Coronary Physiology: Modern Concepts for the Guidance of Percutaneous Coronary Interventions and Medical Therapy
Abstract
:1. Background
2. Traditional Indexes: Fractional Flow Reserve
3. Non-Hyperemic Indexes: Instant-Wave Free Ratio (iFR)
4. From Stenosis to Ischemia: New Concepts of Coronary Physiology
5. Coronary Physiology in Patients with INOCA
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Verdoia, M.; Camaro, C.; Kedhi, E.; Marcolongo, M.; Suryapranata, H.; De Luca, G. Dual Antiplatelet Therapy Duration in Acute Coronary Syndrome Patients: The State of the Art and Open Issues. Cardiovasc. Ther. 2020, 2020, 6495036. [Google Scholar] [CrossRef]
- Verdoia, M.; Negro, F.; Kedhi, E.; Suryapranata, H.; Marcolongo, M.; De Luca, G. Benefits with drug-coated balloon as compared to a conventional revascularization strategy for the treatment of coronary and non-coronary arterial disease: A comprehensive meta-analysis of 45 randomized trials. Vascul. Pharmacol. 2021, 138, 106859. [Google Scholar] [CrossRef]
- Verdoia, M.; Kedhi, E.; Suryapranata, H.; Galasso, G.; Dudek, D.; De Luca, G. Polymer-Free vs. Polymer-Coated Drug-Eluting Stents for the Treatment of Coronary Artery Disease: A Meta-Analysis of 16 Randomized Trials. Cardiovasc. Revasc. Med. 2020, 21, 745–753. [Google Scholar] [CrossRef]
- De Luca, G.; Verdoia, M.; Savonitto, S.; Piatti, L.; Grosseto, D.; Morici, N.; Bossi, I.; Sganzerla, P.; Tortorella, G.; Elderly ACS 2 Investigators; et al. Impact of diabetes on clinical outcome among elderly patients with acute coronary syndrome treated with percutaneous coronary intervention: Insights from the ELDERLY ACS 2 trial. J. Cardiovasc. Med. 2020, 21, 453–459. [Google Scholar] [CrossRef]
- De Luca, G.; Schaffer, A.; Verdoia, M.; Suryapranata, H. Meta-analysis of 14 trials comparing bypass grafting vs drug-eluting stents in diabetic patients with multivessel coronary artery disease. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 344–354. [Google Scholar] [CrossRef]
- Bech, G.J.; De Bruyne, B.; Pijls, N.H.; de Muinck, E.D.; Hoorntje, J.C.; Escaned, J.; Stella, P.R.; Boersma, E.; Bartunek, J.; Koolen, J.J.; et al. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: A randomized trial. Circulation 2001, 103, 2928–2934. [Google Scholar] [CrossRef] [Green Version]
- Clarke, J.-R.D.; Duarte Lau, F.; Zarich, S.W. Determining the Significance of Coronary Plaque Lesions: Physiological Stenosis Severity and Plaque Characteristics. J. Clin. Med. 2020, 9, 665. [Google Scholar] [CrossRef] [Green Version]
- Motoyama, S.; Sarai, M.; Harigaya, H.; Anno, H.; Inoue, K.; Hara, T.; Naruse, H.; Ishii, J.; Hishida, H.; Wong, N.D.; et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J. Am. Coll. Cardiol. 2009, 54, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Kogame, N.; Ono, M.; Kawashima, H.; Tomaniak, M.; Hara, H.; Leipsic, J.; Andreini, D.; Collet, C.; Patel, M.R.; Tu, S.; et al. The Impact of Coronary Physiology on Contemporary Clinical Decision Making. JACC Cardiovasc. Interv. 2020, 13, 1617–1638. [Google Scholar] [CrossRef]
- Windecker, S.; Kolh, P.; Alfonso, F.; Collet, J.P.; Cremer, J.; Falk, V.; Filippatos, G.; Hamm, C.; Head, S.J.; Jüni, P.; et al. 2014 ESC/EACTS guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2014, 35, 2541–2619. [Google Scholar]
- Fihn, S.D.; Gardin, J.M.; Abrams, J.; Berra, K.; Blankenship, J.C.; Dallas, A.P.; Douglas, P.S.; Foody, J.M.; Gerber, T.C.; Hinderliter, A.L.; et al. ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the diagnosis and management of patients with stable ischemic heart disease: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American College of Physicians, American Association for Thoracic Surgery. Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J. Am. Coll. Cardiol. 2012, 60, e44–e164. [Google Scholar]
- Pijls, N.H.; van Son, J.A.; Kirkeeide, R.L.; De Bruyne, B.; Gould, K.L. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 1993, 87, 1354–1367. [Google Scholar] [CrossRef] [Green Version]
- Tonino, P.A.; De Bruyne, B.; Pijls, N.H.; Siebert, U.; Ikeno, F.; van’t Veer, M.; Klauss, V.; Manoharan, G.; Engstrøm, T.; FAME Study Investigators; et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N. Engl. J. Med. 2009, 360, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Pijls, N.H.; van Schaardenburgh, P.; Manoharan, G.; Boersma, E.; Bech, J.W.; van’t Veer, M.; Bär, F.; Hoorntje, J.; Koolen, J.; Wijns, W.; et al. Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J. Am. Coll. Cardiol. 2007, 49, 2105–2111. [Google Scholar] [CrossRef] [Green Version]
- Fearon, W.F.; Nishi, T.; De Bruyne, B.; Boothroyd, D.B.; Barbato, E.; Tonino, P.; Jüni, P.; Pijls, N.H.; Hlatky, M.A. Clinical Outcomes and Cost-Effectiveness of Fractional Flow Reserve-Guided Percutaneous Coronary Intervention in Patients With Stable Coronary Artery es and Cost-Effectiveness of Fractional Flow Reserve-Guided Percutaneous Coronary Intervention in Patients With Stable Coronary Artery Disease: Three-Year Follow-Up of the FAME 2 Trial. Circulation 2017, 137, 480–487. [Google Scholar]
- Nakamura, M.; Yamagishi, M.; Ueno, T.; Hara, K.; Ishiwata, S.; Itoh, T.; Hamanaka, I.; Wakatsuki, T.; Sugano, T.; Kawai, K.; et al. Modification of treatment strategy after FFR measurement: CVIT-DEFER registry. Cardiovasc. Interv. Ther. 2015, 30, 12–21. [Google Scholar] [CrossRef]
- Johnson, N.P.; Kirkeeide, R.L.; Gould, K.L. Is discordance of coronary flow reserve and fractional flow reserve due to methodology or clinically relevant coronary pathophysiology? JACC Cardiovasc. Imaging 2012, 5, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Toth, G.G.; De Bruyne, B.; Rusinaru, D.; Di Gioia, G.; Bartunek, J.; Pellicano, M.; Vanderheyden, M.; Adjedj, J.; Wijns, W.; Pijls, N.H.; et al. Impact of right atrial pressure on fractional flow reserve measurements: Comparison of fractional flow reserve and myocardial fractional flow reserve in 1600 coronary stenoses. J. Am. Coll. Cardiol. Interv. 2016, 9, 453–459. [Google Scholar] [CrossRef]
- van de Hoef, T.P.; Siebes, M.; Spaan, J.A.; Piek, J.J. Fundamentals in clinical coronary physiology: Why coronary flow is more important than coronary pressure. Eur. Heart J. 2015, 36, 3312–3319. [Google Scholar] [CrossRef]
- Verdoia, M.; Gioscia, R.; Suryapranata, H.; Kedhi, E.; De Luca, G.; Novara Atherosclerosis Study Group (NAS). Impact of aging on the effects of intracoronary adenosine, peak hyperemia and its duration during fractional flow reserve assessment. Coron. Artery Dis. 2021, 32, 625–631. [Google Scholar] [CrossRef]
- Dobson, J.G., Jr.; Fenton, R.A.; Roman, F.D. Increased myocardial adenosine production and reduction of beta-adrenergic contractile response in aged hearts. Circ. Res. 1990, 66, 1381–1390. [Google Scholar] [CrossRef] [Green Version]
- De Bruyne, B.; Pijls, N.H.; Barbato, E.; Bartunek, J.; Bech, J.W.; Wijns, W.; Heyndrickx, G.R. Intracoronary and intravenous adenosine 5′-triphosphate, adenosine, papaverine, and contrast medium to assess fractional flow reserve in humans. Circulation 2003, 107, 1877–1883. [Google Scholar] [CrossRef]
- Götberg, M.; Cook, C.M.; Sen, S.; Nijjer, S.; Escaned, J.; Davies, J.E. The Evolving Future of Instantaneous Wave-Free Ratio and Fractional Flow Reserve. J. Am. Coll. Cardiol. 2017, 70, 1379–1402. [Google Scholar] [CrossRef]
- Sen, S.; Escaned, J.; Malik, I.S.; Mikhail, G.W.; Foale, R.A.; Mila, R.; Tarkin, J.; Petraco, R.; Broyd, C.; Jabbour, R.; et al. Development and validation of a new adenosine-independent index of stenosis severity from coronary wave–Intensity analysis: Results of the ADVISE (Adenosine Vasodilator Independent Stenosis Evaluation) study. J. Am. Coll. Cardiol. 2012, 59, 1392–1402. [Google Scholar] [CrossRef] [Green Version]
- Petraco, R.; Escaned, J.; Sen, S.; Nijjer, S.; Asrress, K.N.; Echavarria-Pinto, M.; Lockie, T.; Khawaja, M.Z.; Cuevas, C.; Foin, N.; et al. Classification performance of instantaneous wave-free ratio (iFR) and fractional flow reserve in a clinical population of intermediate coronary stenoses: Results of the ADVISE registry. EuroIntervention 2013, 9, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Petraco, R.; van de Hoef, T.P.; Nijjer, S.; Sen, S.; van Lavieren, M.A.; Foale, R.A.; Meuwissen, M.; Broyd, C.; Echavarria-Pinto, M.; Foin, N.; et al. Baseline instantaneous wave-free ratio as a pressure-only estimation of underlying coronary flow reserve: Results of the JUSTIFY-CFR study (joined coronary pressure and flow analysis to determine diagnostic characteristics of basal and hyperemic indices of functional lesion severity-coronary flow reserve). Circ. Cardiovasc. Interv. 2014, 7, 492–502. [Google Scholar]
- van de Hoef, T.P.; Meuwissen, M.; Escaned, J.; Sen, S.; Petraco, R.; van Lavieren, M.A.; Echavarria-Pinto, M.; Nolte, F.; Nijjer, S.; Chamuleau, S.A.; et al. Head-to-head comparison of basal stenosis resistance index, instantaneous wave-free ratio, and fractional flow reserve: Diagnostic accuracy for stenosis-specific myocardial ischaemia. EuroIntervention 2015, 11, 914–925. [Google Scholar] [CrossRef]
- DEFINE-FLAIR Trial Investigators; Lee, J.M.; Choi, K.H.; Koo, B.K.; Dehbi, H.M.; Doh, J.H.; Nam, C.W.; Shin, E.S.; Cook, C.M.; Al-Lamee, R.; et al. Comparison of Major Adverse Cardiac Events Between Instantaneous Wave-Free Ratio and Fractional Flow Reserve-Guided Strategy in Patients With or Without Type 2 Diabetes: A Secondary Analysis of a Randomized Clinical Trial. JAMA Cardiol. 2019, 4, 857–864. [Google Scholar]
- Götberg, M.; Christiansen, E.H.; Gudmundsdottir, I.J.; Sandhall, L.; Danielewicz, M.; Jakobsen, L.; Olsson, S.E.; Öhagen, P.; Olsson, H.; iFR-SWEDEHEART Investigators; et al. Instantaneous Wave-free Ratio versus Fractional Flow Reserve to Guide PCI. N. Engl. J. Med. 2017, 376, 1813–1823. [Google Scholar] [CrossRef] [Green Version]
- Escaned, J. Safety of coronary revascularization deferral based on iFR and FFR measurements in stable angina and acute coronary syndromes. In Proceedings of the EuroPCR 2017, Paris, France, 1 May 2017. [Google Scholar]
- Neumann, F.J.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; et al. ESC Scientific Document Group. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef] [Green Version]
- Verdoia, M.; Gioscia, R.; Nardin, M.; Viola, O.; Brancati, M.F.; Soldà, P.L.; Marcolongo, M.; De Luca, G. Preprocedural β-Blockers in the Functional Assessment of Intermediate Coronary Lesions by Instantaneous Wave-Free Ratio. Angiology 2021, 72, 687–692. [Google Scholar] [CrossRef]
- Verdoia, M.; Gioscia, R.; Nardin, M.; Negro, F.; Tonon, F.; Suryapranata, H.; Khedi, E.; Marcolongo, M.; De Luca, G. Impact of Age on the Functional Evaluation of Intermediate Coronary Stenoses With Instantaneous Wave-Free Ratio and Fractional Flow Reserve. Angiology 2021, 72, 62–69. [Google Scholar] [CrossRef]
- Cook, C.M.; Ahmad, Y.; Shun-Shin, M.J.; Nijjer, S.; Petraco, R.; Al-Lamee, R.; Mayet, J.; Francis, D.P.; Sen, S.; Davies, J.E. Quantification of the effect of pressure wire drift on the diagnostic performance of fractional flow reserve, instantaneous wave-free ratio, and whole-cycle Pd/Pa. Circ. Cardiovasc. Interv. 2016, 9, e002988. [Google Scholar] [CrossRef] [Green Version]
- Kern, M.J. Comparing FFR tools: New wires and a pressure microcatheter. Cathet Lab Dig. 2016, 24, 4–9. [Google Scholar]
- van de Hoef, T.P.; van Lavieren, M.A.; Damman, P.; Delewi, R.; Piek, M.A.; Chamuleau, S.A.; Voskuil, M.; Henriques, J.P.; Koch, K.T.; de Winter, R.J.; et al. Physiological basis and long-term clinical outcome of discordance between fractional flow reserve and coronary flow velocity reserve in coronary stenoses of intermediate severity. Circ. Cardiovasc. Interv. 2014, 7, 301–311. [Google Scholar] [CrossRef] [Green Version]
- Smits, P.C.; Abdel-Wahab, M.; Neumann, F.J.; Boxma-de Klerk, B.M.; Lunde, K.; Schotborgh, C.E.; Piroth, Z.; Horak, D.; Wlodarczak, A.; Ong, P.J.; et al. Compare-Acute Investigators. Fractional flow reserve-guided multivessel angioplasty in myocardial infarction. N. Engl. J. Med. 2017, 376, 1234–1244. [Google Scholar] [CrossRef]
- Götberg, M.; Berntorp, K.; Rylance, R.; Christiansen, E.H.; Yndigegn, T.; Gudmundsdottir, I.J.; Koul, S.; Sandhall, L.; Danielewicz, M.; Jakobsen, L.; et al. 5-Year Outcomes of PCI Guided by Measurement of Instantaneous Wave-Free Ratio Versus Fractional Flow Reserve. J. Am. Coll. Cardiol. 2022, 79, 965–974. [Google Scholar] [CrossRef]
- Hidalgo, F.; Gonzalez-Manzanares, R.; Ojeda, S.; Benito-González, T.; Gutiérrez-Barrios, A.; De la Torre Hernández, J.M.; Minguito-Carazo, C.; Izaga-Torralba, E.; Cabrera-Rubio, I.; Flores-Vergara, G.; et al. Instantaneous wave-free ratio for guiding treatment of nonculprit lesions in patients with acute coronary syndrome: A retrospective study. Catheter Cardiovasc. Interv. 2022, 99, 489–496. [Google Scholar] [CrossRef]
- Wijnbergen, I.; van’t Veer, M.; Lammers, J.; Ubachs, J.; Pijls, N.H. Absolute coronary blood flow measurement and microvascular resistance in ST-elevation myocardial infarction in the acute and subacute phase. Cardiovasc. Revasc. Med. 2016, 17, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Nijjer, S.S.; Sen, S.; Petraco, R.; Mayet, J.; Francis, D.P.; Davies, J.E. The Instantaneous wave-Free Ratio (iFR) pullback: A novel innovation using baseline physiology to optimise coronary angioplasty in tandem lesions. Cardiovasc. Revasc. Med. 2015, 16, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Nijjer, S.S.; Sen, S.; Petraco, R.; Escaned, J.; Echavarria-Pinto, M.; Broyd, C.; Al-Lamee, R.; Foin, N.; Foale, R.A.; Malik, I.S.; et al. Pre-angioplasty instantaneous wave-free ratio pullback provides virtual intervention and predicts hemodynamic outcome for serial lesions and diffuse coronary artery disease. JACC Cardiovasc. Interv. 2014, 7, 1386–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westra, J.; Li, Z.; Rasmussen, L.D.; Winther, S.; Li, G.; Nissen, L.; Petersen, S.E.; Ejlersen, J.A.; Isaksen, C.; Gormsen, L.C.; et al. One-step anatomic and function testing by cardiac CT versus second-line functional testing in symptomatic patients with coronary artery stenosis: Head-to-head comparison of CT-derived fractional flow reserve and myocardial perfusion imaging. EuroIntervention 2021, 17, 576–583. [Google Scholar] [CrossRef]
- Cesaro, A.; Gragnano, F.; Di Girolamo, D.; Moscarella, E.; Diana, V.; Pariggiano, I.; Alfieri, A.; Perrotta, R.; Golino, P.; Cesaro, F.; et al. Functional assessment of coronary stenosis: An overview of available techniques. Is quantitative flow ratio a step to the future? Expert Rev. Cardiovasc. Ther. 2018, 16, 951–962. [Google Scholar] [CrossRef]
- Smalling, R.W.; Kelley, K.; Kirkeeide, R.L.; Fisher, D.J. Regional myocardial function is not affected by severe coronary depressurization provided coronary blood flow is maintained. J. Am. Coll. Cardiol. 1985, 5, 948–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Candreva, A.; Gallinoro, E.; van’t Veer, M.; Sonck, J.; Collet, C.; Di Gioia, G.; Kodeboina, M.; Mizukami, T.; Nagumo, S.; Keulards, D.; et al. Basics of Coronary Thermodilution. JACC Cardiovasc. Interv. 2021, 14, 595–605. [Google Scholar] [CrossRef]
- Seiler, C.; Kirkeeide, R.L.; Gould, K.L. Basic structure-function relations of the epicardial coronary vascular tree. Basis of quantitative coronary arteriography for diffuse coronary artery disease. Circulation 1992, 85, 1987–2003. [Google Scholar] [CrossRef] [Green Version]
- Cortigiani, L.; Rigo, F.; Gherardi, S.; Bovenzi, F.; Picano, E.; Sicari, R. Implication of the continuous prognostic spectrum of Doppler echocardiographic derived coronary flow reserve on left anterior descending artery. Am. J. Cardiol. 2010, 105, 158–162. [Google Scholar] [CrossRef]
- Delemos, J.; Omland, T. Chronic Coronary Artery Disease a Companion to Braunwald’s Heart Disease, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Díez-Delhoyo, F.; Gutiérrez-Ibañes, E.; Loughlin, G.; Sanz-Ruiz, R.; Vázquez-Álvarez, M.E.; Sarnago-Cebada, F.; Angulo-Llanos, R.; Casado-Plasencia, A.; Elízaga, J.; Fernández Avilés Diáz, F. Coronary physiology assessment in the catheterization laboratory. World J. Cardiol. 2015, 7, 525–538. [Google Scholar] [CrossRef]
- Demir, O.M.; Boerhout, C.K.M.; de Waard, G.A.; van de Hoef, T.P.; Patel, N.; Beijk, M.A.M.; Williams, R.; Rahman, H.; Everaars, H.; Oxford Acute Myocardial Infarction (OxAMI) Study; et al. Comparison of Doppler Flow Velocity and Thermodilution Derived Indexes of Coronary Physiology. JACC Cardiovasc. Interv. 2022, 15, 1060–1070. [Google Scholar] [CrossRef]
- Seitz, A.; Baumann, S.; Sechtem, U.; Ong, P. Optimal Prognostication of Patients with Coronary Stenoses in the Pre- and Post-PCI setting: Comments on TARGET FFR and DEFINE-FLOW Trials Presented at TCT Connect 2020. Eur. Cardiol. 2021, 16, e17. [Google Scholar] [CrossRef]
- Kunadian, V.; Chieffo, A.; Camici, P.G.; Berry, C.; Escaned, J.; Maas, A.H.E.M.; Prescott, E.; Karam, N.; Appelman, Y.; Fraccaro, C.; et al. An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. Eur. Heart J. 2020, 41, 3504–3520. [Google Scholar] [PubMed]
- Kelshiker, M.A.; Seligman, H.; Howard, J.P.; Rahman, H.; Foley, M.; Nowbar, A.N.; Rajkumar, C.A.; Shun-Shin, M.J.; Ahmad, Y.; Sen, S.; et al. Coronary flow reserve and cardiovascular outcomes: A systematic review and meta-analysis. Eur. Heart J. 2022, 43, 1582–1593. [Google Scholar] [CrossRef]
- Fearon, W.F.; Balsam, L.B.; Farouque, H.M.; Caffarelli, A.D.; Robbins, R.C.; Fitzgerald, P.J.; Yock, P.G.; Yeung, A.C. Novel index for invasively assessing the coronary microcirculation. Circulation 2003, 107, 3129–3132, Erratum in Circulation 2003, 108, 3165. [Google Scholar] [CrossRef] [PubMed]
- Ford, T.J.; Stanley, B.; Good, R.; Rocchiccioli, P.; McEntegart, M.; Watkins, S.; Eteiba, H.; Shaukat, A.; Lindsay, M.; Robertson, K.; et al. Stratified Medical Therapy Using Invasive Coronary Function Testing in Angina: The CorMicA Trial. J. Am. Coll. Cardiol. 2018, 72 Pt A, 2841–2855. [Google Scholar] [CrossRef]
- Reynolds, H.R.; Shaw, L.J.; Min, J.K.; Page, C.B.; Berman, D.S.; Chaitman, B.R.; Picard, M.H.; Kwong, R.Y.; O’Brien, S.M.; Huang, Z.; et al. Outcomes in the ISCHEMIA Trial Based on Coronary Artery Disease and Ischemia Severity. Circulation 2021, 144, 1024–1038. [Google Scholar] [CrossRef]
- Perera, D.; Clayton, T.; Petrie, M.C.; Greenwood, J.P.; O’Kane, P.D.; Evans, R.; Sculpher, M.; Mcdonagh, T.; Gershlick, A.; de Belder, M.; et al. Percutaneous Revascularization for Ischemic Ventricular Dysfunction: Rationale and Design of the REVIVED-BCIS2 Trial: Percutaneous Coronary Intervention for Ischemic Cardiomyopathy. JACC Heart Fail. 2018, 6, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Ciliberti, G.; Verdoia, M.; Merlo, M.; Zilio, F.; Vatrano, M.; Bianco, F.; Mancone, M.; Zaffalon, D.; Bonci, A.; Boscutti, A.; et al. Pharmacological therapy for the prevention of cardiovascular events in patients with myocardial infarction with non-obstructed coronary arteries (MINOCA): Insights from a multicentre national registry. Int. J. Cardiol. 2021, 327, 9–14. [Google Scholar]
- Lindahl, B.; Baron, T.; Erlinge, D.; Hadziosmanovic, N.; Nordenskjöld, A.; Gard, A.; Jernberg, T. Medical therapy for secondary prevention and long-term outcome in patients with myocardial infarction with nonobstructive coronary artery disease. Circulation 2017, 135, 1481–1489. [Google Scholar] [CrossRef]
- Nordenskjöld, A.M.; Agewall, S.; Atar, D.; Baron, T.; Beltrame, J.; Bergström, O.; Erlinge, D.; Gale, C.P.; López-Pais, J.; Jernberg, T.; et al. Randomized evaluation of beta blocker and ACE-inhibitor/angiotensin receptor blocker treatment in patients with myocardial infarction with non-obstructive coronary arteries (MINOCA-BAT): Rationale and design. Am. Heart J. 2021, 231, 96–104. [Google Scholar] [CrossRef]
- Rallidis, L.S.; Xenogiannis, I.; Brilakis, E.S.; Bhatt, D.L. Causes, Angiographic Characteristics, and Management of Premature Myocardial Infarction: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2022, 79, 2431–2449. [Google Scholar] [CrossRef]
- Xing, L.; Yamamoto, E.; Sugiyama, T.; Jia, H.; Dai, J.; Hou, J.; Ma, L.; Liu, H.; Xu, M.; Yao, Y.; et al. EROSION study (Effective Anti-Thrombotic Therapy Without Stenting: Intravascular Optical Coherence Tomography-Based Management in Plaque Erosion): A 1-year follow-up report. Circ. Cardiovasc. Interv. 2017, 10, e005860. [Google Scholar] [CrossRef]
FFR | iFR | CFR | IMR | |
---|---|---|---|---|
Cut-off | ≤0.80 | ≤0.90 | ≤2.0 | >25 U |
Timing of acquisition | Averaged (5 cycles) | Single beat | Averaged (3 cycles) | Averaged (3 cycles) |
Stressing agent | Adenosine, papaverine, other | - | Adenosine, papaverine, other | Adenosine, papaverine, other |
Epicardial stenosis | + | + | + | - |
Microcirculation assessment | - | + | + | + |
Validation in ACS | - | + | - | - |
Tandem lesions | - | + | + | + |
Side branch correction | - | + | + | + |
Co-registration | - | + | - | - |
Low-flow condition sensitivity | + | - | - | - |
Wire drift sensitivity | + | - | + | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verdoia, M.; Rognoni, A. Coronary Physiology: Modern Concepts for the Guidance of Percutaneous Coronary Interventions and Medical Therapy. J. Clin. Med. 2023, 12, 2274. https://doi.org/10.3390/jcm12062274
Verdoia M, Rognoni A. Coronary Physiology: Modern Concepts for the Guidance of Percutaneous Coronary Interventions and Medical Therapy. Journal of Clinical Medicine. 2023; 12(6):2274. https://doi.org/10.3390/jcm12062274
Chicago/Turabian StyleVerdoia, Monica, and Andrea Rognoni. 2023. "Coronary Physiology: Modern Concepts for the Guidance of Percutaneous Coronary Interventions and Medical Therapy" Journal of Clinical Medicine 12, no. 6: 2274. https://doi.org/10.3390/jcm12062274
APA StyleVerdoia, M., & Rognoni, A. (2023). Coronary Physiology: Modern Concepts for the Guidance of Percutaneous Coronary Interventions and Medical Therapy. Journal of Clinical Medicine, 12(6), 2274. https://doi.org/10.3390/jcm12062274