Age-Related Differences in Trunk Kinematics and Interplanar Decoupling with the Pelvis during Gait in Healthy Older versus Younger Men
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. 3D Motion Analysis Protocol
2.3. Muscle Morphology
2.4. Statistical Analysis
3. Results
3.1. Discrete Measures
3.2. Continuous Measures
3.3. Correlations between Planes of Motion and Intersegment Motion
4. Discussion
4.1. Age-Related Changes in the Sagittal Plane
4.2. Coronal Plane Changes in Older Age
4.3. Kinematic Changes in the Transverse Plane
4.4. Age Effect on Interplanar Motions
4.5. Clinical and Practical Applications
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chamberlin, M.E.; Fulwider, B.D.; Sanders, S.L.; Medeiros, J.M. Does Fear of Falling Influence Spatial and Temporal Gait Parameters in Elderly Persons beyond Changes Associated with Normal Aging? J. Gerontol.-Ser. A Biol. Sci. Med. Sci. 2005, 60, 1163–1167. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.U.; Hausdorff, J.M.; Ferrucci, L. Age-Associated Differences in the Gait Pattern Changes of Older Adults during Fast-Speed and Fatigue Conditions: Results from the Baltimore Longitudinal Study of Ageing. Age Ageing 2010, 39, 688–694. [Google Scholar] [CrossRef] [PubMed]
- Cimolin, V.; Galli, M. Summary Measures for Clinical Gait Analysis: A Literature Review. Gait Posture 2014, 39, 1005–1010. [Google Scholar] [CrossRef]
- Unitied Nations; Department of Economic and Social Affairs: Population Division; Department of Economic and Social Affairs Population Division, U.N. World Population Ageing 2019: Highlights; United Nations: New York, NY, USA, 2020.
- Ceccato, J.C.; de Sèze, M.; Azevedo, C.; Cazalets, J.R. Comparison of Trunk Activity during Gait Initiation and Walking in Humans. PLoS ONE 2009, 4, e8193. [Google Scholar] [CrossRef]
- Hicks, G.E.; Simonsick, E.M.; Harris, T.B.; Newman, A.B.; Weiner, D.K.; Nevitt, M.A.; Tylavsky, F.A. Trunk Muscle Composition as a Predictor of Reduced Functional Capacity in the Health, Aging and Body Composition Study: The Moderating Role of Back Pain. J. Gerontol.-Ser. A Biol. Sci. Med. Sci. 2005, 60, 1420–1424. [Google Scholar] [CrossRef]
- Young PM, M.; Wilken, J.M.; Dingwell, J.B. Dynamic Margins of Stability during Human Walking in Destabilizing Environments. J. Biomech. 2012, 45, 1053–1059. [Google Scholar] [CrossRef]
- Vellas, B.J.; Wayne, S.J.; Romero, L.; Baumgartner, R.N.; Rubenstein, L.Z.; Garry, P.J. One-Leg Balance Is an Important Predictor of Injurious Falls in Older Persons. J. Am. Geriatr. Soc. 1997, 45, 735–738. [Google Scholar] [CrossRef]
- Winter, D.A.; Patla, A.E.; Frank, J.S.; Walt, S.E. Biomechanical Walking Pattern Changes in the Fit and Healthy Elderly. Phys. Ther. 1990, 70, 340–347. [Google Scholar] [CrossRef] [PubMed]
- McGibbon, C.A.; Krebs, D.E. Age-Related Changes in Lower Trunk Coordination and Energy Transfer during Gait. J. Neurophysiol. 2001, 85, 1923–1931. [Google Scholar] [CrossRef]
- Van Emmerik, R.E.A.; McDermott, W.J.; Haddad, J.M.; Van Wegen, E.E.H. Age-Related Changes in Upper Body Adaptation to Walking Speed in Human Locomotion. Gait Posture 2005, 22, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Van Criekinge, T.; Hallemans, A.; Van de Walle, P.; Sloot, L.H. Age-Related Changes in Trunk Kinematics and Mechanical Work during Gait. Gait Posture 2021, 90, 281–282. [Google Scholar] [CrossRef]
- Schmid, S.; Bruhin, B.; Ignasiak, D.; Romkes, J.; Taylor, W.R.; Ferguson, S.J.; Brunner, R.; Lorenzetti, S. Spinal Kinematics during Gait in Healthy Individuals across Different Age Groups. Hum. Mov. Sci. 2017, 54, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Chung, C.Y.; Park, M.S.; Lee, S.H.; Kong, S.J.; Lee, K.M. Kinematic Aspects of Trunk Motion and Gender Effect in Normal Adults. J. Neuroeng. Rehabil. 2010, 7, 9. [Google Scholar] [CrossRef]
- Leardini, A.; Berti, L.; Begon, M.; Allard, P. Effect of Trunk Sagittal Attitude on Shoulder, Thorax and Pelvis Three-Dimensional Kinematics in Able-Bodied Subjects during Gait. PLoS ONE 2013, 8, e77168. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Dallaway, A.; Kite, C.; Griffen, C.; Duncan, M.; Tallis, J.; Renshaw, D.; Hattersley, J. Age-Related Degeneration of the Lumbar Paravertebral Muscles: Systematic Review and Three-Level Meta-Regression. Exp. Gerontol. 2020, 133, 110856. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef] [PubMed]
- Fritz, J.M.; Irrgang, J.J. A Comparison of a Modified Oswestry Low Back Pain Disability Questionnaire and the Quebec Back Pain Disability Scale. Phys. Ther. 2001, 81, 776–788. [Google Scholar] [CrossRef]
- Migueles, J.H.; Cadenas-Sanchez, C.; Ekelund, U.; Delisle Nyström, C.; Mora-Gonzalez, J.; Löf, M.; Labayen, I.; Ruiz, J.R.; Ortega, F.B. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sport. Med. 2017, 47, 1821–1845. [Google Scholar] [CrossRef]
- Diaz, K.M.; Krupka, D.J.; Chang, M.J.; Kronish, I.M.; Moise, N.; Goldsmith, J.; Schwartz, J.E. Wrist-Based Cut-Points for Moderate- and Vigorous-Intensity Physical Activity for the Actical Accelerometer in Adults. J. Sports Sci. 2018, 36, 206–212. [Google Scholar] [CrossRef]
- Vicon Plug-in Gait. Product Guide—Foundation Notes. Available online: https://www.google.co.uk/search?q=Plug-in+Gait.+Product+Guide+-+Foundation+Notes+%5BOnline%5D.&ie=&oe= (accessed on 10 June 2020).
- Sinclair, J.; Edmundson, C.J.; Brooks, D.; Hobbs, S.J.; Taylor, P.J. The Influence of Footwear Kinetic, Kinematic and Electromyographical Parameters on the Energy Requirements of Steady State Running. Mov. Sport. Sci. 2013, 80, 39–49. [Google Scholar] [CrossRef]
- Dallaway, A.; Hattersley, J.; Diokno, M.; Tallis, J.; Renshaw, D.; Wilson, A.; Wayte, S.; Weedall, A.; Duncan, M. Age-Related Degeneration of Lumbar Muscle Morphology in Healthy Younger versus Older Men. Aging Male 2021, 23, 1583–1597. [Google Scholar] [CrossRef]
- Friston, K.J.; Ashburner, J.T.; Kiebel, S.J.; Nichols, T.E.; Penny, W.D. Statistical Parametric Mapping: The Analysis of Functional Brain Images; Elsevier: London, UK, 2007; ISBN 9780123725608. [Google Scholar]
- Krebs, D.E.; Wong, D.; Jevsevar, D.; Riley, P.O.; Hodge, W.A. Trunk Kinematics during Locomotor Activities. Phys. Ther. 1992, 72, 505–514. [Google Scholar] [CrossRef]
- Sartor, C.; Alderink, G.; Greenwald, H.; Elders, L. Critical Kinematic Events Occurring in the Trunk during Walking. Hum. Mov. Sci. 1999, 18, 669–679. [Google Scholar] [CrossRef]
- Crosbie, J.; Vachalathiti, R.; Smith, R. Patterns of Spinal Motion during Walking. Gait Posture 1997, 5, 6–12. [Google Scholar] [CrossRef]
- Lamoth, C.J.C.; Daffertshofer, A.; Meijer, O.G.; Lorimer Moseley, G.; Wuisman, P.I.J.M.; Beek, P.J. Effects of Experimentally Induced Pain and Fear of Pain on Trunk Coordination and Back Muscle Activity during Walking. Clin. Biomech. 2004, 19, 551–563. [Google Scholar] [CrossRef] [PubMed]
- Callaghan, J.P.; Patla, A.E.; McGill, S.M. Low Back Three-Dimensional Joint Forces, Kinematics, and Kinetics during Walking. Clin. Biomech. 1999, 14, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Hendershot, B.D.; Wolf, E.J. Three-Dimensional Joint Reaction Forces and Moments at the Low Back during over-Ground Walking in Persons with Unilateral Lower-Extremity Amputation. Clin. Biomech. 2014, 29, 235–242. [Google Scholar] [CrossRef]
- Goujon-Pillet, H.; Sapin, E.; Fodé, P.; Lavaste, F. Three-Dimensional Motions of Trunk and Pelvis during Transfemoral Amputee Gait. Arch. Phys. Med. Rehabil. 2008, 89, 87–94. [Google Scholar] [CrossRef]
- Leroux, A.; Fung, J.; Barbeau, H. Postural Adaptation to Walking on Inclined Surfaces: I. Normal Strategies. Gait Posture 2002, 15, 64–74. [Google Scholar] [CrossRef]
- Sharif, S.I.; Al-Harbi, A.B.; Al-Shihabi, A.M.; Al-Daour, D.S.; Sharif, R.S. Falls in the Elderly: Assessment of Prevalence and Risk Factors. Pharm. Pract. 2018, 16. [Google Scholar] [CrossRef] [PubMed]
- Prince, F.; Corriveau, H.; Hébert, R.; Winter, D.A. Gait in the Elderly. Gait Posture 1997, 5, 128–135. [Google Scholar] [CrossRef]
- Robinovitch, S.N.; Feldman, F.; Yang, Y.; Schonnop, R.; Leung, P.M.; Sarraf, T.; Sims-Gould, J.; Loughi, M. Video Capture of the Circumstances of Falls in Elderly People Residing in Long-Term Care: An Observational Study. Lancet 2013, 381, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Whittle, M.W.; Levine, D. Three-Dimensional Relationships between the Movements of the Pelvis and Lumbar Spine during Normal Gait. Hum. Mov. Sci. 1999, 18, 681–692. [Google Scholar] [CrossRef]
- Van Emmerik, R.E.A.; Wagenaar, R.C. Effects of Walking Velocity on Relative Phase Dynamics in the Trunk in Human Walking. J. Biomech. 1996, 29, 1175–1184. [Google Scholar] [CrossRef]
- Gracovetsky, S.A.; Iacono, S. Energy Transfers in the Spinal Engine. J. Biomed. Eng. 1987, 9, 99–114. [Google Scholar] [CrossRef]
- Farrow, M.; Biglands, J.; Tanner, S.F.; Clegg, A.; Brown, L.; Hensor, E.M.A.; O’Connor, P.; Emery, P.; Tan, A.L. The Effect of Ageing on Skeletal Muscle as Assessed by Quantitative MR Imaging: An Association with Frailty and Muscle Strength. Aging Clin. Exp. Res. 2020, 33, 291–301. [Google Scholar] [CrossRef]
- Titus, A.W.; Hillier, S.; Louw, Q.A.; Inglis-Jassiem, G. An Analysis of Trunk Kinematics and Gait Parameters in People with Stroke. Afr. J. Disabil. 2018, 7, a310. [Google Scholar] [CrossRef]
- Konz, R.J.; Fatone, S.; Stine, R.L.; Ganju, A.; Gard, S.A.; Ondra, S.L. A Kinematic Model to Assess Spinal Motion during Walking. Spine 2006, 31, E898–E906. [Google Scholar] [CrossRef]
- Gutierrez, E.M.; Bartonek, Å.; Haglund-Åkerlind, Y.; Saraste, H. Centre of Mass Motion during Gait in Persons with Myelomeningocele. Gait Posture 2003, 18, 37–46. [Google Scholar] [CrossRef]
- MacWilliams, B.A.; Rozumalski, A.; Swanson, A.N.; Wervey, R.A.; Dykes, D.C.; Novacheck, T.F.; Schwartz, M.H. Assessment of Three-Dimensional Lumbar Spine Vertebral Motion during Gait with Use of Indwelling Bone Pins. J. Bone Jt. Surg.-Ser. A 2013, 95, e184. [Google Scholar] [CrossRef] [PubMed]
- Luciano, F.; Ruggiero, L.; Pavei, G. Sample Size Estimation in Locomotion Kinematics and Electromyography for Statistical Parametric Mapping. J. Biomech. 2021, 122, 110481. [Google Scholar] [CrossRef] [PubMed]
Parameter | Younger Group (n = 12) | Older Group (n = 12) | Independent t-Test | Cohen’s d |
---|---|---|---|---|
Participant characteristics | ||||
Age (years) | 24.7 ± 3.1 | 67.3 ± 6.0 | t(22) = −21.8, p < 0.001 | 8.92 |
Height (m) | 1.78 ± 0.1 | 1.74 ± 0.1 | t(22) = 1.2, p = 0.23 | 0.40 |
Mass (kg) | 76.4 ± 11.2 | 79.2 ± 10.8 | t(22) = −0.6, p = 0.55 | 0.25 |
BMI (kg·m−2) | 24.1 ± 2.2 | 26.0 ± 2.7 | t(22) = −1.9, p = 0.07 | 0.77 |
ODQ-m (%) | 2.2 ± 2.3 | 2.2 ± 3.5 | t(22) = 0.0, p = 1.00 | 0.00 |
MVPA (hours per day) | 6.6 ± 1.4 | 6.3 ± 1.5 | t(22) = 0.5, p = 0.60 | 0.21 |
Spatiotemporal data | ||||
Walking Speed (m·s−1) | 1.45 ± 0.19 | 1.33 ± 0.16 | t(22) = 1.70, p = 0.10 | 0.69 |
Cadence (steps·min−1) | 113.9 ± 5.8 | 113.0 ± 7.2 | t(22) = 0.34, p = 0.74 | 0.14 |
Step Length (m) | 0.76 ± 0.08 | 0.71 ± 0.06 | t(22) = 1.85, p = 0.08 | 0.76 |
Normalised Step Length | 0.43 ± 0.05 | 0.41 ± 0.03 | t(19.7) = 1.43, p = 0.17 | 0.59 |
Step Width (m) | 0.14 ± 0.03 | 0.16 ± 0.03 | t(22) = −1.22, p = 0.23 | 0.50 |
Parameter | Younger Group (n = 12) | Older Group (n = 12) | Independent t-Test | Cohen’s d |
---|---|---|---|---|
Trunk-G (°) | ||||
Antero-posterior Tilt ROM ** | 2.96 ± 0.88 | 1.99 ± 0.39 | t(22) = 3.49, p = 0.002 | 1.43 |
Max Anterior Tilt | 5.08 ± 3.21 | 7.69 ± 6.10 | t(22) = −1.31, p = 0.20 | 0.54 |
Min Anterior Tilt | 2.12 ± 3.34 | 5.70 ± 6.29 | t(22) = −1.74, p = 0.10 | 0.71 |
Lateral Tilt ROM | 4.78 ± 2.28 | 4.95 ± 2.82 | t(22) = −0.16, p = 0.88 | 0.06 |
Contralateral Flexion | 2.30 ± 1.18 | 2.38 ± 1.44 | t(22) = −0.15, p = 0.88 | 0.06 |
Ipsilateral Flexion | −2.48 ± 1.11 | −2.56 ± 1.39 | t(22) = 0.16, p = 0.87 | 0.07 |
Axial Rotation ROM * | 6.87 ± 2.21 | 5.04 ± 1.29 | t(17.7) = 2.48, p = 0.02 | 1.01 |
Protraction Rotation * | 3.42 ± 1.06 | 2.50 ± 0.58 | t(16.9) = 2.64, p = 0.02 | 1.08 |
Retraction Rotation * | −3.45 ± 1.19 | −2.54 ± 0.74 | t(22) = −2.25, p = 0.04 | 0.92 |
Trunk-P (°) | ||||
Flexion/Extension ROM | 2.85 ± 1.00 | 2.23 ± 0.69 | t(22) = 1.76, p = 0.09 | 0.72 |
Max Extension | −6.45 ± 5.32 | −4.87 ± 7.79 | t(22) = −0.58, p = 0.57 | 0.24 |
Min Extension | −3.61 ± 5.31 | −2.64 ± 7.82 | t(22) = −0.35, p = 0.73 | 0.14 |
Lateral Flexion ROM ** | 14.31 ± 3.08 | 10.22 ± 3.29 | t(22) = 3.15, p = 0.005 | 1.29 |
Ipsilateral Flexion ** | 7.19 ± 1.50 | 5.19 ± 1.64 | t(22) = 3.10, p = 0.005 | 1.27 |
Contralateral Flexion ** | −7.13 ± 1.59 | −5.03 ± 1.66 | t(22) = −3.18, p = 0.004 | 1.30 |
Axial Rotation ROM | 12.51 ± 3.85 | 9.55 ± 3.20 | t(22) = 2.05, p = 0.05 | 0.84 |
Protraction Rotation | −6.21 ± 1.99 | −4.78 ± 1.56 | t(22) =−1.97, p = 0.06 | 0.80 |
Retraction Rotation * | 6.30 ± 1.88 | 4.77 ± 1.65 | t(22) = 2.11, p = 0.05 | 0.86 |
Pelvis (°) | ||||
Antero-posterior Tilt ROM | 2.31 ± 0.75 | 2.28 ± 0.65 | t(22) = 0.11, p = 0.91 | 0.05 |
Max Anterior Tilt | 9.72 ± 4.00 | 11.60 ± 4.96 | t(22) = −1.02, p = 0.32 | 0.42 |
Min Anterior Tilt | 7.41 ± 4.04 | 9.32 ± 4.97 | t(22) = −1.03, p = 0.31 | 0.42 |
Obliquity ROM *** | 9.83 ± 2.45 | 5.64 ± 1.72 | t(22) = 4.85, p < 0.001 | 1.98 |
Upward Tilt *** | 4.87 ± 1.23 | 2.84 ± 0.81 | t(22) = 4.77, p < 0.001 | 1.95 |
Downward Tilt *** | −4.96 ± 1.23 | −2.80 ± 0.94 | t(22) = −4.83, p < 0.001 | 1.97 |
Axial Rotation ROM | 11.92 ± 4.35 | 8.62 ± 3.82 | t(22) = 1.98, p = 0.06 | 0.81 |
Protraction Rotation | 6.01 ± 2.25 | 4.39 ± 1.93 | t(22) = 1.90, p = 0.07 | 0.77 |
Retraction Rotation | −5.91 ± 2.12 | −4.23 ± 1.93 | t(22) = −2.03, p = 0.05 | 0.83 |
Trunk-P ROM | Trunk-G ROM | Pelvic ROM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Flexion/ Extension | Lateral Flexion | Axial Rotation | Tilt | Lateral Tilt | Axial Rotation | Tilt | Obliquity | Axial Rotation | ||
Trunk-P ROM | Flexion/Extension | r = 1.0 | r = 0.43 * | r = 0.37 | r = 0.03 | r = 0.14 | r = 0.41 * | r = 0.23 | r = 0.37 | r = 0.27 |
Lateral flexion | r = 1.0 | r = 0.25 | r = 0.46 * | r = 0.33 | r = 0.44 * | r = 0.29 | r = 0.73 ** | r = 0.06 | ||
Axial rotation | r = 1.0 | r = 0.12 | r = 0.14 | r = 0.45 * | r = 0.02 | r = 0.37 | r = 0.69 ** | |||
Trunk-G ROM | Tilt | r = 1.0 | r = −0.02 | r = 0.25 | r = 0.13 | r = 0.46 * | r = 0.14 | |||
Lateral tilt | r = 1.0 | r = 0.31 | r = 0.01 | r = −0.13 | r = −0.14 | |||||
Axial rotation | r = 1.0 | r = −0.30 | r = 0.39 | r = 0.44 * | ||||||
Pelvic ROM | Tilt | r = 1.0 | r = 0.22 | r = −0.02 | ||||||
Obliquity | r = 1.0 | r = 0.43 * | ||||||||
Axial rotation | r = 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dallaway, A.; Duncan, M.; Griffen, C.; Tallis, J.; Renshaw, D.; Hattersley, J. Age-Related Differences in Trunk Kinematics and Interplanar Decoupling with the Pelvis during Gait in Healthy Older versus Younger Men. J. Clin. Med. 2023, 12, 2951. https://doi.org/10.3390/jcm12082951
Dallaway A, Duncan M, Griffen C, Tallis J, Renshaw D, Hattersley J. Age-Related Differences in Trunk Kinematics and Interplanar Decoupling with the Pelvis during Gait in Healthy Older versus Younger Men. Journal of Clinical Medicine. 2023; 12(8):2951. https://doi.org/10.3390/jcm12082951
Chicago/Turabian StyleDallaway, Alexander, Michael Duncan, Corbin Griffen, Jason Tallis, Derek Renshaw, and John Hattersley. 2023. "Age-Related Differences in Trunk Kinematics and Interplanar Decoupling with the Pelvis during Gait in Healthy Older versus Younger Men" Journal of Clinical Medicine 12, no. 8: 2951. https://doi.org/10.3390/jcm12082951
APA StyleDallaway, A., Duncan, M., Griffen, C., Tallis, J., Renshaw, D., & Hattersley, J. (2023). Age-Related Differences in Trunk Kinematics and Interplanar Decoupling with the Pelvis during Gait in Healthy Older versus Younger Men. Journal of Clinical Medicine, 12(8), 2951. https://doi.org/10.3390/jcm12082951