Primary Intracranial Gliosarcoma: Is It Really a Variant of Glioblastoma? An Update of the Clinical, Radiological, and Biomolecular Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol, Search Strategy, and Study Selection
2.2. Data Collection and Analysis
3. Radiological Features: GS vs. GBM
4. Genetics and Biomolecular Patters: GS vs. GBM
5. Clinical Features and Behavior
5.1. Clinical Characteristics
5.2. Metastases
6. Treatment and Prognosis
6.1. Surgical Strategy
6.2. Radiotherapy
6.3. Bevacizumab
6.4. Chemotherapy
6.5. Temozolamide (TZM)
6.6. Immunotherapy
6.7. Combined Therapy
6.8. Prognosis and Outcome
7. Discussion
8. Conclusions and Future Directions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cachia, D.; Kamiya-Matsuoka, C.; Mandel, J.J.; Olar, A.; Cykowski, M.D.; Armstrong, T.S.; Fuller, G.N.; Gilbert, M.R.; De Groot, J.F. Primary and secondary gliosarcomas: Clinical, molecular and survival characteristics. J. Neurooncol. 2015, 125, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Zaki, M.M.; Mashouf, L.A.; Woodward, E.; Langat, P.; Gupta, S.; Dunn, I.F.; Wen, P.Y.; Nahed, B.V.; Bi, W.L. Genomic landscape of gliosarcoma: Distinguishing features and targetable alterations. Sci. Rep. 2021, 11, 18009. [Google Scholar] [CrossRef] [PubMed]
- Romero-Rojas, A.E.; Diaz-Perez, J.A.; Ariza-Serrano, L.M.; Amaro, D.; Lozano-Castillo, A. Primary Gliosarcoma of the Brain: Radiologic and Histopathologic Features. Neuroradiol. J. 2013, 26, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Kleihues, P.; Louis, D.N.; Scheithauer, B.W.; Rorke, L.B.; Reifenberger, G.; Burger, P.C.; Cavenee, W.K. The WHO classification of tumors of the nervous system. J. Neuropathol. Exp. Neurol. 2002, 61, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Osborn, A.G.; Louis, D.N.; Poussaint, T.Y.; Linscott, L.L.; Salzman, K.L. The 2021 World Health Organization Classification of Tumors of the Central Nervous System: What Neuroradiologists Need to Know. AJNR Am. J. Neuroradiol. 2022, 43, 928–937. [Google Scholar] [CrossRef] [PubMed]
- Wesseling, P.; Capper, D. WHO 2016 Classification of gliomas. Neuropathol. Appl. Neurobiol. 2018, 44, 139–150. [Google Scholar] [CrossRef]
- Kozak, K.R.; Mahadevan, A.; Moody, J.S. Adult gliosarcoma: Epidemiology, natural history, and factors associated with outcome. Neuro Oncol. 2009, 11, 183–191. [Google Scholar] [CrossRef]
- Han, S.J.; Yang, I.; Tihan, T.; Prados, M.D.; Parsa, A.T. Primary gliosarcoma: Key clinical and pathologic distinctions from glioblastoma with implications as a unique oncologic entity. J. Neurooncol. 2010, 96, 313–320. [Google Scholar] [CrossRef]
- Saadeh, F.; El Iskandarani, S.; Najjar, M.; Assi, H.I. Prognosis and management of gliosarcoma patients: A review of the literature. Clin. Neurol. Neurosurg. 2019, 182, 98–103. [Google Scholar] [CrossRef]
- Smith, D.R.; Wu, C.C.; Saadatmand, H.J.; Isaacson, S.R.; Cheng, S.K.; Sisti, M.B.; Bruce, J.N.; Sheth, S.A.; Lassman, A.B.; Iwamoto, F.M.; et al. Clinical and molecular characteristics of gliosarcoma and modern prognostic significance relative to conventional glioblastoma. J. Neurooncol. 2018, 137, 303–311. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, J.P.; Weng, J.C.; Wang, L.; Wu, Z.; Li, D.; Zhang, J.-T. The clinical, radiological, and immunohistochemical characteristics and outcomes of primary intracranial gliosarcoma: A retrospective single-center study. Neurosurg. Rev. 2021, 44, 1003–1015. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Jiang, J.; Liu, M.; You, C. Treatments of gliosarcoma of the brain: A systematic review and meta-analysis. Acta Neurol. Belg. 2021, 121, 1789–1797. [Google Scholar] [CrossRef] [PubMed]
- Hong, B.; Lalk, M.; Wiese, B.; Merten, R.; Heissler, H.E.; Raab, P.; Hartmann, C.; Krauss, J.K. Primary and secondary gliosarcoma: Differences in treatment and outcome. Br. J. Neurosurg. 2021. [Google Scholar] [CrossRef] [PubMed]
- Castelli, J.; Feuvret, L.; Haoming, Q.C.; Biau, J.; Jouglar, E.; Berger, A.; Truc, G.; Gutierrez, F.L.; Morandi, X.; Le Reste, P.J.; et al. Prognostic and therapeutic factors of gliosarcoma from a multi-institutional series. J. Neurooncol. 2016, 129, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Zhou, Z.; Xu, M.; Song, K.; Shen, J.; Zhu, W.; Wei, L.; Xu, H. Prognostic Factors of Gliosarcoma in the Real World: A Retrospective Cohort Study. Comput. Math. Methods Med. 2023, 2023, 1553408. [Google Scholar] [CrossRef] [PubMed]
- Dardis, C.; Donner, D.; Sanai, N.; Xiu, J.; Mittal, S.; Michelhaugh, S.K.; Pandey, M.; Kesari, S.; Heimberger, A.B.; Gatalica, Z.; et al. Gliosarcoma vs. glioblastoma: A retrospective case series using molecular profiling. BMC Neurol. 2021, 21, 231. [Google Scholar] [CrossRef]
- Oh, J.E.; Ohta, T.; Nonoguchi, N.; Satomi, K.; Capper, D.; Pierscianek, D.; Sure, U.; Vital, A.; Paulus, W.; Mittelbronn, M.; et al. Genetic Alterations in Gliosarcoma and Giant Cell Glioblastoma. Brain Pathol. 2016, 26, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Tauziède-Espariat, A.; Saffroy, R.; Pagès, M.; Pallud, J.; Legrand, L.; Besnard, A.; Lacombe, J.; Lot, G.; Borha, A.; Tazi, S.; et al. Cerebellar high-grade gliomas do not present the same molecularalterations as supratentorial high-grade gliomas and may show histone H3 genemutations. Clin. Neuropathol. 2018, 37, 209–216. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Y.H.; Tian, S.F.; Xu, C.S.; Cai, Y.X.; Li, K.; Cheng, Y.B.; Wang, Z.F.; Li, Z.Q. Genetic alteration and clonal evolution of primary glioblastoma into secondarygliosarcoma. CNS Neurosci. Ther. 2021, 27, 1483–1492. [Google Scholar] [CrossRef]
- Esteban-Rodríguez, I.; López-Muñoz, S.; Blasco-Santana, L.; Mejías-Bielsa, J.; Gordillo, C.H.; Jiménez-Heffernan, J.A. Cytological features of diffuse andcircumscribed gliomas. Cytopathology 2023. [Google Scholar] [CrossRef]
- Sahu, U.; Barth, R.F.; Otani, Y.; McCormack, R.; Kaur, B. Rat and Mouse Brain Tumor Models for Experimental Neuro-Oncology Research. J. Neuropathol. Exp. Neurol. 2022, 81, 312–329. [Google Scholar] [CrossRef] [PubMed]
- Kleihues, P.; Ohgaki, H. Phenotype vs genotype in the evolution of astrocytic brain tumors. Toxicol. Pathol. 2000, 28, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sun, J.; Li, Z.; Chen, L.; Fu, Y.; Zhao, L.; Liu, L.; Wei, Y.; Teng, L.; Lu, D. Gliosarcomas with the BRAFV600E mutation: A report of two cases and review of the literature. J. Clin. Pathol. 2017, 70, 1079–1083. [Google Scholar] [CrossRef] [PubMed]
- Bax, D.A.; Gaspar, N.; Little, S.E.; Marshall, L.; Perryman, L.; Regairaz, M.; Viana-Pereira, M.; Vuononvirta, R.; Sharp, S.Y.; Reis-Filho, J.S.; et al. EGFRvIII deletion mutations in pediatric high-grade glioma and response to targeted therapy in pediatric glioma cell lines. Clin. Cancer Res. 2009, 15, 5753–5761. [Google Scholar] [CrossRef] [PubMed]
- Reis, R.M.; Könü-Lebleblicioglu, D.; Lopes, J.M.; Kleihues, P.; Ohgaki, H. Genetic profile of gliosarcomas. Am. J. Pathol. 2000, 156, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.D.; Chen, C.; Wang, L.; Dong, Y.F.; Yang, Y.; Chen, Y.N.; Niu, W.X.; Wang, W.C.; Liu, Q.S.; Niu, C.S. Gliosarcoma: The Distinct Genomic Alterations Identified by Comprehensive Analysis of Copy Number Variations. Anal. Cell. Pathol. 2022, 2022, 2376288. [Google Scholar] [CrossRef] [PubMed]
- Lowder, L.; Hauenstein, J.; Woods, A.; Chen, H.R.; Rupji, M.; Kowalski, J.; Olson, J.J.; Saxe, D.; Schniederjan, M.; Neill, S.; et al. Gliosarcoma: Distinct molecular pathways and genomic alterations identified by DNA copy number/SNP microarray analysis. J. Neurooncol. 2019, 143, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Codispoti, K.E.; Mosier, S.; Ramsey, R.; Lin, M.T.; Rodriguez, F.J. Genetic and pathologic evolution of early secondary gliosarcoma. Brain Tumor Pathol. 2014, 31, 40–46. [Google Scholar] [CrossRef]
- Anderson, K.J.; Tan, A.C.; Parkinson, J.; Back, M.; Kastelan, M.; Newey, A.; Brewer, J.; Wheeler, H.; Hudson, A.L.; Amin, S.B.; et al. Molecular and clonal evolution in recurrent metastatic gliosarcoma. Cold Spring Harb. Mol. Case Stud. 2020, 6, a004671. [Google Scholar] [CrossRef]
- Garber, S.T.; Hashimoto, Y.; Weathers, S.P.; Xiu, J.; Gatalica, Z.; Verhaak, R.G.; Zhou, S.; Fuller, G.N.; Khasraw, M.; de Groot, J.; et al. Immune checkpoint blockade as a potential therapeutic target: Surveying CNS malignancies. Neuro Oncol. 2016, 18, 1357–1366. [Google Scholar] [CrossRef]
- Pierscianek, D.; Ahmadipour, Y.; Michel, A.; Rauschenbach, L.; Oppong, M.D.; Deuschl, C.; Kebir, S.; Wrede, K.H.; Glas, M.; Stuschke, M.; et al. Demographic, radiographic, molecular, and clinical characteristics of primary gliosarcoma and differences to glioblastoma. Clin. Neurol. Neurosurg. 2021, 200, 106348. [Google Scholar] [CrossRef] [PubMed]
- Walker, C.; Joyce, K.A.; Thompson-Hehir, J.; Davies, M.P.; Gibbs, F.E.; Halliwell, N.; Lloyd, B.H.; Machell, Y.; Roebuck, M.M.; Salisbury, J.; et al. Characterisation of molecular alterations in microdissected archival gliomas. Acta Neuropathol. 2001, 101, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Hiniker, A.; Hagenkord, J.M.; Powers, M.P.; Aghi, M.K.; Prados, M.D.; Perry, A. Gliosarcoma arising from an oligodendroglioma (oligosarcoma). Clin. Neuropathol. 2013, 32, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Dejonckheere, C.S.; Böhner, A.M.C.; Koch, D.; Schmeel, L.C.; Herrlinger, U.; Vatter, H.; Schneider, M.; Schuss, P.; Giordano, F.A.; Köksal, M.A. Chasing a rarity: A retrospective single-center evaluation of prognostic factors in primary gliosarcoma. Strahlenther. Onkol. 2022, 198, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhou, S.; Zhou, X.; Dai, X.; Wang, L.; Chen, P.; Zhao, S.; Shi, C.; Xiao, S.; Dong, J. Gliosarcoma with osteosarcomatous component: A case report and short review illustration. Pathol. Res. Pract. 2022, 232, 153837. [Google Scholar] [CrossRef]
- Nagaishi, M.; Kim, Y.H.; Mittelbronn, M.; Giangaspero, F.; Paulus, W.; Brokinkel, B.; Vital, A.; Tanaka, Y.; Nakazato, Y.; Legras-Lachuer, C.; et al. Amplification of the STOML3, FREM2, and LHFP genes is associated with mesenchymal differentiation in gliosarcoma. Am. J. Pathol. 2012, 180, 1816–1823. [Google Scholar] [CrossRef]
- Boerman, R.H.; Anderl, K.; Herath, J.; Borell, T.; Johnson, N.; Schaeffer-Klein, J.; Kirchhof, A.; Raap, A.K.; Scheithauer, B.W.; Jenkins, R.B. The glial and mesenchymal elements of gliosarcomas share similar genetic alterations. J. Neuropathol. Exp. Neurol. 1996, 55, 973–981. [Google Scholar] [CrossRef]
- Schwetye, K.E.; Joseph, N.M.; Al-Kateb, H.; Rich, K.M.; Schmidt, R.E.; Perry, A.; Gutmann, D.H.; Dahiya, S. Gliosarcomas lack BRAF V600E mutation, but a subset exhibit β-catenin nuclear localization. Neuropathology 2016, 36, 448–455. [Google Scholar] [CrossRef]
- Cho, S.Y.; Park, C.; Na, D.; Han, J.Y.; Lee, J.; Park, O.K.; Zhang, C.; Sung, C.O.; Moon, H.E.; Kim, Y.; et al. High prevalence of TP53 mutations is associated with poor survival and an EMT signature in gliosarcoma patients. Exp. Mol. Med. 2017, 49, e317. [Google Scholar] [CrossRef]
- Actor, B.; Cobbers, J.M.; Büschges, R.; Wolter, M.; Knobbe, C.B.; Lichter, P.; Reifenberger, G.; Weber, R.G. Comprehensive analysis of genomic alterations in gliosarcoma and its two tissue components. Genes Chromosomes Cancer 2002, 34, 416–427. [Google Scholar] [CrossRef]
- Sargen, M.R.; Kim, J.; Potjer, T.P.; Velthuizen, M.E.; Martir-Negron, A.E.; Odia, Y.; Helgadottir, H.; Hatton, J.N.; Haley, J.S.; Thone, G.; et al. Estimated Prevalence, Tumor Spectrum, and Neurofibromatosis Type 1-Like Phenotype of CDKN2A-Related Melanoma-Astrocytoma Syndrome. JAMA Dermatol. 2023, 159, 1112–1118. [Google Scholar] [CrossRef] [PubMed]
- Gondim, D.D.; Gener, M.A.; Curless, K.L.; Cohen-Gadol, A.A.; Hattab, E.M.; Cheng, L. Determining IDH-Mutational Status in Gliomas Using IDH1-R132H Antibody and Polymerase Chain Reaction. Appl. Immunohistochem. Mol. Morphol. 2019, 27, 722–725. [Google Scholar] [CrossRef] [PubMed]
- Reis, R.M.; Martins, A.; Ribeiro, S.A.; Basto, D.; Longatto-Filho, A.; Schmitt, F.C.; Lopes, J.M. Molecular characterization of PDGFR-alpha/PDGF-A and c-KIT/SCF in gliosarcomas. Cell Oncol. 2005, 27, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Tabbarah, A.Z.; Carlson, A.W.; Oviedo, A.; Ketterling, R.P.; Rodriguez, F.J. Identification of t(1;19)(q12;p13) and ploidy changes in an ependymosarcoma: A cytogenetic evaluation. Clin. Neuropathol. 2012, 31, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Knobbe, C.B.; Reifenberger, G. Genetic alterations and aberrant expression of genes related to the phosphatidyl-inositol-3’-kinase/protein kinase B (Akt) signal transduction pathway in glioblastomas. Brain Pathol. 2003, 13, 507–518. [Google Scholar] [CrossRef]
- Bigner, S.H.; Mark, J.; Burger, P.C.; Mahaley, M.S., Jr.; Bullard, D.E.; Muhlbaier, L.H.; Bigner, D.D. Specific chromosomal abnormalities in malignant human gliomas. Cancer Res. 1988, 48, 405–411. [Google Scholar]
- Jimenez, C.; Powers, M.; Parsa, A.T.; Glastonbury, C.; Hagenkord, J.M.; Tihan, T. Sarcoma arising as a distinct nodule within glioblastoma: A morphological and molecular perspective on gliosarcoma. J. Neurooncol. 2011, 105, 317–323. [Google Scholar] [CrossRef]
- Albrecht, S.; Connelly, J.H.; Bruner, J.M. Distribution of p53 protein expression in gliosarcomas: An immunohistochemical study. Acta Neuropathol. 1993, 85, 222–226. [Google Scholar] [CrossRef]
- Lusis, E.A.; Travers, S.; Jost, S.C.; Perry, A. Glioblastomas with giant cell and sarcomatous features in patients with Turcot syndrome type 1: A clinicopathological study of 3 cases. Neurosurgery 2010, 67, 811–817. [Google Scholar] [CrossRef]
- Visani, M.; Acquaviva, G.; Marucci, G.; Paccapelo, A.; Mura, A.; Franceschi, E.; Grifoni, D.; Pession, A.; Tallini, G.; Brandes, A.A.; et al. Non-canonical IDH1 and IDH2 mutations: A clonal and relevant event in an Italian cohort of gliomas classified according to the 2016 World Health Organization (WHO) criteria. J. Neurooncol. 2017, 135, 245–254. [Google Scholar] [CrossRef]
- Barnett, F.H.; Scharer-Schuksz, M.; Wood, M.; Yu, X.; Wagner, T.E.; Friedlander, M. Intra-arterial delivery of endostatin gene to brain tumors prolongs survival and alters tumor vessel ultrastructure. Gene Ther. 2004, 11, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Bigner, S.H.; Burger, P.C.; Wong, A.J.; Werner, M.H.; Hamilton, S.R.; Muhlbaier, L.H.; Vogelstein, B.; Bigner, D.D. Gene amplification in malignant human gliomas: Clinical and histopathologic aspects. J. Neuropathol. Exp. Neurol. 1988, 47, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Koelsche, C.; Sahm, F.; Capper, D.; Reuss, D.; Sturm, D.; Jones, D.T.; Kool, M.; Northcott, P.A.; Wiestler, B.; Böhmer, K.; et al. Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathol. 2013, 126, 907–915. [Google Scholar] [CrossRef]
- Venkatraj, V.S.; Begemann, M.; Sobrino, A.; Bruce, J.N.; Weinstein, I.B.; Warburton, D. Genomic changes in glioblastoma cell lines detected by comparative genomic hybridization. J. Neurooncol. 1998, 36, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Yi, X.; Cao, H.; Tang, H.; Gong, G.; Hu, Z.; Liao, W.; Sun, L.; Chen, B.T.; Li, X. Gliosarcoma: A clinical and radiological analysis of 48 cases. Eur. Radiol. 2019, 29, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Zhang, L.; Hu, J.; Chen, S.; Chen, H.; Shen, H.; Zheng, F.; Zang, Y.; Chen, X. Machine Learning-Based Analysis of Magnetic Resonance Radiomics for the Classification of Gliosarcoma and Glioblastoma. Front. Oncol. 2021, 11, 699789. [Google Scholar] [CrossRef]
- Fukuda, A.; de Queiroz, L.S.; Reis, F. Gliosarcomas: Magnetic resonance imaging findings. Arq. Neuropsiquiatr. 2020, 78, 112–120. [Google Scholar] [CrossRef]
- Han, S.J.; Yang, I.; Ahn, B.J.; Otero, J.J.; Tihan, T.; McDermott, M.W.; Berger, M.S.; Prados, M.D.; Parsa, A.T. Clinical characteristics and outcomes for a modern series of primary gliosarcoma patients. Cancer 2010, 116, 1358–1366. [Google Scholar] [CrossRef]
- Patel, D.M.; Foreman, P.M.; Nabors, L.B.; Riley, K.O.; Gillespie, G.Y.; Markert, J.M. Design of a Phase I Clinical Trial to Evaluate M032, a Genetically Engineered HSV-1 Expressing IL-12, in Patients with Recurrent/Progressive Glioblastoma Multiforme, Anaplastic Astrocytoma, or Gliosarcoma. Hum. Gene Ther. Clin. Dev. 2016, 27, 69–78. [Google Scholar] [CrossRef]
- Wojtas, B.; Gielniewski, B.; Wojnicki, K.; Maleszewska, M.; Mondal, S.S.; Nauman, P.; Grajkowska, W.; Glass, R.; Schüller, U.; Herold-Mende, C.; et al. Gliosarcoma Is Driven by Alterations in PI3K/Akt, RAS/MAPK Pathways and Characterized by Collagen Gene Expression Signature. Cancers 2019, 11, 284. [Google Scholar] [CrossRef]
- Romeo, S.G.; Conti, A.; Polito, F.; Tomasello, C.; Barresi, V.; La Torre, D.; Cucinotta, M.; Angileri, F.; Bartolotta, M.; Di Giorgio, R.M.; et al. miRNA regulation of Sirtuin-1 expression in human astrocytoma. Oncol. Lett. 2016, 12, 2992–2998. [Google Scholar] [CrossRef] [PubMed]
- Torregrossa, F.; Aguennouz, M.; La Torre, D.; Sfacteria, A.; Grasso, G. Role of Erythropoietin in Cerebral Glioma: An Innovative Target in Neuro-Oncology. World Neurosurg. 2019, 131, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Alonso, M.M.; Diez-Valle, R.; Manterola, L.; Rubio, A.; Liu, D.; Cortes-Santiago, N.; Urquiza, L.; Jauregi, P.; de Munain, A.L.; Sampron, N.; et al. Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas. PLoS ONE 2011, 6, e26740. [Google Scholar] [CrossRef] [PubMed]
- Frandsen, S.; Broholm, H.; Larsen, V.A.; Grunnet, K.; Møller, S.; Poulsen, H.S.; Michaelsen, S.R. Clinical Characteristics of Gliosarcoma and Outcomes from Standardized Treatment Relative to Conventional Glioblastoma. Front. Oncol. 2019, 9, 1425. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, T.L.; Kupsky, W.J.; Barger, G.R.; Sloan, A.E. Gliosarcoma with multiple extracranial metastases: Case report and review of the literature. J. Neurooncol. 2007, 83, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.C.; Liu, E.K.; Shi, S.; Gibbs, I.C.; Thomas, R.; Recht, L.; Soltys, S.G.; Pollom, E.L.; Chang, S.D.; Gephart, M.H.; et al. Evaluating Surgical Resection Extent and Adjuvant Therapy in the Management of Gliosarcoma. Front. Oncol. 2020, 10, 337. [Google Scholar] [CrossRef]
- Stupp, R.; Mason, W.P.; van den Bent, M.J.; Weller, M.; Fisher, B.; Taphoorn, M.J.B.; Belanger, K.; Brandes, A.A.; Marosi, C.; Bogdahn, U.; et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996. [Google Scholar] [CrossRef]
- Tomasello, F.; Conti, A.; La Torre, D. 3D printing in Neurosurgery. World Neurosurg. 2016, 91, 633–634. [Google Scholar] [CrossRef]
- Singh, G.; Das, K.; Sharma, P.; Guruprasad, B.; Jaiswal, S.; Mehrotra, A.; Srivastava, A.; Sahu, R.; Jaiswal, A.; Behari, S. Cerebral gliosarcoma: Analysis of 16 patients and review of literature. Asian J. Neurosurg. 2015, 10, 195–202. [Google Scholar] [CrossRef]
- Perry, J.R.; Ang, L.C.; Bilbao, J.M.; Muller, P.J. Clinicopathologic features of primary and postirradiation cerebral gliosarcoma. Cancer 1995, 75, 2910–2918. [Google Scholar] [CrossRef]
- Conti, A.; Pontoriero, A.; Iatì, G.; Marino, D.; La Torre, D.; Vinci, S.; Germanò, A.; Pergolizzi, S.; Francesco, T. 3D-Printing in Neurosurgery. of Arteriovenous Malformations for Radiosurgical Treatment: Pushing Anatomy Understanding to Real Boundaries. Cureus 2016, 8, e594. [Google Scholar] [CrossRef] [PubMed]
- Gil-Gil, M.J.; Mesia, C.; Rey, M.; Bruna, J. Bevacizumab for the Treatment of Glioblastoma. Clin. Med. Insights Oncol. 2013, 7. Available online: https://journals.sagepub.com/doi/10.4137/CMO.S8503 (accessed on 22 October 2023). [CrossRef] [PubMed]
- Angiogenesis in Brain Tumors|Nature Reviews Neuroscience. Available online: https://www.nature.com/articles/nrn2175 (accessed on 22 October 2023).
- Pinheiro, L.; Perdomo-Pantoja, A.; Casaos, J.; Huq, S.; Paldor, I.; Vigilar, V.; Mangraviti, A.; Wang, Y.; Witham, T.F.; Brem, H.; et al. Captopril inhibits Matrix Metalloproteinase-2 and extends survival as a temozolomide adjuvant in an intracranial gliosarcoma model. Clin. Neurol. Neurosurg. 2021, 207, 106771. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Park, K.J.; Kim, C.Y.; Yu, M.O.; Park, C.-K.; Park, S.-H.; Chung, Y.-G. O6-methylguanine DNA methyltransferase status determined by promoter methylation and immunohistochemistry in gliosarcoma and their clinical implications. J. Neurooncol. 2011, 101, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.B.; Ajina, R.; Aref, S.; Darwish, M.; Alsayb, M.; Taher, M.; AlSharif, S.A.; Hashem, A.M.; Alkayyal, A.A. Advances in immunotherapy for glioblastoma multiforme. Front. Immunol. 2022, 13, 944452. Available online: https://www.frontiersin.org/articles/10.3389/fimmu.2022.944452 (accessed on 22 October 2023). [CrossRef] [PubMed]
- Wang, E.J.; Chen, J.S.; Jain, S.; Morshed, R.A.; Haddad, A.F.; Gill, S.; Beniwal, A.S.; Aghi, M.K. Immunotherapy Resistance in Glioblastoma. Front. Genet. 2021, 12, 750675. [Google Scholar] [CrossRef] [PubMed]
- Gittleman, H.; Lim, D.; Kattan, M.W.; Chakravarti, A.; Gilbert, M.R.; Lassman, A.B.; Lo, S.S.; Machtay, M.; Sloan, A.E.; Sulman, E.P.; et al. An independently validated nomogram for individualized survival estimation among patients with newly diagnosed glioblastoma: NRG Oncology RTOG 0525 and 0825. Neuro Oncol. 2017, 19, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.M.; Suki, D.; Hess, K.; Sawaya, R. The influence of maximum safe resection of glioblastoma on survival in 1229 patients: Can we do better than gross-total resection? J. Neurosurg. 2016, 124, 977–988. [Google Scholar] [CrossRef]
- Kröger, S.; Niehoff, A.C.; Jeibmann, A.; Sperling, M.; Paulus, W.; Stummer, W.; Karst, U. Complementary Molecular and Elemental Mass-Spectrometric Imaging of Human Brain Tumors Resected by Fluorescence-Guided Surgery. Anal. Chem. 2018, 90, 12253–12260. [Google Scholar] [CrossRef]
- Huang, Q.; Li, F.; Chen, Y.; Hong, F.; Wang, H.; Chen, J. Prognostic factors and clinical outcomes in adult primary gliosarcoma patients: A Surveillance, Epidemiology, and End Results (SEER) analysis from 2004 to 2015. Br. J. Neurosurg. 2020, 34, 161–167. [Google Scholar] [CrossRef]
No. | Author, Journal, Year | Title | Type of Study | Study Period | Sample Size | Area of Interest |
---|---|---|---|---|---|---|
1 | Oh et al. 2016 [17] | Genetic Alterations in Gliosarcoma and Giant Cell Glioblastoma. | Case series | N/A | 55 | Biomolecular |
2 | Saadeh et al. 2019 [9] | Prognosis and management of gliosarcoma patients: A review of literature. | Review | Up to 2019 | N/A | Characteristic, prognosis and management |
3 | Tauziède-Espariat et al. 2018 [18] | Cerebellar high-grade gliomas do not present the same molecular alterations as supratentorial high-grade gliomas and may show histone H3 gene mutations. | Retrospective study | 1982–2016 | 19 | Biomolecular |
4 | Li et al. 2021 [19] | Genetic alteration and clonal evolution of primary glioblastoma into secondary gliosarcoma. | Case Report | 2016 | 1 | Biomolecular |
5 | Esteban-Rodríguez et al. 2023 [20] | Cytological features of diffuse and circumscribed gliomas. | Review | N/A | N/A | Biomolecular |
6 | Sahu et al. 2022 [21] | Rat and Mouse Brain Tumor Models for Experimental Neuro-Oncology Research. | Review | N/A | N/A | Characteristics and biomolecular |
7 | Zaki et al. 2021 [2] | Genomic landscape of gliosarcoma: distinguishing features and targetable alterations. | Scientific Reports | N/A | 30 | Biomolecular |
8 | Kleihues et al. 2000 [22] | Phenotype vs. genotype in the evolution of astrocytic brain tumors. | Case series | N/A | N/A | Genetics and biomolecular |
9 | Wang et al. 2017 [23] | Gliosarcomas with the BRAFV600E mutation: a report of two cases and review of the literature. | Case report | N/A | 2 | Biomolecular |
10 | Bax et al. 2009 [24] | EGFRvIII deletion mutations in pediatric high-grade glioma and response to targeted. therapy in pediatric glioma cell lines. | Retrospective study | N/A | 90 | Biomolecular |
11 | Reis et al. 2000 [25] | Genetic profile of gliosarcomas. | Short communication | N/A | 19 | Genetics and biomolecular |
12 | Cheng et al. 2022 [26] | Gliosarcoma: The Distinct Genomic Alterations Identified by Comprehensive Analysis of Copy Number Variations. | Retrospective study | 2016–2019 | 36 | Genetics and biomolecular |
13 | Lowder et al. 2019 [27] | Gliosarcoma: distinct molecular pathways and genomic alterations identified by DNA copy number/SNP microarray analysis. | Metanalysis | 2014–2015 | 18 | Genetics and biomolecular |
14 | Codispoti et al. 2014 [28] | Genetic and pathologic evolution of early secondary gliosarcoma. | Case report | N/A | 1 | Genetics and biomolecular |
15 | Anderson et al. 2020 [29] | Molecular and clonal evolution in recurrent metastatic gliosarcoma. | Case report | N/A | 1 | Characteristics and biomolecular |
16 | Garber et al. 2016 [30] | Immune checkpoint blockade as a potential therapeutic target: surveying CNS malignancies. | Retrospective analysis | 2009–2016 | 347 | Biomolecular and prognosis |
17 | Pierscianek et al. 2021 [31] | Demographic, radiographic, molecular and clinical characteristics of primary gliosarcoma and differences to glioblastoma. | Retrospective cohort study | 2001–2018 | 56 | Clinical, prognosis and neuroradiological features |
18 | Walker et al. 2001 [32] | Characterisation of molecular alterations in microdissected archival gliomas. | Retrospective analysis | N/A | 47 | Genetics and biomolecular |
19 | Hiniker et al. 2013 [33] | Gliosarcoma arising from an oligodendroglioma (oligosarcoma). | Case report | N/A | 1 | Biomolecular, clinical |
20 | Dejonckheere et al. 2022 [34] | Chasing a rarity: a retrospective single-center evaluation of prognostic factors in primary gliosarcoma. | Retrospective study | 1995–2021 | 26 | Clinical features, treatment and prognosis |
21 | Chen et al. 2022 [35] | Gliosarcoma with osteosarcomatous component: A case report and short review illustration. | Case report+ Review | 1950–2022 | 13 | Biomolecular, neuroradiology, treatment and prognosis |
22 | Nagaishi et al. 2012 [36] | Amplification of the STOML3, FREM2, and LHFP genes is associated with mesenchymal differentiation in gliosarcoma. | Case series | N/A | 74 | Biomolecular |
23 | Boerman et al. 1996 [37] | The glial and mesenchymal elements of gliosarcomas share similar genetic alterations. | Case series | N/A | 5 | Genetics and biomolecular |
24 | Schwetye et al. 2016 [38] | Gliosarcomas lack BRAFV600E mutation, but a subset exhibit β-catenin nuclear localization. | Case series | N/A | 48 | Biomolecular |
25 | Cho et al. 2017 [39] | High prevalence of TP53 mutations is associated with poor survival and an EMT signature in gliosarcoma patients. | Comparative analyses | N/A | 103 | Biomolecular |
26 | Actor et al. 2002 [40] | Comprehensive analysis of genomic alterations in gliosarcoma and its two tissue components. | Comprehensive analysis | N/A | 38 | Genetics and biomolecular |
27 | Sargen et al. 2023 [41] | Estimated Prevalence, Tumor Spectrum, and Neurofibromatosis Type 1-Like Phenotype of CDKN2A-Related Melanoma-Astrocytoma Syndrome. | Retrospective cohort study | 1976–2020 | 640 292 | Genetics and biomolecular |
28 | Gondim et al. 2019 [42] | Determining IDH-Mutational Status in Gliomas Using IDH1-R132H Antibody and Polymerase Chain Reaction. | Case series | N/A | 62 | Biomolecular |
29 | Reis et al. 2005 [43] | Molecular characterization of PDGFR-alpha/PDGF-A and c-KIT/SCF in gliosarcomas. | Case series | N/A | 160 | Biomolecular |
30 | Tabbarah et al. 2012 [44] | Identification of t(1;19) (q12;p13) and ploidy changes in an ependymosarcoma: a cytogenetic evaluation. | Case report | N/A | 1 | Genetics and biomolecular |
31 | Knobbe et al. 2003 [45] | Genetic alterations and aberrant expression of genes related to the phosphatidyl-inositol-3’-kinase/protein kinase B (Akt) signal transduction pathway in glioblastomas. | Comparative Study | N/A | 103 | Genetics and biomolecular |
32 | Bigner et al. 1988 [46] | Specific chromosomal abnormalities in malignant human gliomas. | Case series | 1981–1986 | 54 | Genetics and biomolecular |
33 | Jimenez et al. 2011 [47] | Sarcoma arising as a distinct nodule within glioblastoma: a morphological and molecular perspective on gliosarcoma. | Case report | N/A | 1 | Biomolecular |
34 | Albrecht et al. 1993 [48] | Distribution of p53 protein expression in gliosarcomas: an immunohistochemical study. | Case series | N/A | 8 | Biomolecular |
35 | Lusis et al. 2010 [49] | Glioblastomas with giant cell and sarcomatous features in patients with Turcot syndrome type 1: a clinicopathological study of 3 cases. | Case report | 1996–2010 | 3 | Biomolecular |
36 | Visani et al. 2017 [50] | Non-canonical IDH1 and IDH2 mutations: a clonal and relevant event in an Italian cohort of gliomas classified according to the 2016 World Health Organization (WHO) criteria. | Multicenter study | N/A | 288 | Genetics and biomolecular |
37 | Barnett et al. 2004 [51] | Intra-arterial delivery of endostatin gene to brain tumors prolongs survival and alters tumor vessel ultrastructure. | Prospective study | N/A | 344 | Genetics, treatment and prognosis |
38 | Bigner et al. 1988 [52] | Gene amplification in malignant human gliomas: clinical and histopathologic aspects. J Neuropathol Exp Neurol. | Retrospective study | N/A | 64 | Genetics, biomolecular and clinical features |
39 | Koelsche et al. 2013 [53] | Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. | Systematic analysis | N/A | 1515 | Genetics and biomolecular |
40 | Venkatraj et al. 1998 [54] | Genomic changes in glioblastoma cell lines detected by comparative genomic hybridization. | Comparative Study | N/A | 5 | Biomolecular |
Radiological Features | Study | Result |
---|---|---|
Larger wall thickening GS > GBM. | Yi et al. (2018) [55] | Confirmed |
Higher rate of bleeding, and S–P sign, presence of eccentric cystic portion (ECP) and a P-E pattern. GS > GBM. | Yi et al. (2018) [55] | Confirmed |
Larger tumors with more areas of enhancement. GS > GBM | Yi et al. (2018) [55] | Confirmed |
More likely to involve the brain’s cortex. Less likely to have necrosis, to invade the ependyma and to cause edema that crosses the brain’s midline. GS > GBM | Yi et al. (2018) [55] | Confirmed |
Higher percentage of eccentric tumor cysts. GS > GBM | Yi et al. (2018) [55] | Confirmed |
Marked enhancement, and most of tumors showing it in functional areas. GS > GBM | Zhang et al. (2021) [11] | Confirmed |
GS: mainly located in temporal lobe (27%), frontal lobe (17%) and ventricles (10%); while more rarely in the parieto-occipital lobes (2%), brainstem and cerebellum (2%). | Zhang et al. (2021) [11] | Confirmed |
Appearance as an expansive lesion with well-delimited and irregular contours, associated with perilesional edema with a frequent hyperattenuating sign of the solid part. GS > GBM | Aya Fukuda et al. (2020) [57] | Confirmed |
Association with hyperintensity on DWI and hypointensity in the solid component on the ADC map (compatible with restricted diffusion). GS > GBM | Aya Fukuda et al. (2020) [57] | Confirmed |
Biomolecular Markers | GS | GBM | Study |
---|---|---|---|
p53 mutation | 23% | 11% | Saadeh et al. (2019) [9] |
Wojtas et al. (2019) [60] | |||
p16 deletion | 37% | No | Saadeh et al. (2019) [9] |
Zaki et al. (2021) [2] | |||
EGFR amplification EGFR mutation | 4% No | 35% Yes | Romero et al. (2013) [3] |
Zaki et al. (2021) [2] | |||
PTEN mutation | (37%) | Yes | Saadeh et al. (2019) [9] |
CDK amplification | Yes | Yes | Dardis et al. (2021) [16] |
pMGMT methylation | <12% | Yes | Smith et al. (2018) [10] |
pTERT mutation | Yes | Yes | Zaki et al. (2021) [2] |
NF1 mutation | Yes | Yes | Zaki et al. (2021) [2] |
CDKN2A/B mutation | Yes | Yes | Wojtas et al. (2019) [60] |
RB1 mutation | Yes | Less common (~20%) | Wojtas et al. (2019) [60] |
STAG2 mutation | Yes | Yes | Wojtas et al. (2019) [60] |
PTPN11 mutation | Yes | Yes | Saadeh et al. (2019) [9] |
Reticulin positivity | Sarcomatous-predominant GS | No | Han et al. (2010) [58] |
GFAP expression | Gliomatosus-predominant GS | Yes | Han et al. (2010) [58] |
MSH6 mutation L1244dup, T1133A | Yes | No | Zaki et al. (2021) [2] |
BRAF mutation BRAF mutations (all alteration types) | 10% | 3% | Zaki et al. (2021) [2] |
10% | 0% | Zaki et al. (2021) [2] | |
SUZ12 mutation | Yes | No | Zaki et al. (2021) [2] |
SOX2 mutation | Yes | No | Zaki et al. (2021) [2] |
FBXW7 mutation | Yes | No | Zaki et al. (2021) [2] |
Feature | GS | GBM |
---|---|---|
Clinical presentation | Non-specific; can manifest with intracranial hypertension syndrome | Non-specific; can manifest with intracranial hypertension syndrome |
Radiological features | Well-demarcated margins, solid-cystic components, salt and pepper sign, uneven rim- and ring-like enhancement patterns | Irregular margins, necrosis and peritumoral edema |
Genetic profile | More likely to have p53 mutations and p16 deletions, less likely to have EGFR amplification and pMGMT methylation | p53 mutations, p16 deletions, PTEN mutations, CDK amplification, EGFR amplification, STAG2 mutations and PTPN11 mutations |
Extracranial metastatic potential | More frequent (11%) | Extremely rare |
Sites of metastases | Lungs (72%), liver (41%), lymph nodes (18%), spleen, adrenal glands, kidneys, oral mucosa, skin, bone marrow, skull, ribs and spine | N/A |
Treatment | Maximum safe surgical resection followed by CCRT | Maximum safe surgical resection followed by CCRT |
Prognosis | Worse than GBM | Poor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Torre, D.; Della Torre, A.; Lo Turco, E.; Longo, P.; Pugliese, D.; Lacroce, P.; Raudino, G.; Romano, A.; Lavano, A.; Tomasello, F. Primary Intracranial Gliosarcoma: Is It Really a Variant of Glioblastoma? An Update of the Clinical, Radiological, and Biomolecular Characteristics. J. Clin. Med. 2024, 13, 83. https://doi.org/10.3390/jcm13010083
La Torre D, Della Torre A, Lo Turco E, Longo P, Pugliese D, Lacroce P, Raudino G, Romano A, Lavano A, Tomasello F. Primary Intracranial Gliosarcoma: Is It Really a Variant of Glioblastoma? An Update of the Clinical, Radiological, and Biomolecular Characteristics. Journal of Clinical Medicine. 2024; 13(1):83. https://doi.org/10.3390/jcm13010083
Chicago/Turabian StyleLa Torre, Domenico, Attilio Della Torre, Erica Lo Turco, Prospero Longo, Dorotea Pugliese, Paola Lacroce, Giuseppe Raudino, Alberto Romano, Angelo Lavano, and Francesco Tomasello. 2024. "Primary Intracranial Gliosarcoma: Is It Really a Variant of Glioblastoma? An Update of the Clinical, Radiological, and Biomolecular Characteristics" Journal of Clinical Medicine 13, no. 1: 83. https://doi.org/10.3390/jcm13010083
APA StyleLa Torre, D., Della Torre, A., Lo Turco, E., Longo, P., Pugliese, D., Lacroce, P., Raudino, G., Romano, A., Lavano, A., & Tomasello, F. (2024). Primary Intracranial Gliosarcoma: Is It Really a Variant of Glioblastoma? An Update of the Clinical, Radiological, and Biomolecular Characteristics. Journal of Clinical Medicine, 13(1), 83. https://doi.org/10.3390/jcm13010083