J. Clin. Med. 2022, 11, 3565. [Google Scholar] [CrossRef]
- Allgayer, S.; Platcheck, D.; Vargas, I.A.; Loro, R.C. Mini-implants: Mechanical resource for molars uprighting. Dent. Press J. Orthod. 2013, 18, 134–142. [Google Scholar] [CrossRef] [Green Version]
- Holberg, C.; Winterhalder, P.; Holberg, N.; Wichelhaus, A.; Rudzki-Janson, I. Indirect miniscrew anchorage: Biomechanical loading of the dental anchorage during mandibular molar protraction-an FEM analysis. J. Orofac. Orthop. 2014, 75, 16–24. [Google Scholar] [CrossRef]
- Melo, A.C.; Duarte da Silva, R.; Shimizu, R.H.; Campos, D.; Andrighetto, A.R. Lower molar uprighting with miniscrew anchorage: Direct and indirect anchorage. Int. J. Orthod. Milwaukee 2013, 24, 9–14. [Google Scholar]
- Cardoso, P.C.; Mecenas, P.; Normando, D. The impact of the loss of first permanent molars on the duration of treatment in patients treated with orthodontic space closure and without skeletal anchorage. Prog. Orthod. 2022, 23, 32. [Google Scholar] [CrossRef]
- Wehr, C.P.; Fritz, U.B.; Diedrich, P.R. Uprighting of a tipped lower second molar with the aid of a microscrew anchorage. A case report. Schweiz. Mon. Fur Zahnmed. 2006, 116, 173–179. [Google Scholar]
- Magkavali-Trikka, P.; Emmanouilidis, G.; Papadopoulos, M.A. Mandibular molar uprighting using orthodontic miniscrew implants: A systematic review. Prog. Orthod. 2018, 19, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Missing Group (N = 36) | Control Group (N = 36) | p Value | |
---|---|---|---|
Age | 28.7 ± 6.4 | 26.1 ± 5.8 | p > 0.05 |
Sex | p > 0.05 | ||
Male | 3 | 9 | |
Female | 33 | 27 | |
Missing site | |||
Right | 13 | - | - |
Left | 17 | - | - |
Bilateral | 6 | - | - |
Total count of missing teeth | 42 | - | - |
Duration of tooth loss (months) | 62.6 ± 13.3 | - | - |
Mesial | Middle | Distal | ||||
---|---|---|---|---|---|---|
Buccal | Lingual | Buccal | Lingual | Buccal | Lingual | |
CEJ | 1.34 ± 0.41 | 0.90 ± 0.58 | 2.04 ± 0.60 | 1.26 ± 0.60 | 1.33 ± 0.55 | 0.66 ± 0.55 |
Mid-root | 0.77 ± 0.37 | 0.24 ± 0.30 | 1.03 ± 0.41 | 0.30 ± 0.33 | 0.49 ± 0.38 | 0.11 ± 0.16 |
Apex | 0.10 ± 0.20 | 0.02 ± 0.08 | 0.16 ± 0.20 | 0.04 ± 0.11 | 0.05 ± 0.10 | 0.02 ± 0.07 |
Capability of Mesialization | p Value | ||
---|---|---|---|
Available | Required | ||
CEJ | 0.89 ± 0.57 | 7.32 ± 1.20 | p < 0.001 |
Mid-root | 5.62 ± 1.94 | 8.82 ± 0.61 | p < 0.001 |
Apex | 12.82 ± 1.06 | 13.89 ± 1.11 | p < 0.05 |
Time (R) | p Value | |
---|---|---|
Angulation | ||
Mesio-distal *** | −0.726 | p < 0.001 |
Buccal–lingual *** | −0.528 | p < 0.001 |
First molar extrusion | ||
Mesial cusp | −0.304 | p > 0.05 |
Distal cusp * | −0.334 | p < 0.05 |
Bone loss | ||
Buccal Middle | −0.024 | p > 0.05 |
0.034 | p > 0.05 | |
Lingual | −0016 | p > 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, H.; Zhou, J.; Fan, Q.; Jiao, R.; Kuang, Q.; Zhou, H.; Hua, C.; Yang, Z.; Lai, W.; Long, H. Characteristics of Spatial Changes in Molars and Alveolar Bone Resorption among Patients with Loss of Mandibular First Molars: A CBCT-Based Morphometric Study. J. Clin. Med. 2023, 12, 1932. https://doi.org/10.3390/jcm12051932
Hong H, Zhou J, Fan Q, Jiao R, Kuang Q, Zhou H, Hua C, Yang Z, Lai W, Long H. Characteristics of Spatial Changes in Molars and Alveolar Bone Resorption among Patients with Loss of Mandibular First Molars: A CBCT-Based Morphometric Study. Journal of Clinical Medicine. 2023; 12(5):1932. https://doi.org/10.3390/jcm12051932
Chicago/Turabian StyleHong, Huiyi, Jing Zhou, Qi Fan, Ruijie Jiao, Qianyun Kuang, Hong Zhou, Chengge Hua, Zheng Yang, Wenli Lai, and Hu Long. 2023. "Characteristics of Spatial Changes in Molars and Alveolar Bone Resorption among Patients with Loss of Mandibular First Molars: A CBCT-Based Morphometric Study" Journal of Clinical Medicine 12, no. 5: 1932. https://doi.org/10.3390/jcm12051932
APA StyleHong, H., Zhou, J., Fan, Q., Jiao, R., Kuang, Q., Zhou, H., Hua, C., Yang, Z., Lai, W., & Long, H. (2023). Characteristics of Spatial Changes in Molars and Alveolar Bone Resorption among Patients with Loss of Mandibular First Molars: A CBCT-Based Morphometric Study. Journal of Clinical Medicine, 12(5), 1932. https://doi.org/10.3390/jcm12051932