Childhood Cancer Survivors Have Impaired Strain-Derived Myocardial Contractile Reserve by Dobutamine Stress Echocardiography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Data
2.2. Dobutamine Stress Protocol and Echocardiography
2.3. Statistical Analyses
3. Results
Cardiac Measurements at Rest and during DSE
4. Discussion
4.1. Resting Cardiac Function
4.2. Myocardial Contractile Reserve
4.3. Difficulties with High-Dose DSE
4.4. TAPSE and Tissue Doppler
4.5. Underlying Mechanisms
4.6. Strengths
4.7. Study Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Calaminus, G.; Baust, K.; Berger, C.; Byrne, J.; Binder, H.; Casagranda, L.; Grabow, D.; Grootenhuis, M.; Kaatsch, P.; Kaiser, M.; et al. Health-Related Quality of Life in European Childhood Cancer Survivors: Protocol for a Study within PanCareLIFE. JMIR Res. Protoc. 2021, 10, e21851. [Google Scholar] [CrossRef]
- Armstrong, G.T.; Chen, Y.; Yasui, Y.; Leisenring, W.; Gibson, T.M.; Mertens, A.C.; Stovall, M.; Oeffinger, K.C.; Bhatia, S.; Krull, K.R.; et al. Reduction in Late Mortality among 5-Year Survivors of Childhood Cancer. New Engl. J. Med. 2016, 374, 833–842. [Google Scholar] [CrossRef]
- Kero, A.E.; Järvelä, L.; Arola, M.; Malila, N.; Madanat-Harjuoja, L.M.; Matomäki, J.; Lähteenmäki, P.M. Late mortality among 5-year survivors of early onset cancer: A population-based register study. Int. J. Cancer 2014, 136, 1655–1664. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsdottir, T.; Winther, J.F.; Licht, S.D.F.; Bonnesen, T.G.; Asdahl, P.H.; Tryggvadottir, L.; Anderson, H.; Wesenberg, F.; Malila, N.; Hasle, H.; et al. Cardiovascular disease in Adult Life after Childhood Cancer in Scandinavia: A population-based cohort study of 32,308 one-year survivors. Int. J. Cancer 2015, 137, 1176–1186. [Google Scholar] [CrossRef] [PubMed]
- Feijen, E.A.M.; Font-Gonzalez, A.; Van der Pal, H.J.H.; Kok, W.E.M.; Geskus, R.B.; Ronckers, C.M.; Bresters, D.; van Dalen, E.C.; Broeder, E.V.D.; Berg, M.H.V.D.; et al. Risk and Temporal Changes of Heart Failure among 5-Year Childhood Cancer Survivors: A DCOG-LATER Study. J. Am. Heart Assoc. 2019, 8, e009122. [Google Scholar] [CrossRef] [Green Version]
- Leerink, J.M.; de Baat, E.C.; Feijen, E.A.; Bellersen, L.; van Dalen, E.C.; Grotenhuis, H.B.; Kapusta, L.; Kok, W.E.; Loonen, J.; van der Pal, H.J.; et al. Cardiac Disease in Childhood Cancer Survivors: Risk Prediction, Prevention, and Surveillance: JACC CardioOncology State-of-the-Art Review. JACC CardioOncol. 2020, 2, 363–378. [Google Scholar] [CrossRef]
- Leger, K.; Slone, T.; Lemler, M.; Leonard, D.; Cochran, C.; Bowman, W.P.; Bashore, L.; Winick, N. Subclinical cardiotoxicity in childhood cancer survivors exposed to very low dose anthracycline therapy. Pediatr. Blood Cancer 2014, 62, 123–127. [Google Scholar] [CrossRef]
- Felker, G.M.; Thompson, R.E.; Hare, J.M.; Hruban, R.H.; Clemetson, D.E.; Howard, D.L.; Baughman, K.L.; Kasper, E.K. Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N. Engl. J. Med. 2000, 342, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Armenian, S.H.; Armstrong, G.T.; Aune, G.; Chow, E.J.; Ehrhardt, M.J.; Ky, B.; Moslehi, J.; Mulrooney, D.A.; Nathan, P.C.; Ryan, T.D.; et al. Cardiovascular Disease in Survivors of Childhood Cancer: Insights into Epidemiology, Pathophysiology, and Prevention. J. Clin. Oncol. 2018, 36, 2135. [Google Scholar] [CrossRef]
- Poterucha, J.T.; Kutty, S.; Lindquist, R.K.; Li, L.; Eidem, B.W. Changes in left ventricular longitudinal strain with anthracycline chemotherapy in adolescents precede subsequent decreased left ventricular ejection fraction. J. Am. Soc. Echocardiogr. 2012, 25, 733–740. [Google Scholar] [CrossRef]
- Ness, K.K.; Plana, J.C.; Joshi, V.M.; Luepker, R.V.; Durand, J.B.; Green, D.M.; Partin, R.E.; Santucci, A.K.; Howell, R.M.; Srivastava, D.K.; et al. Exercise Intolerance, Mortality, and Organ System Impairment in Adult Survivors of Childhood Cancer. J. Clin. Oncol. 2020, 38, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Lancellotti, P.; Pellikka, P.A.; Budts, W.; Chaudhry, F.A.; Donal, E.; Dulgheru, R.; Edvardsen, T.; Garbi, M.; Ha, J.-W.; Kane, G.C.; et al. The Clinical Use of Stress Echocardiography in Non-Ischaemic Heart Disease: Recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 1191–1229. [Google Scholar] [CrossRef] [Green Version]
- Foulkes, S.; Claessen, G.; Howden, E.J.; Daly, R.M.; Fraser, S.F.; La Gerche, A. The Utility of Cardiac Reserve for the Early Detection of Cancer Treatment-Related Cardiac Dysfunction: A Comprehensive Overview. Front. Cardiovasc. Med. 2020, 7, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thein, P.M.; Mirzaee, S.; Cameron, J.D.; Nasis, A. Left ventricular contractile reserve as a determinant of adverse clinical outcomes: A systematic review. Intern. Med. J. 2022, 52, 186–197. [Google Scholar] [CrossRef]
- Donal, E.; Lund, L.H.; Oger, E.; Reynaud, A.; Schnell, F.; Persson, H.; Drouet, E.; Linde, C.; Daubert, C. Value of exercise echocardiography in heart failure with preserved ejection fraction: A substudy from the KaRen study. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 106–113. [Google Scholar] [CrossRef] [Green Version]
- Cifra, B.; Claessen, G.; Howden, E.J.; Daly, R.M.; Fraser, S.F.; La Gerche, A. Dynamic Myocardial Response to Exercise in Childhood Cancer Survivors Treated with Anthracyclines. J. Am. Soc. Echocardiogr. 2018, 31, 933–942. [Google Scholar] [CrossRef]
- Ryerson, A.B.; Border, W.L.; Wasilewski-Masker, K.; Goodman, M.; Meacham, L.; Austin, H.; Mertens, A.C. Assessing anthracycline-treated childhood cancer survivors with advanced stress echocardiography. Pediatr. Blood Cancer 2015, 62, 502–508. [Google Scholar] [CrossRef]
- Picano, E. Stress Echocardiography, 6th ed.; Springer: Berlin/Heidelberg, Germany, 2015; p. 612. [Google Scholar]
- Wiebe, T.; Hjorth, L.; Kelly, M.M.; Linge, H.M.; Garwicz, S. A population based pediatric oncology registry in Southern Sweden: The BORISS registry. Eur. J. Epidemiol. 2018, 33, 1125–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broberg, O.; Øra, I.; Wiebe, T.; Weismann, C.G.; Liuba, P. Characterization of Cardiac, Vascular, and Metabolic Changes in Young Childhood Cancer Survivors. Front. Pediatr. 2021, 9, 764679. [Google Scholar] [CrossRef] [PubMed]
- Armenian, S.H.; Hudson, M.M.; Mulder, R.L.; Chen, M.H.; Constine, L.S.; Dwyer, M.; Nathan, P.C.; E Tissing, W.J.; Shankar, S.; Sieswerda, E.; et al. Recommendations for cardiomyopathy surveillance for survivors of childhood cancer: A report from the International Late Effects of Childhood Cancer Guideline Harmonization Group. International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2015, 16, e123–e136. [Google Scholar] [CrossRef] [Green Version]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 233–271. [Google Scholar] [CrossRef] [Green Version]
- D’Elia, N.; Caselli, S.; Kosmala, W.; Lancellotti, P.; Morris, D.; Muraru, D.; Takeuchi, M.; Bosch, A.V.D.; van Grootel, R.W.; Villarraga, H.; et al. Normal Global Longitudinal Strain: An Individual Patient Meta-Analysis. JACC Cardiovasc. Imaging 2020, 13, 167–169. [Google Scholar] [CrossRef]
- Armstrong, G.T.; Joshi, V.M.; Ness, K.K.; Marwick, T.H.; Zhang, N.; Srivastava, D.; Griffin, B.P.; Grimm, R.A.; Thomas, J.; Phelan, D.; et al. Comprehensive Echocardiographic Detection of Treatment-Related Cardiac Dysfunction in Adult Survivors of Childhood Cancer: Results from the St. Jude Lifetime Cohort Study. J. Am. Coll. Cardiol. 2015, 65, 2511–2522. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Xiao, F.; Chen, H.; Wang, W.; Shen, L.; Zhao, H.; Shen, X.; Chen, F.; He, B. Subclinical Anthracycline-Induced Cardiotoxicity in the Long-Term Follow-Up of Lymphoma Survivors: A Multi-Layer Speckle Tracking Analysis. Arq. Bras. Cardiol. 2018, 110, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Wolf, C.M.; Reiner, B.; Kühn, A.; Hager, A.; Müller, J.; Meierhofer, C.; Oberhoffer, R.; Ewert, P.; Schmid, I.; Weil, J. Subclinical Cardiac Dysfunction in Childhood Cancer Survivors on 10-Years Follow-Up Correlates with Cumulative Anthracycline Dose and Is Best Detected by Cardiopulmonary Exercise Testing, Circulating Serum Biomarker, Speckle Tracking Echocardiography, and Tissue Doppler Imaging. Front. Pediatr. 2020, 8, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niemelä, J.; Ylänen, K.; Suominen, A.; Pushparajah, K.; Mathur, S.; Sarkola, T.; Jahnukainen, K.; Eerola, A.; Poutanen, T.; Vettenranta, K.; et al. Cardiac Function after Cardiotoxic Treatments for Childhood Cancer—Left Ventricular Longitudinal Strain in Screening. Front. Cardiovasc. Med. 2021, 8, 715953. [Google Scholar] [CrossRef]
- Sitte, V.; Burkhardt, B.; Weber, R.; Kretschmar, O.; Hersberger, M.; Bergsträsser, E.; Christmann, M. Advanced Imaging and New Cardiac Biomarkers in Long-term Follow-up after Childhood Cancer. J. Pediatr. Hematol. Oncol. 2022, 44, e374–e380. [Google Scholar] [CrossRef]
- Slieker, M.G.; Fackoury, C.; Slorach, C.; Hui, W.; Friedberg, M.; Fan, C.-P.S.; Manlhiot, C.; Dillenburg, R.; Kantor, P.; Mital, S.; et al. Echocardiographic Assessment of Cardiac Function in Pediatric Survivors of Anthracycline-Treated Childhood Cancer. Cardiovasc. Imaging 2019, 12, e008869. [Google Scholar] [CrossRef]
- Oikonomou, E.K.; Kokkinidis, D.G.; Kampaktsis, P.N.; Amir, E.A.; Marwick, T.H.; Gupta, D.; Thavendiranathan, P. Assessment of Prognostic Value of Left Ventricular Global Longitudinal Strain for Early Prediction of Chemotherapy-Induced Cardiotoxicity: A Systematic Review and Meta-analysis. JAMA Cardiol. 2019, 4, 1007–1018. [Google Scholar] [CrossRef]
- Pourier, M.S.; Mavinkurve-Groothuis, A.M.; Dull, M.M.; Weijers, G.; Loonen, J.; Bellersen, L.; de Korte, C.L.; Kapusta, L. Myocardial 2D Strain During Long-Term (>5 Years) Follow-Up of Childhood Survivors of Acute Lymphoblastic Leukemia Treated with Anthracyclines. Am. J. Cardiol. 2020, 127, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Sofia, R.; Melita, V.; De Vita, A.; Ruggiero, A.; Romano, A.; Attinà, G.; Birritella, L.; Lamendola, P.; Lombardo, A.; Lanza, G.A.; et al. Cardiac Surveillance for Early Detection of Late Subclinical Cardiac Dysfunction in Childhood Cancer Survivors after Anthracycline Therapy. Front. Oncol. 2021, 11, 624057. [Google Scholar] [CrossRef]
- Chow, E.J.; Chen, Y.; Kremer, L.C.; Breslow, N.E.; Hudson, M.M.; Armstrong, G.T.; Border, W.L.; Feijen, E.A.M.; Green, D.M.; Meacham, L.R.; et al. Individual prediction of heart failure among childhood cancer survivors. J. Clin. Oncol. 2015, 33, 394–402. [Google Scholar] [CrossRef]
- Merkx, R.; Leerink, J.M.; de Baat, E.C.; Feijen, E.A.M.; Kok, W.E.M.; Mavinkurve-Groothuis, A.M.C.; Loonen, J.; van der Pal, H.J.H.; Bellersen, L.; de Korte, C.L.; et al. Asymptomatic systolic dysfunction on contemporary echocardiography in anthracycline-treated long-term childhood cancer survivors: A systematic review. J. Cancer Surviv. 2022, 16, 338–352. [Google Scholar] [CrossRef] [PubMed]
- Sanna, G.D.; Canonico, M.E.; Santoro, C.; Esposito, R.; Masia, S.L.; Galderisi, M.; Parodi, G.; Nihoyannopoulos, P. Echocardiographic Longitudinal Strain Analysis in Heart Failure: Real Usefulness for Clinical Management Beyond Diagnostic Value and Prognostic Correlations? A Comprehensive Review. Curr. Heart Fail. Rep. 2021, 18, 290–303. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, S.; Tham, E.B.; Haykowsky, M.J.; Spavor, M.; Khoo, N.S.; Mackie, A.S.; Smallhorn, J.F.; Thompson, R.B.; Nelson, M.D. Impaired Left Ventricular Reserve in Childhood Cancer Survivors Treated with Anthracycline Therapy. Pediatr. Blood Cancer 2016, 63, 1086–1090. [Google Scholar] [CrossRef]
- von Scheidt, F.; Pleyer, C.; Kiesler, V.; Bride, P.; Bartholomae, S.; Krämer, J.; Kaestner, M.; Apitz, C. Left Ventricular Strain Analysis During Submaximal Semisupine Bicycle Exercise Stress Echocardiography in Childhood Cancer Survivors. J. Am. Heart Assoc. 2022, 11, e025324. [Google Scholar] [CrossRef] [PubMed]
- Fourati, N.; Charfeddine, S.; Chaffai, I.; Dhouib, F.; Farhat, L.; Boukhris, M.; Abid, L.; Kammoun, S.; Mnejja, W.; Daoud, J. Subclinical left ventricle impairment following breast cancer radiotherapy: Is there an association between segmental doses and segmental strain dysfunction? Int. J. Cardiol. 2021, 345, 130–136. [Google Scholar] [CrossRef]
- Pellikka, P.A.; Roger, V.L.; McCully, R.B.; Mahoney, D.W.; Bailey, K.R.; Seward, J.B.; Tajik, A. Normal stroke volume and cardiac output response during dobutamine stress echocardiography in subjects without left ventricular wall motion abnormalities. Am. J. Cardiol. 1995, 76, 881–886. [Google Scholar] [CrossRef] [PubMed]
- Murabito, A.; Hirsch, E.; Ghigo, A. Mechanisms of Anthracycline-Induced Cardiotoxicity: Is Mitochondrial Dysfunction the Answer? Front. Cardiovasc. Med. 2020, 7, 35. [Google Scholar] [CrossRef] [Green Version]
- van der Velde, N.; Janus, C.P.; Bowen, D.J.; Hassing, H.C.; Kardys, I.; van Leeuwen, F.E.; So-Osman, C.; Nout, R.A.; Manintveld, O.C.; Hirsch, A. Detection of Subclinical Cardiovascular Disease by Cardiovascular Magnetic Resonance in Lymphoma Survivors. JACC CardioOncol. 2021, 3, 695–706. [Google Scholar] [CrossRef]
- Lipshultz, E.R.; Chow, E.J.; Doody, D.R.; Armenian, S.H.; Asselin, B.L.; Baker, K.S.; Bhatia, S.; Constine, L.S.; Freyer, D.R.; Kopp, L.M.; et al. Cardiometabolic Risk in Childhood Cancer Survivors: A Report from the Children’s Oncology Group. Cancer Epidemiol. Biomark. Prev. 2022, 31, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Kusunose, K.; Zheng, R.; Yamaguchi, N.; Hirata, Y.; Nishio, S.; Saijo, Y.; Ise, T.; Yamaguchi, K.; Yagi, S.; et al. Association between cardiovascular risk factors and left ventricular strain distribution in patients without previous cardiovascular disease. J. Echocardiogr. 2022, 20, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Aziz-Bose, R.; Margossian, R.; Ames, B.L.; Moss, K.; Ehrhardt, M.J.; Armenian, S.H.; Yock, T.I.; Nekhlyudov, L.; Williams, D.; Hudson, M.; et al. Delphi Panel Consensus Recommendations for Screening and Managing Childhood Cancer Survivors at Risk for Cardiomyopathy. JACC CardioOncol. 2022, 4, 354–367. [Google Scholar] [CrossRef] [PubMed]
Variable | Controls, n = 53, Mean (SD) | CCS, n = 53, Mean (SD) | p-Value |
---|---|---|---|
Sex (M/F) | 35/18 | 32/21 | ns |
Age (years) | 25.34 (2.44) | 24.40 (2.40) | ns |
Height (cm) | 179.11 (8.73) | 174.83 (10.35) | 0.023 |
Weight (kg) | 79.25 (15.32) | 74.84 (14.10) | ns |
BMI, (kg/m2) | 24.57 (3.79) | 24.40 (3.53) | ns |
BSA (m2) | 1.98 (0.23) | 1.91 (0.22) | ns |
Obese (n, %) | 5 (9.43) | 4 (7.54) | ns |
Ever smoke (n, %) | 9 (16.98) | 11 (20.75) | ns |
Exercise (h/week) | 4.44 (2.87) | 4.94 (8.32) | ns |
Cumulative AC-dose (mg/m2) | 211.71 (93.17) | ||
Age at diagnosis (years) | 8.40 (5.57) | ||
Follow up time (years) | 15.78 (5.76) | ||
Mediastinal RT (n, %) | 10 (18.87) |
Low Risk, n = 4 | Moderate Risk, n = 30 | High Risk, n = 19 | |
---|---|---|---|
Diagnosis (n, %) | |||
Acute lymphoblastic leukaemia (ALL) | 0 (0.0) | 18 (60.0) | 2 (10.5) |
Acute myeloid lymphoma (AML) | 0 (0.0) | 0 (0.0) | 3 (15.8) |
Hodgkin’s disease (HD) | 0 (0.0) | 3 (10.3) | 8 (42.1) |
non-Hodgkin’s disease (non-HD) | 3 (75.0) | 4 (13.3) | 1 (5.3) |
Sarcoma | 0 (0.0) | 2 (6.6) | 4 (21.1) |
Wilms’ tumour | 1 (25.0) | 3 (10.0) | 1 (5.3) |
Cumulative AC ((mg/m2), median (range)) | 98 (50–99) | 195.9 (101–248) | 300 (157–471) |
Age at diagnosis ((years), median, range) | 9.6 (2.8–16.4) | 5.1 (1.1–17.7) | 10.2 (0.8–16.7) |
Follow-up time ((years), median, range) | 13.7 (6.1–20.8) | 17.4 (6.1–24.1) | 13.6 (6.3–26.9) |
Mediastinal radiotherapy (n, %) | 0 (0.0) | 1 (3.4) | 9 (45.0) |
Variable, Mean (SD) | Controls | CCS | p-Value |
---|---|---|---|
Heart Rate (beats/min) | 59.32 (8.36) | 63.72 (8.48) | 0.014 |
Systolic Blood Pressure (mmHg) | 116.96 (14.34) | 118.70 (11.21) | Ns |
Diastolic Blood Pressure (mmHg) | 73.42 (5.63) | 76.87 (10.78) | 0.048 |
SBP LVEF (%) | 60.79 (5.11) | 58.09 (5.16) | 0.035 |
é lateral wall (cm/s) | 17.04 (3.91) | 14.52 (2.29) | <0.001 |
é septum (cm/s) | 12.26 (1.65) | 11.05 (1.97) | 0.001 |
ś lateral wall (cm/s) | 9.73 (1.83) | 8.70 (2.16) | 0.009 |
ś septum (cm/s) | 8.22 (1.18) | 8.15 (1.17) | Ns |
TAPSE (mm) | 27.80 (5.13) | 25.34 (4.51) | 0.025 |
GLS (%) | −20.35 (2.01) | −18.81 (2.17) | 0.012 |
GSR (1/s) | −0.97 (0.20) | −0.89 (0.16) | 0.024 |
GEDSR (1/s) | 1.22 (0.33) | 1.11 (0.25) | ns |
Variable | Controls | CCS | p-Value |
---|---|---|---|
Heart Rate (beats/min) | 66.34 (10.41) | 74.25 (15.07) | 0.003 * |
ΔHeart rate (beats/min) | 7.05 (8.52) | 10.18 (13.87) | ns |
SBP (mmHg) | 127.56 (17.05) | 126.34 (12.04) | ns |
ΔSBP (mmHg) | 10.28 (16.75) | 7.64 (13.62) | ns |
DBP (mmHg) | 84.17 (12.45) | 86.64 (11.16) | ns |
ΔDPB (mmHg) | 10.55 (11.80) | 9.77 (14.02) | ns |
LVEF (%) | 71.23 (5.07) | 68.20 (5.35) | 0.003 |
ΔLVEF (%) | 10.27 (5.23) | 9.79 (5.19) | ns |
GLS (%) | −25.44 (2.68) | −22.65 (2.75) | <0.001 |
ΔGLS (%) | −5.13 (2.40) | −3.86 (2.27) | 0.011 |
GSR (1/s) | −1.59 (0.28) | −1.38 (0.28) | 0.004 |
ΔGSR (1/s) | −0.63 (0.24) | −0.49 (0.29) | 0.040 |
GEDSR (1/s) | 1.75 (0.39) | 1.50 (0.32) | 0.009 |
ΔGEDSR (1/s) | 0.55 (0.34) | 0.39 (0.31) | 0.034 |
Variable | Controls | CCS | p-Value |
---|---|---|---|
Heart Rate (beats/min) | 156.35 (8.12) | 160.47 (8.76) | 0.007 |
ΔHeart rate (beats/min) | 97.13 (9.34) | 96.9 (12.67) | ns |
Systolic Blood Pressure (mmHg) | 168.48 (26.00) | 163.34 (26.16) | ns |
ΔSystolic Blood Pressure (mmHg) | 51.31 (25.74) | 44.64 (27.71) | ns |
Diastolic Blood Pressure (mmHg) | 91.92 (15.87) | 90.68 (14.70) | ns |
ΔDiastolic Blood Pressure (mmHg) | 18.42 (15.78) | 13.81 (16.66) | ns |
é lateral (cm/s) | 18.41 (4.60) | 17.54 (3.63) | ns |
Δé lateral (cm/s) | 1.37 (5.66) | 3.05 (3.60) | ns |
é septum (cm/s) | 16.50 (3.53) | 16.04 (3.29) | ns |
Δé septum (cm/s) | 4.23 (3.66) | 5.00 (3.63) | ns |
ś lateral wall (cm/s) | 20.43 (4.92) | 16.66 (3.76) | <0.001 |
Δ’s lateral wall | 10.70 (4.82) | 7.92 (3.66) | 0.003 |
ś septum (cm/s) | 17.44 (3.16) | 15.77 (2.55) | 0.007 |
Δ’s septum | 9.23 (3.39) | 7.59 (3.12) | 0.019 |
TAPSE (mm) | 27.91 (5.31) | 21.67 (5.08) | <0.001 |
ΔTAPSE (mm) | 0.11 (5.16) | −3.88 (5.74) | <0.001 |
LVEF (%) | 67.95 (6.48) | 66.94 (4.89) | 0.018 |
ΔLVEF (%) | 7.09 (6.71) | 6.60 (6.34) | ns |
GLS (%) | −22.89 (3.23) | −19.94 (2.39) | <0.001 |
ΔGLS (%) | −2.46 (3.42) | −1.17 (2.93) | 0.048 |
GSR (1/s) | −2.24 (0.41) | −1.92 (0.39) | 0.001 |
ΔGSR (1/s) | −1.27 (0.44) | −1.04 (0.37) | 0.023 |
GEDSR (1/s) | 2.19 (0.41) | 1.82 (0.46) | <0.001 |
ΔGEDSR (1/s) | 0.98 (0.42) | 0.71 (0.46) | 0.005 |
n | B (95%CI) | β | t | p-Value | |
---|---|---|---|---|---|
Dependent variable: GLS (%) at baseline | 53 | ||||
Age (years) | 0.08 (−0.16–0.31) | 0.09 | 0.64 | ns | |
Sex | 0.20 (−0.97–1.37) | 0.05 | 0.35 | ns | |
female | 21 | ||||
male | 32 | ||||
Follow-up time (years) | 0.10 (0.001–0.19) | 0.27 | 2.03 | 0.047 | |
Mediastinal radiotherapy (y/n) | 10 | −0.96 (−2.40–0.48) | −0.18 | −1.33 | ns. |
Cumulative dose AC (mg/m2) | 0.01 (0.002–0.01) | 0.35 | 2.64 | 0.011 | |
Cardiac Risk-Group | 0.85 (−0.32–2.02) | 0.20 | 1.46 | ns | |
low- and moderate risk group | 34/53 | ||||
high-risk | 19/53 | ||||
Dependent variable: GLS (%) at low dose DSE | 53 | ||||
Age (years) | 0.03 (−0.29–0.35) | 0.03 | 0.19 | ns | |
Sex | 0.31 (−1.24–1.27) | 0.06 | 0.41 | ns | |
female (n) | 21 | ||||
male (n) | 32 | ||||
Follow-up time (y) | 0.18 (0.06–0.31) | 0.39 | 3.00 | 0.004 | |
Mediastinal radiotherapy (y/n) | 10 | −1.80 (−3.67–0.08) | −0.26 | −1.93 | ns |
Cumulative dose AC (mg/m2) | 0.02 (0.10–0.024) | 0.59 | 5.11 | <0.001 | |
Cardiac risk group | 1.16 (−0.40–2.71) | 0.21 | 1.50 | ns | |
low- and moderate risk group | 34/53 | ||||
high-risk | 19/53 | ||||
Dependent variable: GLS (%) at peak phase | 48 | ||||
Age (years) | −0.11 (−0.39–0.18) | −0.11 | −0.76 | ns | |
Sex | −1.11 (−2.51–0.29) | −0.23 | −1.60 | ns | |
female | 29 | ns | |||
male | 19 | ns | |||
Follow-up time (years) | 0.08 (−0.04–0.20) | 0.20 | 1.42 | ns | |
Mediastinal radiation (y/n) | 0.30 (−1.95–1.81) | 0.01 | 0.03 | ns | |
Cumulative AC-dose (mg/m2) | 53 | 0.01 (0.001–0.02) | 0.33 | 2.36 | 0.023 |
Cardiac risk-group | 1.23 (−0.19–2.65) | 0.25 | 1.74 | ns | |
low- and moderate risk group | 22 | ||||
high-risk | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Broberg, O.; Øra, I.; Weismann, C.G.; Wiebe, T.; Liuba, P. Childhood Cancer Survivors Have Impaired Strain-Derived Myocardial Contractile Reserve by Dobutamine Stress Echocardiography. J. Clin. Med. 2023, 12, 2782. https://doi.org/10.3390/jcm12082782
Broberg O, Øra I, Weismann CG, Wiebe T, Liuba P. Childhood Cancer Survivors Have Impaired Strain-Derived Myocardial Contractile Reserve by Dobutamine Stress Echocardiography. Journal of Clinical Medicine. 2023; 12(8):2782. https://doi.org/10.3390/jcm12082782
Chicago/Turabian StyleBroberg, Olof, Ingrid Øra, Constance G. Weismann, Thomas Wiebe, and Petru Liuba. 2023. "Childhood Cancer Survivors Have Impaired Strain-Derived Myocardial Contractile Reserve by Dobutamine Stress Echocardiography" Journal of Clinical Medicine 12, no. 8: 2782. https://doi.org/10.3390/jcm12082782
APA StyleBroberg, O., Øra, I., Weismann, C. G., Wiebe, T., & Liuba, P. (2023). Childhood Cancer Survivors Have Impaired Strain-Derived Myocardial Contractile Reserve by Dobutamine Stress Echocardiography. Journal of Clinical Medicine, 12(8), 2782. https://doi.org/10.3390/jcm12082782