Advancements in Methods of Classification and Measurement Used to Assess Tooth Mobility: A Narrative Review
Abstract
:1. Introduction
2. Materials and Methods
3. Classifications of Tooth Mobility
4. Devices for Tooth Mobility Measurement
4.1. Displacement Measuring Devices
4.2. Strain-Measuring Devices
4.3. Modal Measuring Devices
5. Current Strategies and Limitations
6. Clinical Implications and Challenges
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anitha Balaji, D.S.S. Tooth mobility. Eur. J. Mol. Clin. Med. 2020, 7, 6713–6716. [Google Scholar]
- Lang, N.P.; Bartold, P.M. Periodontal health. J. Periodontol. 2018, 89, S9–S16. [Google Scholar] [PubMed]
- Verna, C.; Melsen, B. Tissue reaction to orthodontic tooth movement in different bone turnover conditions. Orthod. Craniofac. Res. 2003, 6, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Oyama, K.; Motoyoshi, M.; Hirabayashi, M.; Hosoi, K.; Shimizu, N. Effects of root morphology on stress distribution at the root apex. Eur. J. Orthod. 2007, 29, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.-Y.; Lin, C.-D.; Lee, M.-S.; Yeh, C.-L.; Shen, E.-C.; Chiang, C.-Y.; Chiu, H.-C.; Fu, E. Mandibular disto-lingual root: A consideration in periodontal therapy. J. Periodontol. 2007, 78, 1485–1490. [Google Scholar] [CrossRef] [PubMed]
- Polson, A.M. Interrelationship of inflammation and tooth mobility (trauma) in pathogenesis of periodontal disease. J. Clin. Periodontol. 1980, 7, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Raitapuro-Murray, T.; Molleson, T.; Hughes, F. The prevalence of periodontal disease in a romano-british population c. 200–400 ad. Br. Dent. J. 2014, 217, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.S.; Marawar, P.P.; Mishra, S.S. A cross-sectional, clinical study to evaluate mobility of teeth during pregnancy using periotest. Indian J. Dent. Res. 2017, 28, 10. [Google Scholar] [CrossRef]
- Littlewood, S.J.; Mitchell, L. An Introduction to Orthodontics; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Varadhan, K.B.; Parween, S.; Bhavsar, A.K.; Prabhuji, M.L.V. Tooth mobility measurements-realities and limitations. J. Evolution. Med. Dent. Sci. 2019, 8, 1342–1350. [Google Scholar] [CrossRef]
- Matthews, D.C. Prevention and treatment of periodontal diseases in primary care. Evid. Based Dent. 2014, 15, 68–69. [Google Scholar] [CrossRef]
- Ella, B.; Ghorayeb, I.; Burbaud, P.; Guehl, D. Bruxism in movement disorders: A comprehensive review. J. Prosthodont. 2017, 26, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Bastone, E.B.; Freer, T.J.; McNamara, J.R. Epidemiology of dental trauma: A review of the literature. Aust. Dent. J. 2000, 45, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Ruggiero, S.L. Guidelines for the diagnosis of bisphosphonate-related osteonecrosis of the jaw (bronj). Clin. Cases Miner. Bone Metab. Off. J. Ital. Soc. Osteoporos. Miner. Metab. Skelet. Dis. 2007, 4, 37–42. [Google Scholar]
- Wheeler, T.T.; McArthur, W.P.; Magnussen, I.; Marks, R.G.; Smith, J.; Sarrett, D.C.; Bender, B.S.; Clark, W.B. Modeling the relationship between clinical, microbiologic, and immunologic parameters and alveolar bone levels in an elderly population. J. Periodontol. 1994, 65, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, E.; Ueki, K.; Kikuzaki, M.; Yamada, E.; Takeuchi, M.; Dalla-Bona, D.; Tanne, K. Longitudinal measurements of tooth mobility during orthodontic treatment using a periotest. Angle Orthod. 2005, 75, 101–105. [Google Scholar] [PubMed]
- Piwowarczyk, A.; Köhler, K.C.; Bender, R.; Büchler, A.; Lauer, H.C.; Ottl, P. Prognosis for abutment teeth of removable dentures: A retrospective study. J. Prosthodont. Implant. Esthet. Reconstr. Dent. 2007, 16, 377–382. [Google Scholar] [CrossRef]
- Andresen, M.; Mackie, I.; Worthington, H. The periotest in traumatology. Part i. Does it have the properties necessary for use as a clinical device and can the measurements be interpreted? Dent. Traumatol. 2003, 19, 214–217. [Google Scholar] [CrossRef]
- Andresen, M.; Mackie, I.; Worthington, H. The periotest in traumatology. Part ii. The periotest as a special test for assessing the periodontal status of teeth in children that have suffered trauma. Dent. Traumatol. 2003, 19, 218–220. [Google Scholar] [CrossRef]
- Perlitsh, M.J. A systematic approach to the interpretation of tooth mobility and its clinical implications. Dent. Clin. N. Am. 1980, 24, 177–193. [Google Scholar] [CrossRef]
- Purkait, S.; Bandyopadhyaya, P.; Mallick, B.; Das, I. Classification of tooth mobility—Concept revisited. Int. J. Rec. Adv. Multidiscip. Res. 2016, 3, 1510–1522. [Google Scholar]
- Newman, M.G.; Takei, H.; Klokkevold, P.R.; Carranza, F.A. Carranza’s Clinical Periodontology; Elsevier Health Sciences: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Azodo, C.C.; Ogbebor, O.G. Tooth mobility in a nigerian specialist periodontology clinic. Indian J. Oral Health Res. 2017, 3, 62. [Google Scholar] [CrossRef]
- Stoller, N.H.; Laudenbach, K.W. Clinical standardization of horizontal tooth mobility. J. Clin. Periodontol. 1980, 7, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Goellner, M.; Schmitt, J.; Holst, S.; Petschelt, A.; Wichmann, M.; Berthold, C. Correlations between tooth mobility and the periotest method in periodontally involved teeth. Quintessence Int. 2013, 44, 307–316. [Google Scholar] [PubMed]
- Ioi, H.; Morishita, T.; Nakata, S.; Nakasima, A.; Nanda, R.S. Evaluation of physiological tooth movements within clinically normal periodontal tissues by means of periodontal pulsation measurements. J. Periodontal Res. 2002, 37, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, M.; Ghalichi, F.; Mirzakouchaki, B.; Zoljanahi Oskui, I. Numerical simulation of hydro-mechanical coupling of periodontal ligament. Proc. Inst. Mech. Eng. H 2020, 234, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Mühlemann, H.R. Tooth mobility: A review of clinical aspects and research findings. J. Periodontol. 1967, 38, 686–708. [Google Scholar] [CrossRef] [PubMed]
- Anderegg, C.R.; Metzler, D.G. Tooth mobility revisited. J. Periodontol. 2001, 72, 963–967. [Google Scholar] [CrossRef]
- Miller, P.D., Jr.; McEntire, M.L.; Marlow, N.M.; Gellin, R.G. An evidenced-based scoring index to determine the periodontal prognosis on molars. J. Periodontol. 2014, 85, 214–225. [Google Scholar] [CrossRef]
- Yamane, M.; Yamaoka, M.; Hayashi, M.; Furutoyo, I.; Komori, N.; Ogiso, B. Measuring tooth mobility with a no-contact vibration device. J. Periodontal. Res. 2008, 43, 84–89. [Google Scholar] [CrossRef]
- Glickman, I. Clinical Periodontology: Recognition, Diagnosis and Treatment of Periodontal Disease in the Practice of Genearal Dentistry; Saunders: New York, NY, USA, 1964. [Google Scholar]
- O’Leary, T.I. Indices for measurement of tooth mobility in clinical studies. J. Periodontal. Res. 1974, 9, 94–99. [Google Scholar] [CrossRef]
- Laster, L.; Laudenbach, K.W.; Stoller, N.H. An evaluation of clinical tooth mobility measurements. J. Periodontol. 1975, 46, 603–607. [Google Scholar] [CrossRef]
- Rose, L.F.; Mealey, B.L.; Genco, R.J. Periodontics: Medicine, Surgery, and Implants; Mosby Incorporated: St. Louis, MO, USA, 2004. [Google Scholar]
- Parfitt, G.J. The dynamics of a tooth in function. J. Periodontol. 1961, 32, 102–107. [Google Scholar] [CrossRef]
- Ramfjord, S.P. The periodontal disease index (pdi). J. Periodontol. 1967, 38, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Burgett, F.G.; Shyr, Y.; Ramfjord, S. The influence of molar furcation involvement and mobility on future clinical periodontal attachment loss. J. Periodontol. 1994, 65, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, B.H.; Geiger, A.M.; Turgeon, L.R. Relationship of occlusion and periodontal disease part vii—Mobility. J. Periodontol. 1973, 44, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Lovdal, A.; Schei, O.; Werhaug, J.; Arno, A. Tooth mobility and alveolar bone resorption as a function of occlusal stress and oral hygiene. Acta Odontol. Scand. 1959, 17, 61–77. [Google Scholar] [CrossRef]
- Armitage, G.C. Development of a classification system for periodontal diseases and conditions. Ann. Periodontol. 1999, 4, 1–6. [Google Scholar] [CrossRef]
- Schluger, S. Periodontal Diseases. Basic Phenomena, Clinical Management, and Occlusal and Restorative Interrelationships; Lea & Febiger: Philadelphia, PA, USA, 1990; pp. 89–152. [Google Scholar]
- Grace, A.; Smales, F. Periodontal Control: An Effective System for Diagnosis, Selection, Control and treatment Planning in General Practice; Quintessence Publishing Company: Bunkyo-ku, Tokyo, 1989. [Google Scholar]
- Prichard, J.F. Advanced Periodontal Disease: Surgical and Prosthetic Management; Saunders: New York, NY, USA, 1965. [Google Scholar]
- Carranza, F.; Newman, M. Clinical Periodontology; WB Saunders: New York, NY, USA, 1996. [Google Scholar]
- Schulte, W.; Lukas, D. The periotest method. Int. Dent. J. 1992, 42, 433–440. [Google Scholar]
- Konermann, A.; Al-Malat, R.; Skupin, J.; Keilig, L.; Dirk, C.; Karanis, R.; Bourauel, C.; Jäger, A. In vivo determination of tooth mobility after fixed orthodontic appliance therapy with a novel intraoral measurement device. Clin. Oral Investig. 2017, 21, 1283–1289. [Google Scholar] [CrossRef]
- Meirelles, L.; Siqueira, R.; Garaicoa-Pazmino, C.; Yu, S.H.; Chan, H.L.; Wang, H.L. Quantitative tooth mobility evaluation based on intraoral scanner measurements. J. Periodontol. 2020, 91, 202–208. [Google Scholar] [CrossRef]
- Mühlemann, H.R. Tooth mobility: The measuring method. Initial and secondary tooth mobility. J. Periodontol. 1954, 25, 22–29. [Google Scholar] [CrossRef]
- Manly, R.; Yurkstas, A.; Reswick, J. An instrument for measuring tooth mobility. J. Periodontol. 1951, 22, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Mühlemann, H.R. Periodontometry, a method for measuring tooth mobility. Oral Surg. Oral Med. Oral Pathol. 1951, 4, 1220–1233. [Google Scholar] [CrossRef] [PubMed]
- Oleary, T.J.; Rudd, K.D. An Instrument for Measuring Horizontal Tooth Mobility; Aerospace Medical Division, Brooks AFB: San Antonio, TX, USA, 1963. [Google Scholar]
- Barbakow, F.; Cleaton-Jones, P.; Austin, J.; Andreasen, J.; Vieira, E. Changes in tooth mobility after experimental replantation. J. Endod. 1978, 4, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Robertson, R.G. The Multiple Impulse Method of Tooth Mobility Assessment. Ph.D. Thesis, University of London, London, UK, 1995. [Google Scholar]
- Picton, D. A method of measuring physiologic tooth movements in man. J. Dent. Res. 1957, 36, 814. [Google Scholar]
- Parfitt, G.J. Measurement of the physiological mobility of individual teeth in an axial direction. J. Dent. Res. 1960, 39, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Pameijer, C.H.; Stallard, R.E. A method for quantitative measurements of toothmobility. J. Periodontol. 1973, 44, 339–346. [Google Scholar] [CrossRef]
- Körber, K.; Körber, E. Patterns of physiological movement in tooth support. In The Mechanisms of Tooth Support; John Wright, Bristol: Bristol, UK, 1967; pp. 148–153. [Google Scholar]
- Körber, K.H. Periodontal pulsation. J. Periodontol. 1970, 41, 382–390. [Google Scholar] [CrossRef]
- Wedendal, P.R.; Bjelkhagen, H. Dental holographic interferometry in vivo utilizing a ruby laser system: I. Introduction and development of methods for precision measurements on the functional dynamics of human teeth and prosthodontic appliances. Acta Odontol. Scand. 1974, 32, 131–145. [Google Scholar] [CrossRef]
- Wedendal, P.R.; Bjelkhagen, H. Dental holographic interferometry in vivo utilizing a ruby laser system ii. Clinical applications. Acta Odontol. Scand. 1974, 32, 345–356. [Google Scholar] [CrossRef]
- Burstone, C.; Pryputniewicz, R.; Bowley, W. Holographic measurement of tooth mobility in three dimensions. J. Periodontal. Res. 1978, 13, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Persson, R.; Svensson, A. Assessment of tooth mobility using small loads: I. Technical devices and calculations of tooth mobility in periodontal health and disease. J. Clin. Periodontol. 1980, 7, 259–275. [Google Scholar] [CrossRef] [PubMed]
- Schulte, W.; d’Hoedt, B.; Lukas, D.; Maunz, M.; Steppeler, M. Periotest for measuring periodontal characteristics–correlation with periodontal bone loss. J. Periodontal. Res. 1992, 27, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N.; Koga, Y.; Kobayashi, K.; Yamada, Y.; Yoneda, T. A new method for qualitative and quantitative evaluation of tooth displacement under the application of orthodontic forces using magnetic sensors. Med. Eng. Phys. 2000, 22, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N.; Koga, Y.; Mimaki, N.; Kobayashi, K. In vivo determination of the centres of resistance of maxillary anterior teeth subjected to retraction forces. Eur. J. Orthod. 2001, 23, 529–534. [Google Scholar] [CrossRef]
- Lee, J.; Pyo, S.-W.; Cho, H.-J.; An, J.-S.; Lee, J.-H.; Koo, K.-T.; Lee, Y.-M. Comparison of implant stability measurements between a resonance frequency analysis device and a modified damping capacity analysis device: An in vitro study. JPIS 2020, 50, 56–66. [Google Scholar] [CrossRef]
- Fu, Z.-F.; He, J. Modal Analysis; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Zix, J.; Hug, S.; Kessler-Liechti, G.; Mericske-Stern, R. Measurement of dental implant stability by resonance frequency analysis and damping capacity assessment: Comparison of both techniques in a clinical trial. Int. J. Oral Maxillofac. Implants 2008, 23, 525–530. [Google Scholar]
- Choi, H.-H.; Chung, C.-H.; Kim, S.-G.; Son, M.-K. Reliability of 2 implant stability measuring methods in assessment of various periimplant bone loss: An: In vitro: Study with the periotest and osstell mentor. Implant Dent. 2014, 23, 51–56. [Google Scholar] [CrossRef]
- Berthold, C.; Thaler, A.; Petschelt, A. Rigidity of commonly used dental trauma splints. Dent. Traumatol. 2009, 25, 248–255. [Google Scholar] [CrossRef]
- Filippi, A.; Pohl, Y.; Von Arx, T. Treatment of replacement resorption by intentional replantation, resection of the ankylosed sites, and emdogain®—Results of a 6-year survey. Dent. Traumatol. 2006, 22, 307–311. [Google Scholar] [CrossRef]
- Mackie, I.; Ghrebi, S.; Worthington, H. Measurement of tooth mobility in children using the periotest. Dent. Traumatol. 1996, 12, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Derhami, K.; Wolfaardt, J.F.; Faulkner, G.; Grace, M. Assessment of the periotest device in baseline mobility measurements of craniofacial implants. Int. J. Oral. Maxillofac. Implants 1995, 10, 221–229. [Google Scholar] [PubMed]
- Inaba, M. Evaluation of primary stability of inclined orthodontic mini-implants. J. Oral. Sci. 2009, 51, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Schulte, W.; Lukas, D. Periotest to monitor osseointegration and to check the occlusion in oral implantology. J. Oral. Implantol. 1993, 19, 23–32. [Google Scholar]
- Uchida, H.; Wada, J.; Watanabe, C.; Nagayama, T.; Mizutani, K.; Mikami, R.; Inukai, S.; Wakabayashi, N. Effect of night dentures on tooth mobility in denture wearers with sleep bruxism: A pilot randomized controlled trial. J. Prosthodont. Res. 2021, 66, 564–571. [Google Scholar] [CrossRef]
- Nagayama, T.; Wada, J.; Watanabe, C.; Murakami, N.; Takakusaki, K.; Uchida, H.; Utsumi, M.; Wakabayashi, N. Influence of retainer and major connector designs of removable partial dentures on the stabilization of mobile teeth: A preliminary study. Dent. Mater. J. 2020, 39, 89–100. [Google Scholar] [CrossRef]
- Rosenberg, D.; Quirynen, M.; van Steenberghe, D.; Naert, I.E.; Tricio, J.; Nys, M. A method for assessing the damping characteristics of periodontal tissues: Goals and limitations. Quintessence Int. 1995, 26, 191–197. [Google Scholar]
- Kindlova, M.; Matena, V. Blood vessels of the rat molar. J. Dent. Res. 1962, 41, 650–660. [Google Scholar] [CrossRef]
- Atsumi, M.; Park, S.-h.; Wang, H.-L. Methods used to assess implant stability: Current status. Int. J. Oral Maxillofac. Implant. 2007, 22, 743–754. [Google Scholar]
- Meredith, N.; Friberg, B.; Sennerby, L.; Aparicio, C. Relationship between contact time measurements and ptv values when using the periotest to measure implant stability. Int. J. Prosthodont. 1998, 11, 269–275. [Google Scholar]
- Lim, H.-K.; Lee, S.-J.; Jeong, Y.; Lee, J.-S.; Ryu, J.-J.; Shim, J.-S.; Song, I.-S. Clinical validation of dental implant stability by newly designed damping capacity assessment device during the healing period. Medicina 2022, 58, 1570. [Google Scholar] [CrossRef] [PubMed]
- Pyo, S.-W.; Kim, H.G.; Kwon, O.; Otgonbold, J.; Lee, K.-W. Reliability verification of damping capacity assessment through in vitro analysis of implant micromotion in peri-implant bone loss model. Int. J. Oral Maxillofac. Implants 2021, 36, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Aminoshariae, A.; Mackey, S.A.; Palomo, L.; Kulild, J.C. Declassifying mobility classification. J. Endod. 2020, 46, 1539–1544. [Google Scholar] [CrossRef]
- Galler, C.; Selipsky, H.; Phillips, C.; Ammons, W., Jr. The effect of splinting on tooth mobility (2) after osseous surgery. J. Clin. Periodontol. 1979, 6, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Kobayashi, C.; Ogata, H.; Yamaoka, M.; Ogiso, B. A no-contact vibration device for measuring implant stability. Clin. Oral Implants Res. 2010, 21, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Medina-Sotomayor, P.; Pascual-Moscardo, A.; Camps, A.I. Accuracy of 4 digital scanning systems on prepared teeth digitally isolated from a complete dental arch. J. Prosthet. Dent. 2019, 121, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Natali, A.N.; Pavan, P.G.; Scarpa, C. Numerical analysis of tooth mobility: Formulation of a non-linear constitutive law for the periodontal ligament. Dent. Mater. 2004, 20, 623–629. [Google Scholar] [CrossRef] [PubMed]
- de Jong, T.; Bakker, A.D.; Everts, V.; Smit, T.H. The intricate anatomy of the periodontal ligament and its development: Lessons for periodontal regeneration. J. Periodontal. Res. 2017, 52, 965–974. [Google Scholar] [CrossRef]
- Middleton, J.; Jones, M.; Wilson, A. The role of the periodontal ligament in bone modeling: The initial development of a time-dependent finite element model. Am. J. Orthod. Dentofac. Orthop. 1996, 109, 155–162. [Google Scholar] [CrossRef]
- Toms, S.R.; Eberhardt, A.W. A nonlinear finite element analysis of the periodontal ligament under orthodontic tooth loading. Am. J. Orthod. Dentofac. Orthop. 2003, 123, 657–665. [Google Scholar] [CrossRef]
- Hohmann, A.; Kober, C.; Young, P.; Dorow, C.; Geiger, M.; Boryor, A.; Sander, F.M.; Sander, C.; Sander, F.G. Influence of different modeling strategies for the periodontal ligament on finite element simulation results. Am. J. Orthod. Dentofac. Orthop. 2011, 139, 775–783. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.; Middleton, J.; Jones, M.; McGuinness, N. The finite element analysis of stress in the periodontal ligament when subject to vertical orthodontic forces. Br. J. Orthod. 1994, 21, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Su, M.-Z.; Chang, H.-H.; Chiang, Y.-C.; Cheng, J.-H.; Fuh, L.-J.; Wang, C.-Y.; Lin, C.-P. Modeling viscoelastic behavior of periodontal ligament with nonlinear finite element analysis. J. Dent. Sci. 2013, 8, 121–128. [Google Scholar] [CrossRef]
- Poiate, I.A.V.P.; de Vasconcellos, A.B.; de Santana, R.B.; Poiate, E., Jr. Three-dimensional stress distribution in the human periodontal ligament in masticatory, parafunctional, and trauma loads: Finite element analysis. J. Periodontol. 2009, 80, 1859–1867. [Google Scholar] [CrossRef]
Index | Miller [29,34,35,36,37,38] | Wasserman [39] | Lovdal [40] | Armitage [41] | Schluger [42] | Grace and Smales [43] | Prichard [44] | Carranza [45] |
---|---|---|---|---|---|---|---|---|
0 | No mobility | N/A | Normal mobility | N/A | Normal mobility | No mobility | N/A | N/A |
1 | Greater than normal (physiological) | Normal mobility | Greater than normal | <1 mm mobility | <1 mm in buccolingual direction | <1 mm in buccolingual direction | Slight mobility | Slight mobility |
2 | <1 mm in buccolingual direction | <3/4 mm | Conspicuous mobility in the axial direction | >1 mm but not depressible | <2 mm in buccolingual direction | 1 mm–2 mm | Moderate mobility | Moderate mobility |
3 | >1 mm in buccolingual direction and depressible | 3/4 mm–2 mm (>2 mm to score 4, >2 mm and depressible to score 5) | Mobile in axial and transverse directions | >1 mm and depressible | >2 mm in buccolingual and apical direction | >2 mm in buccolingual or vertical direction | Extensive mobility | Severe mobility |
Proposal | Device | Force | Quntification | Features |
---|---|---|---|---|
Elbrech (1939) [49,50] | Dial indicator | Digital pressure/static | Displacement |
|
Werner (1942) [49] | Oscillator | 700 g pressure/static | Displacement |
|
Muhlemann (1951/1954) [49,51,52,53] | Periodontometers (Macro/Micro) | 100–1500 g pressure/static | Displacement | Fixed with a/an impression tray/rubber dam clamp. |
Picton (1957) [54,55] | Resistance wire strain gauges | 20 N/static | Strain | A customized clutch is required. |
Parfitt (1960) [36,56] | Inductive transducers | 10–1000 g pressure/static | Displacement | Claims an accuracy of 0.001 mm ± 7%. |
O’Leary and Rudd (1963) [52,57] | USAFSAM periodontometer | 500 g pressure | Displacement | The device is fixed to one arch. |
Korber (1967) [58,59] | Inductive transducers | Dynamic/unclear | Displacement |
|
Wedendal (1974) [60,61,62] | Dental holographic interferometry | 2 N/static and dynamic | Displacement | Special retro-reflective paint is required for surface preparation before holography. |
Persson and Svensson (1980) [63] | Linear variable differential transformer | 20, 50 and 80 g pressure/static | Displacement/strain |
|
Schulte (1992) [46,64] | Periotest | 25 N/dynamic | Modal | Reproducible. |
Konermann (2017) [47] | Intraoral measuring device | 0.05 N–200 N/dynamic | Displacement | Results can vary depending on unwanted movement by the patient and how the investigator applies the splint. |
Meirelles (2020) [48] | Intraoral scanner measurements | Subjectivity/static | Displacement | Objective assessment of tooth displacement without the operator’s perception. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.Y.; Kim, S.; Chang, J.-S.; Pyo, S.-W. Advancements in Methods of Classification and Measurement Used to Assess Tooth Mobility: A Narrative Review. J. Clin. Med. 2024, 13, 142. https://doi.org/10.3390/jcm13010142
Kim GY, Kim S, Chang J-S, Pyo S-W. Advancements in Methods of Classification and Measurement Used to Assess Tooth Mobility: A Narrative Review. Journal of Clinical Medicine. 2024; 13(1):142. https://doi.org/10.3390/jcm13010142
Chicago/Turabian StyleKim, Gi Youn, Sunjai Kim, Jae-Seung Chang, and Se-Wook Pyo. 2024. "Advancements in Methods of Classification and Measurement Used to Assess Tooth Mobility: A Narrative Review" Journal of Clinical Medicine 13, no. 1: 142. https://doi.org/10.3390/jcm13010142
APA StyleKim, G. Y., Kim, S., Chang, J. -S., & Pyo, S. -W. (2024). Advancements in Methods of Classification and Measurement Used to Assess Tooth Mobility: A Narrative Review. Journal of Clinical Medicine, 13(1), 142. https://doi.org/10.3390/jcm13010142