Descriptive Analysis of Trauma Admission Trends before and during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Participants
2.3. Ethical Considerations
2.4. Statistical Analysis
3. Results
3.1. Participant Demographics
3.2. Comparative Characteristics of Study Cohorts
3.3. Admittances
3.4. The Period of 2018–2019
3.5. The Period of 2020–2021
3.6. Fatalities Average Length of Hospitalization in Rural Areas
3.7. Fatalities
3.8. Average Length of Hospitalization and Maximum Hospitalization Days
3.9. Relationship between the Type of Trauma and Selected Variables in Logistic Regression Analysis
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heron, M. National Vital Statistics Reports Volume 70, Number 9 July 26, 2021 Deaths: Leading Causes for 2019. Available online: https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-09-508.pdf (accessed on 11 December 2023).
- Kochanek, K.D.; Murphy, S.L.; Xu, J.; Arias, E. National Vital Statistics Reports Volume 68, Number 9 June 24, 2019 Deaths: Final Data for 2017. Available online: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf (accessed on 11 December 2023).
- WHO Injuries and Violence. Available online: https://www.who.int/news-room/fact-sheets/detail/injuries-and-violence (accessed on 16 December 2023).
- Kaske, S.; Lefering, R.; Trentzsch, H.; Driessen, A.; Bouillon, B.; Maegele, M.; Probst, C. Quality of life two years after severe trauma: A single centre evaluation. Injury 2014, 45, S100–S105. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Escobar, J.P.; Rivero, R.; Apoj, M.; Geada, A.; Villanyi, M.; Blake, D.; Nehra, D.; Velmahos, G.; Kaafarani, H.M.; Salim, A.; et al. Long-term social dysfunction after trauma: What is the prevalence, risk factors, and associated outcomes? Surgery 2019, 166, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Mutschler, W.; Mutschler, M.; Graw, M.; Lefering, R. Langzeitüberleben nach schwerem Trauma. Unfallchirurg 2016, 119, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Escobar, J.P.; Seshadri, A.J.; Rivero, R.; Toppo, A.; Al Rafai, S.S.; Scott, J.W.; Havens, J.M.; Velmahos, G.; Kasotakis, G.; Salim, A.; et al. Lower education and income predict worse long-term outcomes after injury. J. Trauma Acute Care Surg. 2019, 87, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Escobar, J.P.; Al Rafai, S.S.; Seshadri, A.J.; Weed, C.; Apoj, M.; Harlow, A.; Brasel, K.; Kasotakis, G.; Kaafarani, H.M.; Velmahos, G.; et al. A multicenter study of post-traumatic stress disorder after injury: Mechanism matters more than injury severity. Surgery 2018, 164, 1246–1250. [Google Scholar] [CrossRef]
- Moore, K. Injury Prevention and Trauma Mortality. J. Emerg. Nurs. 2016, 42, 457–458. [Google Scholar] [CrossRef] [PubMed]
- Sammy, I.; Lecky, F.; Sutton, A.; Leaviss, J.; O’Cathain, A. Factors affecting mortality in older trauma patients—A systematic review and meta-analysis. Injury 2016, 47, 1170–1183. [Google Scholar] [CrossRef]
- Krysińska, M.M.; Domosławska-Żylińska, K.; Fronk, M.; Zakład, N.I. Urazy Wśród Osób Powyżej 60-go Roku Życia: Raport. Narodowy Instytut Zdrowia Publicznego-Państwowy Zakład Higieny. 2017. Available online: https://www.pzh.gov.pl/wp-content/uploads/2018/11/Urazy-raport.pdf?fbclid=IwAR2pNl4BiNwOE_buq5xldNcXRgW5T4fv9kozqDXB1VNtM0hkfRt2ywjCE14 (accessed on 9 November 2023).
- Pagin, M.; Mabire, C.; Cotton, M.; Zingg, T.; Carron, P.-N. Retrospective Analysis of Geriatric Major Trauma Patients Admitted in the Shock Room of a Swiss Academic Hospital: Characteristics and Prognosis. J. Clin. Med. 2020, 9, 1343. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, M.J.; Hong, J.Y.; Myung, J.; Roh, Y.H.; Chung, S.P. The elderly age criterion for increased in-hospital mortality in trauma patients: A retrospective cohort study. Scand. J. Trauma Resusc. Emerg. Med. 2021, 29, 133. [Google Scholar] [CrossRef]
- Haagsma, J.A.; Graetz, N.; Bolliger, I.; Naghavi, M.; Higashi, H.; Mullany, E.C.; Abera, S.F.; Abraham, J.P.; Adofo, K.; Alsharif, U.; et al. The global burden of injury: Incidence, mortality, disability-adjusted life years and time trends from the Global Burden of Disease study 2013. Inj. Prev. 2016, 22, 3–18. [Google Scholar] [CrossRef]
- Kyu, H.H.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1859–1922. [Google Scholar] [CrossRef]
- Vos, T.; Lim, S.S.; Abbafati, C.; Abbas, K.M.; Abbasi, M.; Abbasifard, M.; Abbasi-Kangevari, M.; Abbastabar, H.; Abd-Allah, F.; Abdelalim, A.; et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- The Magnitude and Causes of Injuries. Available online: www.who.int/healthinfo/global_burden_disease/projections/en/ (accessed on 16 December 2023).
- International Statistical Classification of Diseases. Available online: https://www.who.int/standards/classifications/classification-of-diseases (accessed on 16 December 2023).
- Syed, A.; Zoga, A. Artificial Intelligence in Radiology: Current Technology and Future Directions. Semin. Musculoskelet. Radiol. 2018, 22, 540–545. [Google Scholar] [PubMed]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef]
- Kheradvar, A.; Jafarkhani, H.; Guy, T.S.; Finn, J.P. Prospect of artificial intelligence for the assessment of cardiac function and treatment of cardiovascular disease. Future Cardiol. 2021, 17, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Syaifullah, A.H.; Shiino, A.; Kitahara, H.; Ito, R.; Ishida, M.; Tanigaki, K. Machine Learning for Diagnosis of AD and Prediction of MCI Progression From Brain MRI Using Brain Anatomical Analysis Using Diffeomorphic Deformation. Front. Neurol. 2021, 11, 576029. [Google Scholar] [CrossRef]
- Karpiński, R.; Krakowski, P.; Jonak, J.; Machrowska, A.; Maciejewski, M.; Nogalski, A. Diagnostics of Articular Cartilage Damage Based on Generated Acoustic Signals Using ANN—Part I: Femoral-Tibial Joint. Sensors 2022, 22, 2176. [Google Scholar] [CrossRef]
- Karpiński, R.; Krakowski, P.; Jonak, J.; Machrowska, A.; Maciejewski, M.; Nogalski, A. Diagnostics of Articular Cartilage Damage Based on Generated Acoustic Signals Using ANN—Part II: Patellofemoral Joint. Sensors 2022, 22, 3765. [Google Scholar] [CrossRef]
- Karpiński, R. Knee joint osteoarthritis diagnosis based on selected acoustic signal discriminants using machine learning. Appl. Comput. Sci. 2022, 18, 71–85. [Google Scholar] [CrossRef]
- Penny, W.; Frost, D. Neural Networks in Clinical Medicine. Med. Decis. Mak. 1996, 16, 386–398. [Google Scholar] [CrossRef]
- Cardosi, J.D.; Shen, H.; Groner, J.I.; Armstrong, M.; Xiang, H. Machine learning for outcome predictions of patients with trauma during emergency department care. BMJ Health Care Inf. 2021, 28, e100407. [Google Scholar] [CrossRef] [PubMed]
- Maurer, L.R.; Bertsimas, D.; Bouardi, H.T.; El Hechi, M.; El Moheb, M.; Giannoutsou, K.; Zhuo, D.; Dunn, J.; Velmahos, G.C.; Kaafarani, H.M. Trauma outcome predictor: An artificial intelligence interactive smartphone tool to predict outcomes in trauma patients. J. Trauma Acute Care Surg. 2021, 91, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Klug, M.; Barash, Y.; Bechler, S.; Resheff, Y.S.; Tron, T.; Ironi, A.; Soffer, S.; Zimlichman, E.; Klang, E. A Gradient Boosting Machine Learning Model for Predicting Early Mortality in the Emergency Department Triage: Devising a Nine-Point Triage Score. J. Gen. Intern. Med. 2020, 35, 220–227. [Google Scholar] [CrossRef]
- Jojczuk, M.; Kamiński, P.; Gajewski, J.; Karpiński, R.; Krakowski, P.; Jonak, J.; Nogalski, A.; Głuchowski, D. Use of neural network based on international classification ICD-10 in patients with head and neck injuries in Lublin Province, Poland, between 2006–2018, as a predictive value of the outcomes of injury sustained. Ann. Agric. Environ. Med. 2023, 30, 281–286. [Google Scholar] [CrossRef]
- Migliorini, F.; Weber, C.D.; Pappalardo, G.; Schenker, H.; Hofmann, U.K.; Eschweiler, J.; Hildebrand, F. Orthopaedic, trauma surgery, and COVID-2019 pandemic: Clinical panorama and future prospective in Europe. Eur. J. Trauma Emerg. Surg. 2022, 48, 4385–4402. [Google Scholar] [CrossRef]
- Tayyebi, H.; Hasanikhah, M.; Heidarikhoo, M.; Fakoor, S.; Aminian, A. Length of hospital stay and mortality of hip fracture surgery in patients with Coronavirus disease 2019 (COVID-19) infection: A systematic review and meta-analysis. Curr. Orthop. Pract. 2022, 33, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Waseem, S.; Nayar, S.K.; Hull, P.; Carrothers, A.; Rawal, J.; Chou, D.; Khanduja, V. The global burden of trauma during the COVID-19 pandemic: A scoping review. J. Clin. Orthop. Trauma 2021, 12, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Wu, Y.; Chen, X.; Chen, Y.; Wu, Z.; Lin, Z.; Kang, D.; Fang, W.; Chen, F. Global, regional, and national burden and attributable risk factors of neurological disorders: The Global Burden of Disease study 1990–2019. Front. Public Health 2022, 10, 952161. [Google Scholar] [CrossRef]
- Mazzolini, K.; Dzubnar, J.; Kwak, H.; Banks, K.; Mooney, C.; Tang, A.; Cohan, C.; Browder, T. An epidemic within the pandemic: The rising tide of trauma During COVID-19. J. Surg. Res. 2022, 272, 139–145. [Google Scholar] [CrossRef]
- Kulkarni, K.; Shah, R.; Mangwani, J.; Ullah, A.; Gabbar, O.; James, E.; Dias, J. Utilising the impact of COVID-19 on trauma throughput to adapt elective care models for more efficient trauma care. World J. Orthop. 2022, 13, 921. [Google Scholar] [CrossRef]
- Harrison, P.; Green, A.; Chellappah, A.; Fan, K. Isolated paediatric orbital fractures: A case series at a major trauma center. Int. J. Oral Maxillofac. Surg. 2022, 51, e11. [Google Scholar] [CrossRef]
- BB, D.; Holla, R.; Unnikrishnan, B.; Achappa, B.; Poovattil, R.; Sharma, A.; Simmy, S.; Prateek, S. Clinical and seasonal pattern of dengue: Persistent hyper-endemicity of a vector borne disease from Southern-West Coastal India. F1000Research 2023, 12, 817. [Google Scholar] [CrossRef]
- Rudisill, T.M.; Steinmetz, L.; Bardes, J.M. Substance use in rural trauma patients admitted for motor vehicle injuries before and during the COVID-19 pandemic. Inj. Epidemiol. 2023, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Mesa, A.; Grasdal, M.; Leong, S.; Dean, N.A.; Marwaha, A.; Lee, A.; Berger, M.J.; Bundon, A.; Krassioukov, A.V. Effect of the COVID-19 pandemic on individuals with spinal cord injury: Mental health and use of telehealth. PMR 2022, 14, 1439–1445. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.A.; De Vries, K.; Rutty, J. Emergency trauma care during the COVID-19 pandemic: A phenomenological study of nurses’ experiences. Int. Emerg. Nurs. 2022, 61, 101147. [Google Scholar] [CrossRef] [PubMed]
- Levi, P.; Moss, J. Intensive care unit nurses’ lived experiences of psychological stress and trauma caring for COVID-19 patients. Workplace Health Saf. 2022, 70, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.J.; Clement, N.D.; MacLullich, A.M.; Ojeda-Thies, C.; Hoefer, C.; Brent, L.; White, T.O.; Duckworth, A.D. Impact of COVID-19 on hip fracture services: A global survey by the International Multicentre Project Auditing COVID-19 in Trauma & Orthopaedics. Surgeon 2022, 20, 237–340. [Google Scholar]
- Goniewicz, K.; Khorram-Manesh, A.; Burkle, F.M.; Hertelendy, A.J.; Goniewicz, M. The European Union’s post-pandemic strategies for public health, economic recovery, and social resilience. Glob. Transit. 2023, 5, 201–209. [Google Scholar] [CrossRef]
- Gupta, D.K.; Yadav, R.; Yadav, S.; Chaudhary, A.K. Our experience of cut throat injury at a tertiary care center during COVID-19 pandemic. Int. J. Otorhinolaryngol. Head Neck Surg. 2023, 9, 795. [Google Scholar] [CrossRef]
- Khorram-Manesh, A.; Goniewicz, K.; Burkle, F.M., Jr. Unleashing the Global Potential of Public Health: A Framework for Future Pandemic Response. J. Infect. Public Health 2023, 17, 82–95. [Google Scholar] [CrossRef]
- Khorram-Manesh, A.; Gray, L.; Goniewicz, K.; Cocco, A.; Ranse, J.; Phattharapornjaroen, P.; Achour, N.; Sørensen, J.; Peyravi, M.; Hertelendy, A.J.; et al. Care in emergencies and disasters: Can it be person-centered? Patient Educ. Couns. 2024, 118, 108046. [Google Scholar] [CrossRef] [PubMed]
Variables | 2018–2019 | 2020–2021 | p-Value |
---|---|---|---|
Age [year] | p ≤ 0.001 ** | ||
N | 17,776 | 11,407 | |
M | 44.30 | 47.70 | |
SD | 24.16 | 23.47 | |
Gender | p = 0.082 * | ||
Male | 12,343 (69%) | 7819 (68%) | |
Famale | 5433 (31%) | 3588 (32%) | |
Place of Residence | p ≤ 0.001 | ||
Urban Area | 8242 (46%) | 5482 (48%) | |
Rural Area | 9534 (54%) | 5925(52%) |
ICD 10 | Trauma Type | Urban Area Patients 2018–2019 | Rural Area Patients 2018–2019 | Urban Area Patients 2020–2021 | Rural Area Patients 2020–2021 |
---|---|---|---|---|---|
S01–S09 | Head Trauma | 5728 | 6444 | 3535 | 3747 |
S011–S019 | Neck Trauma | 718 | 713 | 445 | 443 |
S021–S029 | Thoracic Trauma | 813 | 1206 | 727 | 872 |
S031–S039 | Abdominal Trauma | 983 | 1171 | 775 | 863 |
Type of Trauma | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|
S01–S09 (Head Trauma) | 166 | 160 | 181 | 172 |
S011–S019 (Neck Trauma) | 5 | 6 | 3 | 13 |
S21–S29 (Thoracic Trauma) | 16 | 13 | 16 | 12 |
S31–S39 (Abdominal Trauma) | 16 | 19 | 20 | 17 |
Total | 203 | 198 | 220 | 214 |
Types of Trauma | Admitted Female Patients | Admitted Male Patients | Max Hospitalization Length in Female | Max Hospitalization Length in Male | Mean Hospitalization Length in Female | Mean Hospitalization Length in Male |
---|---|---|---|---|---|---|
Rural Areas 2018–2019 | ||||||
S01–S09 | 1639 | 4805 | 98 | 170 | 3.5 | 4 |
S011–S19 | 300 | 413 | 42 | 314 | 4 | 5 |
S21–S29 | 309 | 897 | 117 | 193 | 6 | 6.5 |
S31–S39 | 456 | 715 | 110 | 251 | 7.5 | 8 |
Total | 2704 | 6830 | ||||
Rural Areas 2020–2021 | ||||||
S01–S09 | 900 | 2847 | 111 | 159 | 5.5 | 5 |
S011-S19 | 187 | 256 | 85 | 111 | 5 | 7 |
S21–S29 | 224 | 648 | 84 | 160 | 7 | 6 |
S31–S39 | 323 | 540 | 50 | 67 | 6.5 | 7 |
Total | 1634 | 4291 |
Variables | b (SE) | OR (95% CI) | p |
---|---|---|---|
Type of TRAUMA: | |||
Place of leaving: | |||
Teritorial postcode | 2.50 × 10−6 | 1.00 (approx.) per unit increase | 0.025 |
Type of TRAUMA: | |||
Age: | 1.06 | 2.886 (2.718–3.065) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jojczuk, M.; Naylor, K.; Serwin, A.; Dolliver, I.; Głuchowski, D.; Gajewski, J.; Karpiński, R.; Krakowski, P.; Torres, K.; Nogalski, A.; et al. Descriptive Analysis of Trauma Admission Trends before and during the COVID-19 Pandemic. J. Clin. Med. 2024, 13, 259. https://doi.org/10.3390/jcm13010259
Jojczuk M, Naylor K, Serwin A, Dolliver I, Głuchowski D, Gajewski J, Karpiński R, Krakowski P, Torres K, Nogalski A, et al. Descriptive Analysis of Trauma Admission Trends before and during the COVID-19 Pandemic. Journal of Clinical Medicine. 2024; 13(1):259. https://doi.org/10.3390/jcm13010259
Chicago/Turabian StyleJojczuk, Mariusz, Katarzyna Naylor, Adrianna Serwin, Iwona Dolliver, Dariusz Głuchowski, Jakub Gajewski, Robert Karpiński, Przemysław Krakowski, Kamil Torres, Adam Nogalski, and et al. 2024. "Descriptive Analysis of Trauma Admission Trends before and during the COVID-19 Pandemic" Journal of Clinical Medicine 13, no. 1: 259. https://doi.org/10.3390/jcm13010259
APA StyleJojczuk, M., Naylor, K., Serwin, A., Dolliver, I., Głuchowski, D., Gajewski, J., Karpiński, R., Krakowski, P., Torres, K., Nogalski, A., Al-Wathinani, A. M., & Goniewicz, K. (2024). Descriptive Analysis of Trauma Admission Trends before and during the COVID-19 Pandemic. Journal of Clinical Medicine, 13(1), 259. https://doi.org/10.3390/jcm13010259