A Scoping Review of the Effect of EEG Neurofeedback on Pain Complaints in Adults with Chronic Pain
Abstract
:1. Introduction
2. Methods
2.1. Eligibility Criteria
2.2. Search Strategy
2.3. Selection Process
2.4. Risk of Bias
2.5. Synthesis of Results
3. Results
3.1. The Effects of EEG Neurofeedback on Chronic Pain Complaints
3.1.1. Search Results
3.1.2. Characteristics of Included Studies
3.1.3. Risk of Bias
3.2. Pain Reduction
3.2.1. Frequency Neurofeedback
3.2.2. Reinforce Alpha and/or SMR and Suppress Theta and/or Beta
Study | Neurofeedback Protocol | Outcome | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Authors (Year) | Reinforced and/or Suppressed Frequency Bands | Location | Number of Sessions | Duration per Session (min) | Pain Questionnaire | Significant Pain Reduction (Yes/No) | Pain Pre-Treatment (Mean (SD)) | Pain Post-Treatment (Mean (SD)) | Pain Reduction from Pre- to Post-Treatment (Mean (SD)) | Follow-Up (Mean (SD)) | Side Effects | |
1 | Al-Taleb et al. (2019) [13] | Reinforce alpha (9–12 Hz) and suppress theta (4–8 Hz) and beta (20–30 Hz) | Between C2–C4 | 1–3 sessions pre-treatment and 2–105 at home | 20–30 | VNS (0–10) | Yes | Twelve out of fifteen participants had a statistically significant reduction in pain (p = 0.05). In 8 participants, this reduction was clinically significant (>30%). | Not available | Hypersensitivity in the feet and occasional headaches | ||
2 | Barbosa-Torres et al. (2021) [26] | Reinforce SMR (12–15 Hz) and suppress theta (4–8 Hz) | C4 | 20 | 15 | VAS (0–10) | Yes | 8.4 | 6.3 | - | Not available | Not available |
3 | Birch et al. (2022) [22] | Reinforce alpha (8–13 Hz), suppress theta (4–8 Hz), beta (13–30 Hz) and high beta (20–30 Hz) | Somatosensory and prefrontal cortices | Ranging from 33 to 58 (mean 41.7) | Ranging from 23.7 to 41.6 h (mean 32.4 h) | VNS (0–10) | No | 4.88 | 3.13 | - | After 4 weeks: 3.75 (not significant) | Not available |
After 12 weeks: 3.5 (not significant) | ||||||||||||
4 | Caro and Winter (2011) [27] | Reinforce SMR (12–15 Hz) and suppress theta (4–8 Hz) and beta 22–30 Hz) | Cz | Ranging from 40 to 98 (mean 58) | Not available | Verbally reported using a 0–10 scale, where 10 was maximally abnormal | Yes | - | - | 39% improvement in Global Pain compared to baseline (p = 0.006) | NA | Not available |
5 | Farahani et al. (2014) [20] | Reinforce SMR (12–15 Hz) and suppress theta (4–8 Hz) and high beta (21–30 Hz) | T3 and T4 | 15 | 30 | Blanchard Headache Diary | Yes | NF 5.16 (1.69) | NF 4.18 (1.98) | - | Not available | Not available |
TENS 5.42 (1.43) | TENS 4.51 (1.35) | |||||||||||
Control 5.54 (1.18) | Control 5.67 (1.18) | |||||||||||
6 | Hassan et al. (2015) [38] | Reinforce alpha (9–12 Hz) or SMR (12–15 Hz) and suppress theta (4–8 Hz) and higher beta (20–30 Hz) | C4, C3, Cz, P4 (one electrode at the time) | 20–40 | 40–45 | VNS (0–10) | Yes | Statistically significant reduction in pain in 5 patients. Clinically significant reduction in pain in 4 patients (>30%). | After 1 month: reduced pain intensity, but increased compared to final NF session | Strong spasm of paralyzed legs | ||
7 | Ibric and Dragomirescu (2009) [23] | Reinforce beta (15–18 Hz) or SMR (12–15 Hz) and suppress theta (4–7 Hz) and high-beta (22–30 Hz) | Tailored based on localization of pain | 15–145 | 45 | VAS (0–10) | Unknown | All patients reported a substantial improvement in chronic pain. | Not available | Not available | ||
8 | Jacobs and Jensen (2015) [24] | Reinforce alpha (8–12 Hz) and slow-beta (12–15 Hz), suppress theta (4–7 Hz) and fast-beta (22–32 Hz) | Tailored based on patients’ response | 22–41 | 30 | Neurofeedback Progress Chart (0–4 Likert scale) | Unknown | All patients reported a substantial improvement in chronic pain. | Not available | Not available | ||
9 | Jensen et al. (2013) [15] | Protocol 1: reinforce alpha (8–12 Hz) and suppress theta (4–7.5 Hz). | Protocol 1: T3 and T4. | 12 | Not available | NRS (0–10) | No | 5.95 (1.70) | 5.36 (1.67) | No clinically meaningful effect (>30%) | After 3 months: 5.65 (1.90) | Not available |
Protocol 2: Reinforce 10–15 Hz and suppress beta (13–21 Hz) and theta (4–7.5 Hz). | Protocol 2: C3-A1 and C4-A2. | |||||||||||
Protocol 3: Reinforce 10–15 Hz and suppress beta (13–21 Hz) and theta (4–7.5 Hz). | Protocol 3: P3-A1 and P4-A2. | |||||||||||
10 | Jensen et al. (2013) [14] | Reinforce alpha (8–12 Hz) and suppress high-beta (18–30 Hz) | T3 and T4 | 1 | 20 | NRS (0–10) | No | Neurofeedback: 4.61 (1.93) | Neurofeedback: 4.41 (2.09) | - | Not available | Not available |
Sham tDCS: 4.39 (2.07) | Sham tDCS: 4.23 (2.02) | |||||||||||
tDCS: 4.19 (2.02) | tDCS: 3.92 (2.21) | |||||||||||
Hypnosis: 4.27 (2.08) | Hypnosis: 3.74 (2.16) | |||||||||||
Meditation: 4.44 (2.16) | Meditation: 3.96 (1.97) | |||||||||||
11 | Kayiran et al. (2007) [29] | Reinforce SMR (12–15 Hz) and suppress theta (4–7 Hz) | C4 | 10 | 30 | VAS (0–10) | Unknown | Subject 1: 8.0 | Subject 1: 4.0 | - | Not available | Not available |
Subject 2: 8.0 | Subject 2: 3.5 | |||||||||||
Subject 3: 5.0 | Subject 3: 2.0 | |||||||||||
12 | Kayiran et al. (2010) [28] | Reinforce SMR (12–15 Hz) and suppress theta (4–7 Hz) | C4 | 20 | 30 | VAS (0–10) | Yes | Intervention: 8.94 (0.189) | Intervention: 1.64 (0.213) | - | After 8 weeks: 1.92 (0.269) | Not available |
After 16 weeks: 2.42 (0.341) | ||||||||||||
After 24 weeks: 2.56 (0.357) | ||||||||||||
Control: 9.11 (0.231) | Control: 4.69 (0.482) | After 8 weeks: 3.25 (0.269) | ||||||||||
After 16 weeks: 4.47 (0.339) | ||||||||||||
After 24 weeks: 5.33 (0.302) | ||||||||||||
13 | Kristevski et al. (2014) [30] | Reinforce SMR (12–15 Hz) and suppress theta (4–7 Hz) and high-beta (22–30 Hz) | C4 | 8–16 | 30 | VAS (0–10) | No | Statistically significant reduction in pain in 2 out of 5 patients. | Not available | Mild headache, increased pain, increased fatigue | ||
14 | Vuckovic et al. (2019) [16] | Reinforce alpha (9–12 Hz) and suppress theta (4–8 Hz) and beta (20–30 Hz) | Between C2-C4 | Ranging from 3 to 48 (mean = 14) | 25–30 | VNS (0–10) | Yes | Twelve out of fifteen participants had a statistically significant reduction in pain. In 8 participants, this reduction was clinically significant (>30%). | Not available | Tingling sensations in toes/fingers, headaches, hypersensitivity in soles of feet | ||
15 | Walker et al. (2011) [11] | Reinforce 10 Hz and suppress 21–30 Hz | Not specified | Ranging from 12 to 32 (mean 24) | 30 | Headache Diary | Yes | Intervention: 54% experienced complete remission of migraines, 39% had >50% reduction in headache frequency per month. | Not available | Not available | ||
Control: 0% complete remission of migraines, 8% had >50% reduction in headache frequency per month. | ||||||||||||
16 | Wu et al. (2021) [33] | Reinforce alpha (8–12 Hz) and SMR (12–15 Hz) and suppress theta (4–7 Hz) and beta (18–22 Hz) | C3, C4, Cz | 20 | 30 | BPI (0–10) | Yes | Intervention: 5.16 ± 1.77 | Intervention: 3.80 ± 1.80 | Difference between means of change scores −2.27 to −0.52, p = 0.002. | Not available | Not available |
Control: 4.40 ± 2.09 | Control: 4.24 ± 1.67 |
3.2.3. Reinforce Alpha
Study | Neurofeedback Protocol | Outcome | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Authors (Year) | Reinforced and/or Suppressed Frequency Bands | Location | Number of Sessions | Duration per Session (min) | Pain Questionnaire | Significant Pain Reduction (Yes/No) | Pain Pre-Treatment (Mean (SD)) | Pain Post-Treatment (Mean (SD)) | Pain Reduction from Pre- to Post-Treatment (Mean (SD)) | Follow-Up (Mean (SD)) | Side Effects | |
1 | Elbogen et al. (2021) [17] | Reinforce alpha (not specified) | FP1 | Ranging from 3 to 156 (mean 33.09) | 10 | Rate pain on 0–10 scale | Yes | 6.41 (1.24) | 5.39 (1.70) | - | Not available | Headset discomfort and drowsiness |
2 | Mayaud et al. (2019) [41] | Reinforce alpha-synchrony | 19 electrodes | 20 | 30 | VAS (0–10) | No | 4.42 | Not available | - | After 6 months: 4.24 | Not available |
After 12 months: 4.06 | ||||||||||||
3 | Prinsloo et al. (2017) [37] | Reinforce alpha (8–12 Hz) | NA | 20 | 45 | BPI (0–10) | Yes | Intervention: 4.70 (0.27) | Intervention: 2.70 (0.38) | - | After 4 months (Prinsloo et al. (2018)): mean difference in pain severity between groups over time = 1.70 (SE 0.44) 95%CI 0.81–2.59 | No negative side effects reported |
Control: 4.58 (0.27) | 4.25 (0.36) | |||||||||||
4 | Shimizu et al. (2022) [42] | Reinforce alpha (8–13 Hz) | NA | 8 | 3–30 | VAS (0–100) | No | NF: 68.9 (15.71) | NF: 65.2 (17.48) | - | Not available | Not available |
CBT: 72.2 (15.4) | CBT: 66.3 (14.21) | |||||||||||
PT: 66.3 (14.21) | PT: 56.5 (14.74) | |||||||||||
CBT + NF: 69.6 (14.65) | CBT + NF: 53.6 (19.73) | |||||||||||
PT + NF: 72.2 (18.54) | PT + NF: 58.8 (20.89) | |||||||||||
Controls: 70.7 (15.6) | Controls: 71.7 (16.3) |
3.2.4. SMR Neurofeedback
Study | Neurofeedback Protocol | Outcome | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Authors (Year) | Reinforced and/or Suppressed Frequency Bands | Location | Number of Sessions | Duration per Session (min) | Pain Questionnaire | Significant Pain Reduction (Yes/No) | Pain Pre-Treatment (Mean (SD)) | Pain Post-Treatment (Mean (SD)) | Pain Reduction from Pre- to Post-Treatment (Mean (SD)) | Follow-Up (Mean (SD)) | Side Effects | |
1 | Terrasa et al. (2020) [32] | Reinforce or suppress SMR (12–15 Hz) | C3, CP1, CP5 | 7 | 40 | Numeric scale ranging from 0 to 100 | Yes | - | - | Good-SMR responders: 39.75 ± 21.5. Significant average pain reduction > 40% in all good responders, but not in bad responders. | Not available | Not available |
Bad-SMR responders: 9.2 ± 12.6 | ||||||||||||
Control: 16.29 ± 15.89. |
3.2.5. Other Frequency Neurofeedback Protocols
Study | Neurofeedback Protocol | Outcome | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Authors (Year) | Reinforced and/or Suppressed Frequency Bands | Location | Number of Sessions | Duration per Session (min) | Pain Questionnaire | Significant Pain Reduction (Yes/No) | Pain Pre-Treatment (Mean (SD)) | Pain Post-Treatment (Mean (SD)) | Pain Reduction from Pre- to Post-Treatment (Mean (SD)) | Follow-Up (Mean (SD)) | Side Effects | |
1 | Jensen et al. (2007) [35] | Reinforce a nominal 3 Hz bandwidth between 0–17 Hz and suppress 2–13 Hz and 14–30 Hz | A combination of 1–4 training sites of the following: P3-P4, FP1-FP2, T3-T4, FPO2-A2, Cz-Fz, F7-F8, F3-F4 | 1 | 30 | NRS (0–10) | Yes | 5.49 (2.24) | 3.19 (2.72) | 50% of participants had a clinically meaningful pain reduction (>30%) | Not available | Not available |
2 | Mueller et al. (2001) [31] | Reinforce variability of the dominant frequency and suppress delta (0–4 Hz), theta (4–8 Hz) and alpha (8–12 Hz). | Tailored based on patients’ response | Not available (minimum of 2 times a week) | 1 h per session (average of 37.3 ± 15.6 h in total) | VAS (0–10) | Yes | 5.4 ± 1.6 | 2.5 ± 1.7 | - | After 3–18 months: from 6.6 ± 1.7 to 2.7 ± 1.6 | NANot available |
ILF Neurofeedback
Study | Neurofeedback Protocol | Outcome | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Authors (Year) | Reinforced and/or Suppressed Frequency Bands | Location | Number of Sessions | Duration per Session (min) | Pain Questionnaire | Significant Pain Reduction (Yes/No) | Pain Pre-Treatment (Mean (SD)) | Pain Post-Treatment (Mean (SD)) | Pain Reduction from Pre- to Post-Treatment (Mean (SD)) | Follow-Up (Mean (SD)) | Side Effects | |
1 | Adhia et al. (2023) [40] | Group 1: reinforce ILF | Group 1: pgACC | 12 | 30 | BPI (0–10) | Unknown | 4.2 (1.8) | 2.7 (1.7) | Group 1: −1.5 (95%CI: −2.3, −0.6) | After 1 week: −1.6 (95%CI: −2.2, −0.9) | Mild headaches and increased dreaming |
After 1 month: −1.9 (95%CI: −2.7, −1.0) | ||||||||||||
Group 2: suppress ILF | Group 2: dACC and SSC | 3.3 (1.6) | 2.4 (1.5) | Group 2: −0.9 (95%CI: −1.9, 0.1) | After 1 week: −0.8 (95%CI: −2.3, 0.6) | |||||||
After 1 month: −0.8 (95%CI: −1.8, 0.2) | ||||||||||||
Group 3: concurrently reinforcing ILF and suppressing ILF | Group 3: pgACC and dACC + SSC | 3.4 (1.3) | 3.5 (1.4) | Group 3: 0.1 (95%CI: 0.4, 0.5) | After 1 week: 0.2 (95%CI: −0.6, 1.1) | |||||||
After 1 month: −0.1 (95%CI: −0.8, 0.7) | ||||||||||||
Group 4: sham | 3.6 (1.4) | 3.3 (1.8) | Group 4: −0.3 (95%CI: −1.0, 0.3) | After 1 week: −0.8 (95%CI: −1.3, −0.3) | ||||||||
After 1 month: −1.1 (95%CI: −1.8, −0.4) | ||||||||||||
2 | Arina et al. (2022) [19] | Targets infra-low frequency EEG fluctuations (<0.1 Hz) | P4 and T4 | 10 | Not available | McGill Pain Questionnaire | Yes | Three out of eight participants had a statistically significant reduction in headache frequency (p = 0.05). In 6 participants, a clinically significant reduction in the odds of having a headache occurred (>30%). | - | Not available | ||
3 | Orakpo et al. (2021) [39] | Optimize 0.15 mHz and 0.175 mHz | T3-T4 and T4-P4 | 20 | Not available | Wong–Baker Pain Scale (0–10) | Yes | 9 | 5 | 40% decrease | After 1 month: 4 | Not available |
After 3 months: 2.5 | ||||||||||||
After 1 year: 1 | ||||||||||||
4 | Orakpo et al. (2022) [43] | Optimize ISF | T3-T4 and T4-P4 | 20 | 30 | Wong–Baker Pain Scale (0–10) | Yes | 8 | 1.5 | >80% decrease | After 1 year: 1 | Not available |
5 | Mathew et al. (2022) [21] | Reinforce ILF in pgACC and suppress ILF in SSC and dACC | pgACC, SSC, dACC | 9 | 30 | BPI (0–10) | Unknown | Intervention: 3.4 (SD 1.8, CI 2.2–4.6) | Intervention: 2.5 (SD 1.7, CI 1.3–3.7) | - | After 2 weeks: 2.4 (2.1) | Fatigue |
Control: 3.4 (SD 1.3, CI 2.5–4.4) | Control: 2.5 (SD 1.7, CI 1.2–3.7) | After 2 weeks: 2.6 (1.9) |
Live Z-Score Training
EEG-Based Stimulation Neurofeedback
3.3. Long-Term Effects
3.4. Adverse Events
4. Evaluating the Present Results in Context of EEG Brain Waves Associated with Chronic Pain
4.1. Alpha
4.2. Beta and SMR
4.3. Theta
4.4. Delta and Gamma
4.5. ILF
4.6. Conclusions
5. Discussion
5.1. Interpretation and Variability of the Results
5.2. Searching for a Neurofeedback Protocol for Chronic Pain
5.3. Strengths and Limitations
5.4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Breivik, H.; Collett, B.; Ventafridda, V.; Cohen, R.; Gallacher, D. Survey of chronic pain in Europe: Prevalence, impact on daily life, and treatment. Eur. J. Pain 2006, 10, 287–333. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.P.; Vase, L.; Hooten, W.M. Chronic pain: An update on burden, best practices, and new advances. Lancet 2021, 397, 2082–2097. [Google Scholar] [CrossRef] [PubMed]
- Vos, T.; Allen, C.; Arora, M.; Barber, R.M.; Bhutta, Z.A.; Brown, A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1545–1602. [Google Scholar] [CrossRef] [PubMed]
- Hylands-White, N.; Duarte, R.V.; Raphael, J.H. An overview of treatment approaches for chronic pain management. Rheumatol. Int. 2017, 37, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Hammond, D.C. What is Neurofeedback: An Update. J. Neurother. 2011, 15, 305–336. [Google Scholar] [CrossRef]
- Marzbani, H.; Marateb, H.R.; Mansourian, M. Neurofeedback: A Comprehensive Review on System Design, Methodology and Clinical Applications. Basic Clin. Neurosci. J. 2016, 7, 143–158. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Eisermann, M.; Kaminska, A.; Moutard, M.-L.; Soufflet, C.; Plouin, P. Normal EEG in childhood: From neonates to adolescents. Neurophysiol. Clin. 2013, 43, 35–65. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Walker, J.E. QEEG-Guided Neurofeedback for Recurrent Migraine Headaches. Clin. EEG Neurosci. 2011, 42, 59–61. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef] [PubMed]
- Al-Taleb, M.K.H.; Purcell, M.; Fraser, M.; Petric-Gray, N.; Vuckovic, A. Home used, patient self-managed, brain-computer interface for the management of central neuropathic pain post spinal cord injury: Usability study. J. Neuroeng. Rehabil. 2019, 16, 1–24. [Google Scholar] [CrossRef]
- Jensen, M.P.; Sherlin, L.H.; Askew, R.L.; Fregni, F.; Witkop, G.; Gianas, A.; Howe, J.D.; Hakimian, S. Effects of non-pharmacological pain treatments on brain states. Clin. Neurophysiol. 2013, 124, 2016–2024. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.P.; Gertz, K.J.; Kupper, A.E.; Braden, A.L.; Howe, J.D.; Hakimian, S.; Sherlin, L.H. Steps toward developing an EEG biofeedback treatment for chronic pain. Appl. Psychophysiol. Biofeedback 2013, 38, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Vučković, A.; Altaleb, M.K.H.; Fraser, M.; McGeady, C.; Purcell, M. EEG Correlates of Self-Managed Neurofeedback Treatment of Central Neuropathic Pain in Chronic Spinal Cord Injury. Front. Neurosci. 2019, 13, 762. [Google Scholar] [CrossRef] [PubMed]
- Elbogen, E.B.; Alsobrooks, A.; Battles, S.; Molloy, K.; A Dennis, P.; Beckham, J.C.; A McLean, S.; Keith, J.R.; Russoniello, C. Mobile Neurofeedback for Pain Management in Veterans with TBI and PTSD. Pain Med. Off. J. Am. Acad. Pain Med. 2021, 22, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Hershaw, J.N.; A Hill-Pearson, C.; I Arango, J.; Souvignier, A.R.; Pazdan, R.M. Semi-Automated Neurofeedback Therapy for Persistent Postconcussive Symptoms in a Military Clinical Setting: A Feasibility Study. Mil. Med. 2020, 185, e457–e465. [Google Scholar] [CrossRef] [PubMed]
- Arina, G.A.; Dobrushina, O.R.; Shvetsova, E.T.; Osina, E.D.; Meshkov, G.A.; Aziatskaya, G.A.; Trofimova, A.K.; Efremova, I.N.; Martunov, S.E.; Nikolaeva, V.V. Infra-Low Frequency Neurofeedback in Tension-Type Headache: A Cross-Over Sham-Controlled Study. Front. Hum. Neurosci. 2022, 16, 891323. [Google Scholar] [CrossRef]
- Farahani, D.M.; Tavallaie, S.A.; Ahmadi, K.; Ashtiani, A.F.; Sheikh, M.; Yahaghi, E. Comparison of neurofeedback and transcutaneous electrical nerve stimulation efficacy on treatment of primary headaches: A randomized controlled clinical trial. Iran. Red Crescent Med. J. 2014, 16, e17799. [Google Scholar] [CrossRef]
- Mathew, J.; Adhia, D.B.; Smith, M.L.; De Ridder, D.; Mani, R. Source localized infraslow neurofeedback training in people with chronic painful knee osteoarthritis: A randomized, double-blind, sham-controlled feasibility clinical trial. Front. Neurosci. 2022, 16, 899772. [Google Scholar] [CrossRef] [PubMed]
- Birch, N.; Graham, J.; Ozolins, C.; Kumarasinghe, K.; Almesfer, F. Home-Based EEG Neurofeedback Intervention for the Management of Chronic Pain. Front. Pain Res. 2022, 3, 855493. [Google Scholar] [CrossRef]
- Ibric, V.L.; Dragomirescu, L.G. Introduction to quantitative EEG and neurofeedback: Advanced theory and applications. In Introduction to Quantitative EEG and Neurofeedback; Elsevier: Amsterdam, The Netherlands, 2009; pp. 417–451. [Google Scholar]
- Jacobs, E.H.; Jensen, M.P. EEG neurofeedback in the treatment of chronic pain: A case series. NeuroRegulation 2015, 2, 86–102. [Google Scholar] [CrossRef]
- Koberda, J.L.; Koberda, P.; Bienkiewicz, A.A.; Moses, A.; Koberda, L. Pain Management Using 19-Electrode Z-Score LORETA Neurofeedback. J. Neurother. 2013, 17, 179–190. [Google Scholar] [CrossRef]
- Barbosa-Torres, C.; Cubo-Delgado, S. Clinical Findings in SMR Neurofeedback Protocol Training in Women with Fibromyalgia Syndrome. Brain Sci. 2021, 11, 1069. [Google Scholar] [CrossRef] [PubMed]
- Caro, X.J.; Winter, E.F. EEG biofeedback treatment improves certain attention and somatic symptoms in fibromyalgia: A pilot study. Appl. Psychophysiol. Biofeedback 2011, 36, 193–200. [Google Scholar] [CrossRef]
- Kayıran, S.; Dursun, E.; Dursun, N.; Ermutlu, N.; Karamürsel, S. Neurofeedback intervention in fibromyalgia syndrome; a randomized, controlled, rater blind clinical trial. Appl. Psychophysiol. Biofeedback 2010, 35, 293–302. [Google Scholar] [CrossRef]
- Kayiran, S.; Dursun, E.; Ermutlu, N.; Dursun, N.; Karamürsel, S. Neurofeedback in fibromyalgia syndrome. Agri 2007, 19, 47–52. [Google Scholar]
- Kristevski, A.A. Neurofeedback for Fibromyalgia. Ph.D. Thesis, The Chicago School of Professional Psychology, Chicago, IL, USA, 2014. [Google Scholar]
- Mueller, H.H.; Donaldson, C.S.; Nelson, D.V.; Layman, M. Treatment of fibromyalgia incorporating EEG-driven stimulation: A clinical outcomes study. J. Clin. Psychol. 2001, 57, 933–952. [Google Scholar] [CrossRef]
- Terrasa, J.L.; Barros-Loscertales, A.; Montoya, P.; Muñoz, M.A. Self-Regulation of SMR Power Led to an Enhancement of Functional Connectivity of Somatomotor Cortices in Fibromyalgia Patients. Front. Neurosci. 2020, 14, 236. [Google Scholar] [CrossRef]
- Wu, Y.-L.; Fang, S.-C.; Chen, S.-C.; Tai, C.-J.; Tsai, P.-S. Effects of Neurofeedback on Fibromyalgia: A Randomized Controlled Trial. Pain Manag. Nurs. 2021, 22, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Kravitz, H.M.; Esty, M.L.; Katz, R.S.; Fawcett, J. Treatment of fibromyalgia syndrome using low-intensity neuro feedback with the flexyx neurotherapy system: A randomized controlled clinical trial. J. Neurother. 2006, 10, 41–58. [Google Scholar] [CrossRef]
- Jensen, M.P.; Grierson, C.; Tracy-Smith, V.; Bacigalupi, S.C.; Othmer, S.F. Neurofeedback treatment for pain associated with complex regional pain syndrome type I. J. Neurother. 2007, 11, 45–53. [Google Scholar] [CrossRef]
- Prinsloo, S.; Novy, D.; Driver, L.; Lyle, R.; Ramondetta, L.; Eng, C.; Lopez, G.; Li, Y.; Cohen, L. The Long-Term Impact of Neurofeedback on Symptom Burden and Interference in Patients With Chronic Chemotherapy-Induced Neuropathy: Analysis of a Randomized Controlled Trial. J. Pain Symptom Manag. 2018, 55, 1276–1285. [Google Scholar] [CrossRef] [PubMed]
- Prinsloo, S.; Novy, D.; Driver, L.; Lyle, R.; Ramondetta, L.; Eng, C.; McQuade, J.; Lopez, G.; Cohen, L. Randomized Controlled Trial of Neurofeedback on Chemotherapy-Induced Peripheral Neuropathy: A Pilot Study. Cancer 2017, 123, 1989–1997. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.A.; Fraser, M.; Conway, B.A.; Allan, D.B.; Vuckovic, A. The mechanism of neurofeedback training for treatment of central neuropathic pain in paraplegia: A pilot study. BMC Neurol. 2015, 15, 200. [Google Scholar] [CrossRef]
- Orakpo, N.; Vieux, U.; Castro-Nuñez, C. Case Report: Virtual Reality Neurofeedback Therapy as a Novel Modality for Sustained Analgesia in Centralized Pain Syndromes. Front. Psychiatry 2021, 12, 660105. [Google Scholar] [CrossRef] [PubMed]
- Adhia, D.B.; Mani, R.; Mathew, J.; O’leary, F.; Smith, M.; Vanneste, S.; De Ridder, D. Exploring electroencephalographic infraslow neurofeedback treatment for chronic low back pain: A double-blinded safety and feasibility randomized placebo-controlled trial. Sci. Rep. 2023, 13, 1177. [Google Scholar] [CrossRef]
- Mayaud, L.; Wu, H.; Barthélemy, Q.; Favennec, P.; Delpierre, Y.; Congedo, M.; Dupeyron, A.; Ritz, M. Alpha-phase synchrony EEG training for multi-resistant chronic low back pain patients: An open-label pilot study. Eur. Spine J. 2019, 28, 2487–2501. [Google Scholar] [CrossRef]
- Shimizu, K.; Inage, K.; Morita, M.; Kuroiwa, R.; Chikubu, H.; Hasegawa, T.; Nozaki-Taguchi, N.; Orita, S.; Shiga, Y.; Eguchi, Y.; et al. New treatment strategy for chronic low back pain with alpha wave neurofeedback. Sci. Rep. 2022, 12, 14532. [Google Scholar] [CrossRef]
- Orakpo, N.; Yuan, C.; Olukitibi, O.; Burdette, J.; Arrington, K. Does Virtual Reality Feedback at Infra-Low Frequency Improve Centralized Pain With Comorbid Insomnia While Mitigating Risks for Sedative Use Disorder?: A Case Report. Front. Hum. Neurosci. 2022, 16, 915376. [Google Scholar] [CrossRef]
- Gruzelier, J.H. EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants. Neurosci. Biobehav. Rev. 2014, 44, 124–141. [Google Scholar] [CrossRef] [PubMed]
- Kober, S.E.; Witte, M.; Stangl, M.; Väljamäe, A.; Neuper, C.; Wood, G. Shutting down sensorimotor interference unblocks the networks for stimulus processing: An SMR neurofeedback training study. Clin. Neurophysiol. 2015, 126, 82–95. [Google Scholar] [CrossRef]
- Othmer, S.; Othmer, S.; Legarda, S.B. Clinical neurofeedback: Training brain behavior. Pediatr. Neurol. Psychiatry 2011, 2, 67–73. Available online: https://www.researchgate.net/publication/284506346 (accessed on 1 January 2021).
- Othmer, S.; Othmer, S.F.; Kaiser, D.A.; Putman, J. Endogenous Neuromodulation at Infralow Frequencies. Semin. Pediatr. Neurol. 2013, 20, 246–257. [Google Scholar] [CrossRef]
- Grin-Yatsenko, V.; Kara, O.; Evdokimov, S.A.; Gregory, M.; Othmer, S.; Kropotov, J.D. Infra-Low Frequency Neuro Feedback Modulates Infra-Slow Oscillations of Brain Potentials: A Controlled Study. J. Biomed. Eng. 2020, 4, 1–11. [Google Scholar] [CrossRef]
- Bazzana, F.; Finzi, S.; Di Fini, G.; Veglia, F. Infra-Low Frequency Neurofeedback: A Systematic Mixed Studies Review. Front. Hum. Neurosci. 2022, 16, 920659. [Google Scholar] [CrossRef] [PubMed]
- Collura, T.F.; Guan, J.; Tarrant, J.; Bailey, J.; Starr, F. EEG biofeedback case studies using live Z-score training and a normative database. J. Neurother. 2010, 14, 22–46. [Google Scholar] [CrossRef]
- Pascoal-Faria, P.; Yalcin, N.; Fregni, F. Neural Markers of Neuropathic Pain Associated with Maladaptive Plasticity in Spinal Cord Injury. Pain Pract. 2014, 15, 371–377. [Google Scholar] [CrossRef]
- Pinheiro, E.S.d.S.; de Queirós, F.C.; Montoya, P.; Santos, C.L.; Nascimento, M.A.D.; Ito, C.H.; Silva, M.; Santos, D.B.N.; Benevides, S.; Miranda, J.G.V.; et al. Electroencephalographic Patterns in Chronic Pain: A Systematic Review of the Literature. PLoS ONE 2016, 11, e0149085. [Google Scholar] [CrossRef]
- Mussigmann, T.; Bardel, B.; Lefaucheur, J.-P. Resting-state electroencephalography (EEG) biomarkers of chronic neuropathic pain. A systematic review. NeuroImage 2022, 258, 119351. [Google Scholar] [CrossRef] [PubMed]
- Zebhauser, P.T.; Hohn, V.D.; Ploner, M. Resting-state electroencephalography and magnetoencephalography as biomarkers of chronic pain: A systematic review. Pain 2023, 164, 1200–1221. [Google Scholar] [CrossRef] [PubMed]
- Angelakis, E.; Lubar, J.F.; Stathopoulou, S.; Kounios, J. Peak alpha frequency: An electroencephalographic measure of cognitive preparedness. Clin. Neurophysiol. 2004, 115, 887–897. [Google Scholar] [CrossRef] [PubMed]
- Furman, A.J.; Prokhorenko, M.; Keaser, M.L.; Zhang, J.; Chen, S.; Mazaheri, A.; A Seminowicz, D. Sensorimotor Peak Alpha Frequency Is a Reliable Biomarker of Prolonged Pain Sensitivity. Cereb. Cortex 2020, 30, 6069–6082. [Google Scholar] [CrossRef] [PubMed]
- Schuurman, B.B.; Vossen, C.J.; van Amelsvoort, T.A.M.J.; Lousberg, R.L. Does baseline EEG activity differ in the transition to or from a chronic pain state? A longitudinal study. Pain Pract. 2023, 23, 479–492. [Google Scholar] [CrossRef] [PubMed]
- Egner, T.; Gruzelier, J. EEG Biofeedback of low beta band components: Frequency-specific effects on variables of attention and event-related brain potentials. Clin. Neurophysiol. 2004, 115, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Ploner, M.; May, E.S. Electroencephalography and magnetoencephalography in pain research—Current state and future perspectives. Pain 2018, 159, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Sarnthein, J.; Stern, J.; Aufenberg, C.; Rousson, V.; Jeanmonod, D. Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain 2006, 129, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Rustamov, N.; Wilson, E.A.; Fogarty, A.E.; Crock, L.W.; Leuthardt, E.C.; Haroutounian, S. Relief of chronic pain associated with increase in midline frontal theta power. Pain Rep. 2022, 7, E1040. [Google Scholar] [CrossRef]
- Zis, P.; Liampas, A.; Artemiadis, A.; Tsalamandris, G.; Neophytou, P.; Unwin, Z.; Kimiskidis, V.K.; Hadjigeorgiou, G.M.; Varrassi, G.; Zhao, Y.; et al. EEG Recordings as Biomarkers of Pain Perception: Where Do We Stand and Where to Go? Pain Ther. 2022, 11, 369–380. [Google Scholar] [CrossRef]
- Peng, W.; Hu, L.; Zhang, Z.; Hu, Y. Changes of Spontaneous Oscillatory Activity to Tonic Heat Pain. PLoS ONE 2014, 9, e91052. [Google Scholar] [CrossRef] [PubMed]
- May, E.S.; Nickel, M.M.; Dinh, S.T.; Tiemann, L.; Heitmann, H.; Voth, I.; Tölle, T.R.; Gross, J.; Ploner, M. Prefrontal gamma oscillations reflect ongoing pain intensity in chronic back pain patients. Hum. Brain Mapp. 2019, 40, 293–305. [Google Scholar] [CrossRef]
- Ploner, M.; Sorg, C.; Gross, J. Brain Rhythms of Pain. Trends Cogn. Sci. 2017, 21, 100–110. [Google Scholar] [CrossRef]
- de Heer, E.W.; Gerrits, M.M.J.G.; Beekman, A.T.F.; Dekker, J.; van Marwijk, H.W.J.; de Waal, M.W.M.; Spinhoven, P.; Penninx, B.W.J.H.; van der Feltz-Cornelis, C.M. The Association of depression and anxiety with pain: A study from NESDA. PLoS ONE 2014, 9, e106907. [Google Scholar] [CrossRef]
- A McWilliams, L.; Cox, B.J.; Enns, M.W. Mood and anxiety disorders associated with chronic pain: An examination in a nationally representative sample. Pain 2003, 106, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.; Liu, S.; Wang, Y.; Cui, R.; Zhang, X. The Link between Depression and Chronic Pain: Neural Mechanisms in the Brain. Neural Plast. 2017, 2017, 9724371. [Google Scholar] [CrossRef]
- de Aguiar Neto, F.S.; Rosa, J.L.G. Depression biomarkers using non-invasive EEG: A review. Neurosci. Biobehav. Rev. 2019, 105, 83–93. [Google Scholar] [CrossRef]
- Ho, E.K.-Y.; Chen, L.; Simic, M.; Ashton-James, C.E.; Comachio, J.; Wang, D.X.M.; Hayden, J.A.; Ferreira, M.L.; Ferreira, P.H. Psychological interventions for chronic, non-specific low back pain: Systematic review with network meta-analysis. BMJ 2022, 376, e067718. [Google Scholar] [CrossRef] [PubMed]
- Prinsloo, S.; Kaptchuk, T.J.; De Ridder, D.; Lyle, R.; Bruera, E.; Novy, D.; Barcenas, C.H.; Cohen, L.G. Brain–computer interface relieves chronic chemotherapy-induced peripheral neuropathy: A randomized, double-blind, placebo-controlled trial. Cancer 2024, 130, 300–311. [Google Scholar] [CrossRef]
- Nicolas-Alonso, L.F.; Gomez-Gil, J. Brain Computer Interfaces, a Review. Sensors 2012, 12, 1211–1279. [Google Scholar] [CrossRef]
- Roy, R.; de la Vega, R.; Jensen, M.P.; Miró, J. Neurofeedback for Pain Management: A Systematic Review. Front. Neurosci. 2020, 14, 671. [Google Scholar] [CrossRef]
- Patel, K.; Sutherland, H.; Henshaw, J.; Taylor, J.R.; Brown, C.A.; Casson, A.J.; Trujillo-Barreton, N.J.; Jones, A.K.P.; Sivan, M. Effects of neurofeedback in the management of chronic pain: A systematic review and meta-analysis of clinical trials. Eur. J. Pain 2020, 24, 1440–1457. [Google Scholar] [CrossRef]
- Hesam-Shariati, N.; Chang, W.; Wewege, M.A.; McAuley, J.H.; Booth, A.; Trost, Z.; Lin, C.; Newton-John, T.; Gustin, S.M. The analgesic effect of electroencephalographic neurofeedback for people with chronic pain: A systematic review and meta-analysis. Eur. J. Neurol. 2022, 29, 921–936. [Google Scholar] [CrossRef] [PubMed]
- Ros, T.; Enriquez-Geppert, S.; Zotev, V.; Young, K.D.; Wood, G.; Whitfield-Gabrieli, S.; Wan, F.; Vuilleumier, P.; Vialatte, F.; Van De Ville, D.; et al. Consensus on the reporting and experimental design of clinical and cognitive-behavioural neurofeedback studies (CRED-nf checklist). Brain 2020, 143, 1674–1685. [Google Scholar] [CrossRef]
- Santoro, M.; Cronan, T. A systematic review of neurofeedback as a treatment for fibromyalgia syndrome symptoms. J. Musculoskelet Pain 2014, 22, 286–300. [Google Scholar] [CrossRef]
- Glombiewski, J.A.; Bernardy, K.; Häuser, W. Efficacy of EMG- and EEG-Biofeedback in Fibromyalgia Syndrome: A Meta-Analysis and a Systematic Review of Randomized Controlled Trials. Evid. Based Complement Altern. Med. 2013, 2013, 962741. [Google Scholar] [CrossRef]
- Torres, C.B.; Barona, E.J.G.; Molina, M.G.; Sánchez, M.E.G.-B.; Manso, J.M.M. A systematic review of EEG neurofeedback in fibromyalgia to treat psychological variables, chronic pain and general health. Eur. Arch. Psychiatry Clin. Neurosci. 2023, 1–19. [Google Scholar] [CrossRef]
- Hetkamp, M.; Bender, J.; Rheindorf, N.; Kowalski, A.; Lindner, M.; Knsipel, S.; Beckmann, M.; Tagay, S.; Teufel, M. A Systematic Review of the Effect of Neurofeedback in Cancer Patients. Integr. Cancer Ther. 2019, 18. [Google Scholar] [CrossRef]
- Smith, S.M.; Dworkin, R.H.; Turk, D.C.; McDermott, M.P.; Eccleston, C.; Farrar, J.T.; Rowbotham, M.C.; Bhangwagar, Z.; Burke, L.B.; Cowan, P.; et al. Interpretation of chronic pain clinical trial outcomes: IMMPACT recommended considerations. Pain 2020, 161, 2446–2461. [Google Scholar] [CrossRef]
- Kolb, B.; Gibb, R. Brain Plasticity and Behaviour in the Developing Brain. J. Can. Acad. Child Adolesc. Psychiatry 2011, 20, 265. [Google Scholar]
Study | Study Design | Participants’ Characteristics | ||||||
---|---|---|---|---|---|---|---|---|
Authors (Year) | Intervention | Control | Randomized | Sample Size | Condition | Gender (Male/Female) | Mean Age (Years) | |
1 | Adhia et al. (2023) [40] | ISF neurofeedback | Sham | Yes | Group 1: 15 | Chronic low back pain | Group 1: 6/9 | Group 1: 41.9 ± 15.8 |
Group 2: 15 | Group 2: 2/13 | Group 2: 39.9 ± 15.4 | ||||||
Group 3: 15 | Group 3: 5/10 | Group 3: 43.9 ± 15.4 | ||||||
Group 4: 15 | Group 4: 4/11 | Group 4: 42.5 ± 15.4 | ||||||
2 | Al-Taleb et al. (2019) [13] | Frequency neurofeedback | No control group | No | 20 | Spinal cord injury with central neuropathic pain | 17/3 | 50.6 ± 14.1 |
3 | Arina et al. (2022) [19] | ISF neurofeedback | Sham | Yes | 8 (crossover design) | Tension type headache | 1/7 | 30.75 ± 8.97 |
4 | Barbosa-Torres et al. (2021) [26] | Frequency neurofeedback | No control group | No | 37 | Fibromyalgia | 0/37 | 54.92 ± 7.89 |
5 | Birch et al. (2022) [22] | Frequency neurofeedback | No control group | No | 16 | Heterogenous chronic-pain population | 4/12 | Male 52.4 and female 49.5 |
6 | Caro and Winter (2011) [27] | Frequency neurofeedback | Treatment as usual | No | Intervention: 15 | Fibromyalgia | Intervention: 1/14 | Intervention: 66.7 ± 12.3 |
Control: 63 | Control: 13/50 | Control: 50.5 ± 13.9 | ||||||
7 | Elbogen et al. (2021) [17] | Frequency neurofeedback | No control group | No | 41 | Traumatic brain injury with chronic pain | 35/6 | 38.57 ± 10.04 |
8 | Farahani et al. (2014) [20] | Frequency neurofeedback | No treatment | Yes | Neurofeedback: 15 | Primary headache | NF 8/7 | NF 37.60 ± 7.462 |
TENS: 15 | TENS 9/6 | TENS 40.73 ± 10.124 | ||||||
Control: 15 | Control 8/7 | Control 37.33 ± 9.447 | ||||||
9 | Hassan et al. (2015) [38] | Frequency neurofeedback | No control group | No | 7 | Central neuropathic pain | 6/1 | 50 ± 4.6 |
10 | Hershaw et al. (2020) [18] | Live z-score training | No control group | No | 38 | Post concussion syndrome with chronic pain | 31/7 | 33.395 ± 8.046 |
11 | Ibric and Dragomirescu (2009) [23] | Frequency neurofeedback | No control group | No | 10 | Heterogenous chronic-pain population | 4/6 | Ranging from 20 to 67 |
12 | Jacobs and Jensen (2015) [34] | Frequency neurofeedback | No control group | No | 3 | Heterogenous chronic-pain population | 1/2 | Ranging from 19 to 56 |
13 | Jensen et al. (2007) [35] | Frequency neurofeedback | No control group | No | 18 | Complex regional pain syndrome | 2/16 | 40.83 (ranging from 17 to 56) |
14 | Jensen et al. (2013a) [15] | Frequency neurofeedback | No control group | No | 10 | Spinal cord injury with chronic pain | 7/3 | 46.1 ± 12.6 |
15 | Jensen et al. (2013b) [14] | Frequency neurofeedback | Sham tDCS | Yes | Neurofeedback: 30 | Spinal cord injury with chronic pain | 22/8 | 49.16 (ranging from 22 to 77) |
Sham tDCS: 27 | ||||||||
tDCS: 28 | ||||||||
Hypnosis: 29 | ||||||||
Meditation: 30 | ||||||||
16 | Kayiran et al. (2007) [29] | Frequency neurofeedback | No control group | No | 3 | Fibromyalgia | 0/3 | Ranging from 31 to 33 |
17 | Kayiran et al. (2010) [28] | Frequency neurofeedback | Escitalopram | Yes | Intervention: 20 | Fibromyalgia | 0/40 | Intervention: 31.78 ± 6.17 |
Control: 20 | Control: 32.39 ± 6.72 | |||||||
18 | Koberda et al. (2013) [25] | LORETA and live z-score training | No control group | No | 4 | Various types of chronic neuropathic pain | 2/2 | Ranging from 46 to 59 |
19 | Kravitz et al. (2006) [34] | EEG-based stimulation neurofeedback | Sham | Yes | Intervention: 33 | Fibromyalgia | Intervention: 3/30 | Intervention: 45.9 ± 9.5 |
Control: 31 | Control: 2/29 | Control: 48.1 ± 8.9 | ||||||
20 | Kristevski et al. (2014) [30] | Frequency neurofeedback | Wait-list control with subsequently neurofeedback | Yes | Intervention: 2 | Fibromyalgia | 0/5 | 36 ± 14.7 |
Control: 3 | ||||||||
21 | Mathew et al. (2022) [21] | ISF neurofeedback | Sham | Yes | Intervention: 11 | Knee osteoarthritis | Intervention: 4/7 | Intervention: 62.3 ± 8.5 |
Control: 10 | Control: 4/6 | Control: 61.0 ± 6.7 | ||||||
22 | Mayaud et al. (2019) [41] | Frequency neurofeedback | No control group | No | 16 | Chronic low back pain | 0/16 | 37 (ranging from 15 to 52) |
23 | Mueller et al. (2001) [31] | Frequency neurofeedback | No control group | No | 30 | Fibromyalgia | 3/27 | 50.7 ± 12.0 |
24 | Orakpo et al. (2021) [39] | ISF neurofeedback | No control group | No | 1 | Central neuropathic pain | 0/1 | 55 |
25 | Orakpo et al. (2022) [43] | ISF neurofeedback | No control group | No | 1 | Chronic low back pain and sciatica | 1/0 | 31 |
26 | Prinsloo et al. (2017) [37] | Frequency neurofeedback | Wait-list control | Yes | Intervention: 35 | Chemotherapy-induced peripheral neuropathy | Intervention: 4/31 | Intervention 62 ± 9.6 |
Control: 36 | Control: 5/31 | Control 63 ± 11 | ||||||
27 | Prinsloo et al. (2018) [36] | Frequency neurofeedback | Wait-list control | Yes | Intervention: 35 | Chemotherapy-induced peripheral neuropathy | Intervention: 4/31 | Intervention 62 ± 9.6 |
Control: 36 | Control: 5/31 | Control 63 ± 11 | ||||||
28 | Shimizu et al. (2022) [42] | Frequency neurofeedback | Controls (not specified) | Yes | NF: 20 | Chronic low back pain | NF: 12/8 | NF: 61.4 ± 10.12 |
CBT: 18 | CBT: 10/8 | CBT: 57.0 ± 12.82 | ||||||
PT: 13 | PT: 5/8 | PT: 59.9 ± 12.72 | ||||||
CBT + NF: 16 | CBT + NF: 8/8 | CBT + NF: 63.6 ± 9.32 | ||||||
PT + NF: 10 | PT + NF: 4/6 | PT + NF: 57.8 ± 11.32 | ||||||
Control: 20 | Control: 8/12 | Control: 58.9 ± 9.81 | ||||||
29 | Terrasa et al. (2020) [32] | SMR neurofeedback | Sham | Yes | Good -SMR responders: 4 | Fibromyalgia | 0/17 | Good -SMR responders: 54.75 ± 8.46 |
Bad-SMR responders: 5 | Bad-SMR responders: 53 ± 9.77 | |||||||
Control: 8 | Control: 56.25 ± 11.99 | |||||||
30 | Vuckovic et al. (2019) [16] | Frequency neurofeedback | No control group | No | 20 | Spinal cord injury with central neuropathic pain | 16/4 | 50.6 ± 14.1 |
31 | Walker et al. (2011) [11] | Frequency neurofeedback | Treatment as usual | No | Intervention: 46 | Migraine | NA | Ranging from 17 to 62 |
Control: 25 | ||||||||
32 | Wu et al. (2021) [33] | Frequency neurofeedback | Attention control | Yes | Intervention: 60 | Fibromyalgia | Intervention: 3/57 | Intervention: 48.6 ± 13.5 |
Control: 20 | Control: 6/14 | Control: 42.2 ± 10.9 |
Authors (year) | Randomization Process | Deviation from Intended Interventions | Missing Outcome Data | Measurement of the Outcome | Selection of the Reported Result | Overall | |
---|---|---|---|---|---|---|---|
1 | Adhia et al. (2023) [40] | Low | Low | Low | Low | Low | Low |
2 | Arina et al. (2022) [19] | Low | Low | Low | Low | Low | Low |
3 | Farahani et al. (2014) [20] | Low | High | Low | Low | Low | High |
4 | Kayiran et al. (2010) [28] | Unknown | High | High | Low | Low | High |
5 | Kravitz et al. (2006) [34] | Some concerns | Some concerns | Low | Low | Low | Some concerns |
6 | Kristevski et al. (2015) [30] | Low | High | High | Low | Low | High |
7 | Mathew et al. (2022) [21] | Low | Low | Low | Low | Low | Low |
8 | Prinsloo et al. (2017) [37] | Low | High | Low | Low | Low | High |
9 | Prinsloo et al. (2018) [36] | Low | High | Low | Low | Low | High |
10 | Terrasa et al. (2020) [32] | High | High | Low | Some concerns | High | High |
11 | Wu et al. (2021) [33] | Low | High | High | Low | Low | High |
Authors (year) | Bias Due to Confounding | Bias in Selection of Participants into Study | Bias in Classification of Interventions | Bias Due to Deviations from Intended Interventions | Bias Due to Missing Data | Bias in Measurement Outcomes | Bias in Selection of Reported Result | Overall | |
---|---|---|---|---|---|---|---|---|---|
1 | Al-Taleb et al. (2019) [13] | High | Low | Low | Low | Low | High | High | High |
2 | Barbosa-Torres et al. (2021) [26] | High | Low | Low | Low | Low | High | Low | High |
3 | Birch et al. (2022) [22] | Some concerns | Low | Low | Low | High | Low | Low | High |
4 | Caro and Winter (2011) [27] | Low | Some concerns | Low | Low | Low | High | High | High |
5 | Elbogen et al. (2021) [17] | Low | Low | Some concerns | Low | Low | Low | Low | Some concerns |
6 | Hassan et al. (2015) [38] | Some concerns | Low | Low | Low | Low | Low | Low | Some concerns |
7 | Hershaw et al. (2020) [18] | Low | Some concerns | Low | Low | Some concerns | Low | Low | Some concerns |
8 | Ibric and Dragomirescu (2009) [23] | High | High | Low | Some concerns | Some concerns | Low | Some concerns | High |
9 | Jacobs and Jensen (2015) [24] | High | Low | Some concerns | Some concerns | Low | Low | Low | High |
10 | Jensen et al. (2007) [35] | High | Some concerns | Some concerns | Low | Low | Low | Low | High |
11 | Jensen et al. (2013) [15] | Low | Some concerns | Low | Low | Low | Low | Low | Some concerns |
12 | Jensen et al. (2013) [14] | Low | Low | Low | Low | Low | Low | High | High |
13 | Kayiran et al. (2007) [29] | Low | Low | Low | Low | Low | Low | Low | Low |
14 | Koberda et al. (2013) [25] | High | High | Low | Low | Low | High | High | High |
15 | Mayaud et al. (2019) [41] | Low | Some concerns | Some concerns | Low | Low | Low | Low | Some concerns |
16 | Mueller et al. (2001) [31] | High | Some concerns | High | Low | Low | High | Some concerns | High |
17 | Shimizu et al. (2022) [42] | Low | Low | Low | Some concerns | Low | High | Low | High |
18 | Vuckovic et al. (2019) [16] | Some concerns | Some concerns | Low | Low | Some concerns | Low | Low | Some concerns |
19 | Walker et al. (2011) [11] | High | High | High | Low | Low | High | High | High |
Study | Neurofeedback Protocol | Outcome | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Authors (Year) | Reinforced and/or Suppressed Frequency Bands | Location | Number of Sessions | Duration per Session (min) | Pain Questionnaire | Significant Pain Reduction (Yes/No) | Pain Pre-Treatment (Mean (SD)) | Pain Post-Treatment (Mean (SD)) | Pain Reduction from Pre- to Post-Treatment (Mean (SD)) | Follow-Up (Mean (SD)) | Side Effects | |
1 | Hershaw et al. (2020) [18] | Not available | 19 electrodes | 5–20 | 10–30 | Chronic Pain Grade Questionnaire | No | 48.696 (14.728) | 45.650 (13.686) | - | After 11–15 weeks: 46.670 (14.873) | Mild headache and fatigue |
2 | Koberda et al. (2013) [25] | Not available | 19 electrodes | 10–65 | 30 | Unknown | Unknown | - | - | All patients reported a substantial improvement of chronic pain complaints. | Not available | Not available |
Study | Neurofeedback Protocol | Outcome | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Authors (Year) | Reinforced and/or Suppressed Frequency Bands | Location | Number of Sessions | Duration per Session (min) | Pain Questionnaire | Significant Pain Reduction (Yes/No) | Pain Pre-Treatment (Mean (SD)) | Pain Post-Treatment (Mean (SD)) | Pain Reduction from Pre- to Post-Treatment (Mean (SD)) | Follow-Up (Mean (SD)) | Side Effects | |
1 | Kravitz et al. (2006) [34] | Not available | 21 electrodes | 22 | Not available | Fibromyalgia Impact Questionnaire (0–9) | No | Intervention: 6.27 (2.41) | Intervention: 5.23 (2.34) | - | Not available | Fatigue, pain, drowsiness, stiffness, muscle spasm |
Control: 6.43 (1.79) | Control: 5.57 (2.23) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schuurman, B.B.; Lousberg, R.L.; Schreiber, J.U.; van Amelsvoort, T.A.M.J.; Vossen, C.J. A Scoping Review of the Effect of EEG Neurofeedback on Pain Complaints in Adults with Chronic Pain. J. Clin. Med. 2024, 13, 2813. https://doi.org/10.3390/jcm13102813
Schuurman BB, Lousberg RL, Schreiber JU, van Amelsvoort TAMJ, Vossen CJ. A Scoping Review of the Effect of EEG Neurofeedback on Pain Complaints in Adults with Chronic Pain. Journal of Clinical Medicine. 2024; 13(10):2813. https://doi.org/10.3390/jcm13102813
Chicago/Turabian StyleSchuurman, Britt B., Richel L. Lousberg, Jan U. Schreiber, Therese A. M. J. van Amelsvoort, and Catherine J. Vossen. 2024. "A Scoping Review of the Effect of EEG Neurofeedback on Pain Complaints in Adults with Chronic Pain" Journal of Clinical Medicine 13, no. 10: 2813. https://doi.org/10.3390/jcm13102813
APA StyleSchuurman, B. B., Lousberg, R. L., Schreiber, J. U., van Amelsvoort, T. A. M. J., & Vossen, C. J. (2024). A Scoping Review of the Effect of EEG Neurofeedback on Pain Complaints in Adults with Chronic Pain. Journal of Clinical Medicine, 13(10), 2813. https://doi.org/10.3390/jcm13102813