Nanotechnology for Pain Management
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Nanotechnology-Based Transporters
3.2. Nanotechnology-Based Devices/Patches
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Bedard, N.A.; Pugely, A.J.; Dowdle, S.B.; Duchman, K.R.; Glass, N.A.; Callaghan, J.J. Opioid use following total hip arthroplasty: Trends and risk factors for prolonged use. J. Arthroplast. 2017, 32, 3675–3679. [Google Scholar] [CrossRef] [PubMed]
- Bedard, N.A.; Pugely, A.J.; Westermann, R.W.; Duchman, K.R.; Glass, N.A.; Callaghan, J.J. Opioid use after total knee arthroplasty: Trends and risk factors for prolonged use. J. Arthroplast. 2017, 32, 2390–2394. [Google Scholar] [CrossRef]
- Brummett, C.M.; Waljee, J.F.; Goesling, J.; Moser, S.; Lin, P.; Englesbe, M.J.; Bohnert, A.S.; Kheterpal, S.; Nallamothu, B.K. New persistent opioid use after minor and major surgical procedures in US adults. JAMA Surg. 2017, 152, e170504. [Google Scholar] [CrossRef] [PubMed]
- Sekhri, S.; Arora, N.S.; Cottrell, H.; Baerg, T.; Duncan, A.; Hu, H.M.; Englesbe, M.J.; Brummett, C.; Waljee, J.F. Probability of opioid prescription refilling after surgery: Does initial prescription dose matter? Ann. Surg. 2018, 268, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Sun, E.C.; Darnall, B.D.; Baker, L.C.; Mackey, S. Incidence of and risk factors for chronic opioid use among opioid-naive patients in the postoperative period. JAMA Intern. Med. 2016, 176, 1286–1293. [Google Scholar] [CrossRef] [PubMed]
- Bateman, B.T.; Franklin, J.M.; Bykov, K.; Avorn, J.; Shrank, W.H.; Brennan, T.A.; Landon, J.E.; Rathmell, J.P.; Huybrechts, K.F.; Fischer, M.A.; et al. Persistent opioid use following cesarean delivery: Patterns and predictors among opioid-naive women. Am. J. Obstet. Gynecol. 2016, 215, 353.e1–353.e18. [Google Scholar] [CrossRef] [PubMed]
- Hooten, W.M.; St Sauver, J.L.; McGree, M.E.; Jacobson, D.J.; Warner, D.O. Incidence and risk factors for progression from short-term to episodic or long-term opioid prescribing: A population-based study. Mayo Clin. Proc. 2015, 90, 850–856. [Google Scholar] [CrossRef]
- Namba, R.S.; Singh, A.; Paxton, E.W.; Inacio, M.C. Patient Factors Associated with Prolonged Postoperative Opioid Use After Total Knee Arthroplasty. J. Arthroplasty 2018, 33, 2449–2454. [Google Scholar] [CrossRef]
- Johnson, S.P.; Chung, K.C.; Zhong, L.; Shauver, M.J.; Engelsbe, M.J.; Brummett, C.; Waljee, J.F. Risk of prolonged opioid use among opioid-naïve patients following common hand surgery procedures. J. Hand Surg. Am. 2016, 41, 947–957.e3. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Tringale, K.R.; Tapia, V.J.; Moss, W.J.; May, M.E.; Furnish, T.; Barnachea, L.; Brumund, K.T.; Sacco, A.G.; Weisman, R.A.; et al. Chronic opioid use following surgery for oral cavity cancer. JAMA Otolaryngol. Head. Neck Surg. 2017, 143, 1187–1194. [Google Scholar] [CrossRef] [PubMed]
- Raebel, M.A.; Newcomer, S.R.; Bayliss, E.A.; Boudreau, D.; DeBar, L.; Elliott, T.E.; Ahmed, A.T.; Pawloski, P.A.; Fisher, D.; Toh, S.; et al. Chronic opioid use emerging after bariatric surgery. Pharmacoepidemiol. Drug Saf. 2014, 23, 1247–1257. [Google Scholar] [CrossRef]
- Carroll, I.; Barelka, P.; Wang, C.K.; Wang, B.M.; Gillespie, M.J.; McCue, R.; Younger, J.W.; Trafton, J.; Humphreys, K.; Goodman, S.B.; et al. A pilot cohort study of the determinants of longitudinal opioid use after surgery. Anesth. Analg. 2012, 115, 694–702. [Google Scholar] [CrossRef] [PubMed]
- Helmerhorst, G.T.; Vranceanu, A.M.; Vrahas, M.; Smith, M.; Ring, D. Risk factors for continued opioid use one to two months after surgery for musculoskeletal trauma. J. Bone Jt. Surg. 2014, 96, 495–499. [Google Scholar] [CrossRef] [PubMed]
- Inacio, M.C.; Hansen, C.; Pratt, N.L.; Graves, S.E.; Roughead, E.E. Risk factors for persistent and new chronic opioid use in patients undergoing total hip arthroplasty: A retrospective cohort study. BMJ Open 2016, 6, e010664. [Google Scholar] [CrossRef] [PubMed]
- Schoenfeld, A.J.; Nwosu, K.; Jiang, W.; Yau, A.L.; Chaudhary, M.A.; Scully, R.E.; Koehlmoos, T.; Kang, J.D.; Haider, A.H. Risk factors for prolonged opioid use following spine surgery, and the association with surgical intensity, among opioid-naive patients. J. Bone Jt. Surg. Am. 2017, 99, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.A.; Lewallen, D. Predictors of pain and use of pain medications following primary Total Hip Arthroplasty (THA): 5,707 THAs at 2-years and 3,289 THAs at 5-years. BMC Musculoskelet. Disord. 2010, 11, 90. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.A.; Lewallen, D.G. Predictors of use of pain medications for persistent knee pain after primary Total Knee Arthroplasty: A cohort study using an institutional joint registry. Arthritis Res. Ther. 2012, 14, R248. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.A.; Inacio, M.C.; Pratt, N.L.; Roughead, E.E.; Graves, S.E. Chronic use of opioids before and after total knee arthroplasty: A retrospective cohort study. J. Arthroplast. 2017, 32, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Clarke, H.; Soneji, N.; Ko, D.T.; Yun, L.; Wijeysundera, D.N. Rates and risk factors for prolonged opioid use after major surgery: Population based cohort study. Bri. Med. J. 2014, 348, g1251. [Google Scholar] [CrossRef] [PubMed]
- Stafford, C.; Francone, T.; Roberts, P.L.; Ricciardi, R. What factors are associated with increased risk for prolonged postoperative opioid usage after colorectal surgery? Surg. Endosc. 2018, 32, 3557–3561. [Google Scholar] [CrossRef] [PubMed]
- Waljee, J.F.; Zhong, L.; Hou, H.; Sears, E.; Brummet, C.; Chung, K.C. The utilization of opioid analgesics following common upper extremity surgical procedures: A national, population-based study. Plast. Reconstr. Surg. 2016, 137, 355e–364e. [Google Scholar] [CrossRef] [PubMed]
- Holman, J.E.; Stoddard, G.J.; Higgins, T.F. Rates of prescription opiate use before and after injury in patients with orthopaedic trauma and the risk factors for prolonged opiate use. J. Bone Jt. Surg. 2013, 95, 1075–1080. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, D.; Lewis, B.; Hutyra, C.; Nho, S.; Olson, S.; Mather, R. Prospective, Observational Study of Opioid Use After Hip Arthroscopy for Femoroacetabular Impingement Syndrome. Arthroscopy 2018, 34, 1488–1497. [Google Scholar] [CrossRef] [PubMed]
- Goesling, J.; Moser, S.E.; Zaidi, B.; Hassett, A.L.; Hilliard, P.; Hallstrom, B.; Clauw, D.J.; Brummett, C.M. Trends and predictors of opioid use following total knee and total hip arthroplasty. Pain 2016, 157, 1259. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.; Azam, A.; Segal, S.; Pivovarov, K.; Katznelson, G.; Ladak, S.S.; Mu, A.; Weinrib, A.; Katz, J.; Clarke, H. Chronic postsurgical pain and persistent opioid use following surgery: The need for a transitional pain service. Pain Manag. 2016, 6, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Hu, H.M.; Edelman, A.L.; Brummett, C.M.; Englesbe, M.J.; Waljee, J.F.; Smerage, J.B.; Griggs, J.J.; Nathan, H.; Jeruss, J.S.; et al. New persistent opioid use among patients with cancer after curative-intent surgery. J. Clin. Oncol. 2017, 35, 4042–4049. [Google Scholar] [CrossRef] [PubMed]
- Saraswathula, A.; Chen, M.M.; Mudumbai, S.C.; Whittemore, A.S.; Divi, V. Persistent Postoperative Opioid Use in Older Head and Neck Cancer Patients. Otolaryngol. Head. Neck Surg. 2018, 160, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, A.R.; Dehghan, M.; Newman, T.B.; Bentley, J.P.; Park, K.T. Association of Opioid Prescriptions From Dental Clinicians for US Adolescents and Young Adults With Subsequent Opioid Use and Abuse. JAMA Intern. Med. 2019, 179, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Gomes, T.; Zheng, H.; Mamdani, M.M.; Juurlink, D.N.; Bell, C.M. Long-term analgesic use after low-risk surgery: A retrospective cohort study. Arch. Intern. Med. 2012, 172, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.C.; Choudhry, N.; Franklin, J.M.; Bykov, K.; Eikermann, M.; Lii, J.; Fischer, M.A.; Bateman, B.T. Patterns and predictors of persistent opioid use following hip or knee arthroplasty. Osteoarthr. Cartil. 2017, 25, 1399–1406. [Google Scholar] [CrossRef] [PubMed]
- Kulshrestha, S.; Barrantes, F.; Samaniego, M.; Luan, F.L. Chronic opioid analgesic usage post-kidney transplantation and clinical outcomes. Clin. Trans. 2014, 28, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Soneji, N.; Clarke, H.A.; Ko, D.T.; Wijeysundera, D.N. Risks of developing persistent opioid use after major surgery. JAMA Surg. 2016, 151, 1083–1084. [Google Scholar] [CrossRef] [PubMed]
- Sun, E.C.; Bateman, B.T.; Memtsoudis, S.G.; Neuman, M.D.; Mariano, E.R.; Baker, L.C. Lack of association between the use of nerve blockade and the risk of postoperative chronic pioid use among patients undergoing total knee arthroplasty: Evidence from the Marketscan Database. Anesth. Analg. 2017, 125, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Matic, M.; de Wildt, S.N.; Tibboel, D.; van Schaik, R.H.N. Analgesia and Opioids: A Pharmacogenetics Shortlist for Implementation in Clinical Practice. Clin. Chem. 2017, 63, 1204–1213. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, A.; Dusek, J.A.; Taylor-Swanson, L.; Tick, H. Acupuncture Therapy as an Evidence-Based Nonpharmacologic Strategy for Comprehensive Acute Pain Care: The Academic Consortium Pain Task Force White Paper Update. Pain Med. 2022, 23, 1582–1612. [Google Scholar] [CrossRef] [PubMed]
- Crespin, D.J.; Griffin, K.H.; Johnson, J.R.; Miller, C.; Finch, M.D.; Rivard, R.L.; Anseth, S.; Dusek, J.A. Acupuncture Provides Short-term Pain Relief for Patients in a Total Joint Replacement Program. Pain Med. 2015, 16, 1195–1203. [Google Scholar] [CrossRef]
- Fathi, M.; Ariamanesh, A.S.; Joudi, M.; Joudi, M.; Sadrossadati, F.; Izanloo, A. Hypnosis as an Approach to Control Pain and Anxiety in Anterior Cruciate Ligament Reconstruction and Meniscal Surgeries: Two Case Presentations. Anesth. Pain Med. 2019, 9, e89277. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.I.; Paley, C.A.; Jones, G.; Mulvey, M.R.; Wittkopf, P.G. Efficacy and safety of transcutaneous electrical nerve stimulation (TENS) for acute and chronic pain in adults: A systematic review and meta-analysis of 381 studies (the meta-TENS study). BMJ Open 2022, 12, e051073. [Google Scholar] [CrossRef] [PubMed]
- Gibson, W.; Wand, B.M.; Meads, C.; Catley, M.J.; O’Connell, N.E. Cochrane Pain, Palliative and Supportive Care Group. Transcutaneous electrical nerve stimulation (TENS) for chronic pain–an overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2019, 2019, CD011890. [Google Scholar]
- Chelly, J.E.; Orebaugh, S.L.; Rodosky, M.W.; Groff, Y.J.; Norton, B.E.; Monroe, A.L.; Alimi, D.; Sadhasivam, S.K.; Vogt, K.M. The Effect of Cryo-auriculotherapy on Post-Operative Pain Management following Rotator Cuff Surgery: A Randomized, Placebo-Controlled Study. medRxiv 2022. [Google Scholar] [CrossRef]
- Nethi, S.K.; Das, S.; Patra, C.R.; Mukherjee, S. Recent advances in inorganic nanomaterials for wound-healing applications. Biomater. Sci. 2019, 7, 2652–2674. [Google Scholar] [CrossRef]
- Ashtikar, M.; Wacker, M.G. Nanopharmaceuticals for–wound healing—Lost in translation? Adv. Drug Deliv. Rev. 2018, 129, 194–218. [Google Scholar] [CrossRef]
- Blanco-Fernandez, B.; Castaño, O.; Mateos-Timoneda, M.Á.; Engel, E.; Pérez-Amodio, S. Nanotechnology Approaches in Chronic Wound Healing. Adv. Wound Care 2021, 10, 234–256. [Google Scholar] [CrossRef] [PubMed]
- Girija, A.R.; Balasubramanian, S.; Cowin, A.J. Nanomaterials-based Drug Delivery Approaches for Wound Healing. Curr. Pharm. Des. 2022, 28, 711–726. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, D.; Ghosh, B.; Mukhopadhyay, M. Development of nanotechnology for advancement and application in wound healing: A review. IET Nanobiotechnol. 2019, 13, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Alberti, T.; Coelho, D.S.; Voytena, A.; Pitz, H.; de Pra, M.; Mazzarino, L.; Kuhnen, S.; Ribeiro-Do-Valle, R.M.; Maraschin, M.; Veleirinho, B. Nanotechnology: A Promising Tool Towards Wound Healing. Curr. Pharm. Des. 2017, 23, 3515–3528. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Votruba, A.R.; Farokhzad, O.C.; Langer, R. Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications. Nano Lett. 2010, 10, 3223–3230. [Google Scholar] [CrossRef]
- Batool, S.; Nabipour, H.; Ramakrishna, S.; Mozafari, M. Nanotechnology and quantum science enabled advances in neurological medical applications: Diagnostics and treatments. Med. Biol. Eng. Comput. 2022, 60, 3341–3356. [Google Scholar] [CrossRef]
- Jahed, Z.; Yang, Y.; Tsai, C.-T.; Foster, E.P.; McGuire, A.F.; Yang, H.; Liu, A.; Forro, C.; Yan, Z.; Jiang, X.; et al. Nanocrown electrodes for parallel and robust intracellular recording of cardiomyocytes. Nat. Commun. 2022, 13, 2253. [Google Scholar] [CrossRef]
- Bhansali, D.; Teng, S.L.; Lee, C.S.; Schmidt, B.L.; Bunnett, N.W.; Leong, K.W. Nanotechnology for Pain Management: Current and Future Therapeutic Interventions. Nano Today 2021, 39, 101223. [Google Scholar] [CrossRef]
- Saraiva, C.; Praça, C.; Ferreira, R.; Santos, T.; Ferreira, L.; Bernardino, L. Nanoparticle-mediated brain drug delivery: Overcoming blood–brain barrier to treat neurodegenerative diseases. J. Control. Release 2016, 235, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Pan, Z.; Lai, B.; Zan, C.; Liu, H. Recent Research Advances in Nano-Based Drug Delivery Systems for Local Anesthetics. Drug Des. Devel. Ther. 2023, 17, 2639–2655. [Google Scholar] [CrossRef]
- Viscusi, E.R.; Martin, G.; Hartrick, C.T.; Singla, N.; Manvelian, G.; EREM Study Group. Forty-eight hours of postoperative pain relief after total hip arthroplasty with a novel, extended-release epidural morphine formulation. Anesthesiology 2005, 102, 1014–1022. [Google Scholar] [CrossRef] [PubMed]
- Gambling, D.; Hughes, T.; Martin, G.; Horton, W.; Manvelian, G. A Comparison of Depodur™, a Novel, Single-Dose Extended-Release Epidural Morphine, with Standard Epidural Morphine for Pain Relief After Lower Abdominal Surgery. Anesth. Analg. 2005, 100, 1065–1074. [Google Scholar] [CrossRef] [PubMed]
- Coppens, S.J.R.; Zawodny, Z.; Dewinter, G.; Neyrinck, A.; Balocco, A.L.; Rex, S. In search of the Holy Grail: Poisons and extended release local anesthetics. Best Pract. Res. Clin. Anaesthesiol. 2019, 33, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Kaye, A.D.; Armstead-Williams, C.; Hyatali, F.; Cox, K.S.; Kaye, R.J.; Eng, L.K.; Anwar, M.A.F.; Patel, P.V.; Patil, S.; Cornett, E.M. Exparel for Postoperative Pain Management: A Comprehensive Review. Curr. Pain Headache Rep. 2020, 24, 73. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.D.; Harris, J.A.; Gibson, L.E.; McKinley, S.K.; Phitayakorn, R. The Efficacy of Liposomal Bupivacaine for Opioid and Pain Reduction: A Systematic Review of Randomized Clinical Trials. J. Surg. Res. 2021, 264, 510–533. [Google Scholar] [CrossRef] [PubMed]
- Malige, A.; Pellegrino, A.N.; Kunkle, K.; Konopitski, A.K.; Brogle, P.J.; Nwachuku, C.O. Liposomal Bupivacaine in Adductor Canal Blocks Before Total Knee Arthroplasty Leads to Improved Postoperative Outcomes: A Randomized Controlled Trial. Arthroplasty 2022, 37, 1549–1556. [Google Scholar] [CrossRef] [PubMed]
- Hussain, N.; Brull, R.; Sheehy, B.; Essandoh, M.K.; Stahl, D.L.; Weaver, T.E.; Abdallah, F.W. Perineural Liposomal Bupivacaine Is Not Superior to Nonliposomal Bupivacaine for Peripheral Nerve Block Analgesia. Anesthesiology 2021, 134, 147–164. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.zynrelef-accessdata.fda.gov/ (accessed on 30 March 2024).
- Viscusi, E.; Gimbel, J.S.; Pollack, R.A.; Hu, J.; Lee, G.C. HTX-011 reduced pain intensity and opioid consumption versus bupivacaine HCl in bunionectomy: Phase III results from the randomized EPOCH 1 study. Reg. Anesth. Pain Med. 2019, 44, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Viscusi, E.; Minkowitz, H.; Winkle, P.; Ramamoorthy, S.; Hu, J.; Singla, N. HTX-011 reduced pain intensity and opioid consumption versus bupivacaine HCl in herniorrhaphy: Results from the phase 3 EPOCH 2 study. Hernia 2019, 23, 1071–1080, Erratum in Hernia 2020, 24, 679. [Google Scholar] [CrossRef]
- Blair, H.A. Bupivacaine/Meloxicam Prolonged Release: A Review in Postoperative Pain. Drugs 2021, 81, 1203–1211. [Google Scholar] [CrossRef] [PubMed]
- Goel, S.; Luke Ch Holtzman, M.; Davies, B.; O’Malley, M.; Lavage, D.; Siedlecki, C.; Chelly, J.E. Safety and efficacy of Zynrelef in Combination with a Single Unilateral or Bilateral Nerve Block Performed Prior to Surgery. J. Pain Relief 2023, 12, 1000002. [Google Scholar] [CrossRef]
- Gudin, J.; Dietze, D.; Hurwitz, P. Using A Novel, Non-Drug, Topical Pain-Relief Patch to Improve Pain and Function: Final Analysis of the PREVENT Study. Anesth. Pain Res. 2022, 6, 1–10. [Google Scholar] [CrossRef]
- Chelly, J.E.; Klatt, B.A.; Groff, Y.; O’Malley, M.; Lin, H.H.S.; Sadhasivam, S. Role of the NeuroCupleTM Device for the Postoperative Pain Management of Patients Undergoing Unilateral Primary Total Knee and Hip Arthroplasty: A Pilot Prospective, Randomized, Open-Label Study. J. Clin. Med. 2023, 12, 7394. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsson, P.; Nakonezny, P.A.; Lin, J.; Owhonda, R.; Richard, H.; Wells, J. Functional improvement in hip pathology is related to improvement in anxiety, depression, and pain catastrophizing: An intricate link between physical and mental well-being. BMC Musculoskelet. Disord. 2021, 22, 133. [Google Scholar] [CrossRef] [PubMed]
- Bistolfi, A.; Bettoni, E.; Aprato, A.; Milani, P.; Berchialla, P.; Graziano, E.; Massazza, G.; Lee, G.C. The presence and influence of mild depressive symptoms on post-operative pain perception following primary total knee arthroplasty. Knee Surg. Sports Traum. Arth. 2017, 25, 2792–2800. [Google Scholar] [CrossRef]
- George, S.Z.; Bolognesi, M.P.; Ryan, S.P.; Horn, M.E. Sleep disturbance, dyspnea, and anxiety following total joint arthroplasty: An observational study. J. Orthop. Surg. Res. 2022, 17, 396. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.; Albelo, F.; Zhang, T.; Schneider, M.B.; Foster, M.J.; Aneizi, A.; Hasan, S.A.; Gilotra, M.N.; Henn, R.F., 3rd. PROMIS Depression and Anxiety in shoulder surgery patients. Bone Jt. J. 2022, 104, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Speed, T.J.; Mun, C.J.; Smith, M.T.; Khanuja, H.S.; Sterling, R.S.; Letzen, J.E.; Haythornthwaite, J.A.; Edwards, R.R.; Campbell, C.M. Temporal Association of Pain Catastrophizing and Pain Severity Across the Perioperative Period: A Cross-Lagged Panel Analysis After Total Knee Arthroplasty. Pain Med. 2021, 22, 1727–1734. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, M.; Bishop, S.; Pivik, J. The Pain Catastrophizing Scale: Development and validation. Psychol. Assess 1995, 7, 524–532. [Google Scholar] [CrossRef]
- Chelly, J.E.; Schott Plakseychuk, A. The use of nanotechnology as an alternative to opioids for postoperative pain management following a TKA. J. Orthop. Case Rep. 2023, 13, 93–98. [Google Scholar]
- Trelle, S.; Reichenbach, S.; Wandel, S.; Hildebrand, P.; Tschannen, B.; Villiger, P.M.; Egger, M.; Juni, P. Cardiovascular safety of non-steroidal anti-inflammatory drugs: Network meta-analysis. BMJ 2011, 342, 7086. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.D.; Brater, D.C. Renal toxicity of the nonsteroidal anti-inflammatory drugs. Annu. Rev. Pharmacol. Toxicol. 1993, 33, 435–465. [Google Scholar] [CrossRef] [PubMed]
- Marino, J.; Russo, J.; Herenstein, R.; Kenny, M.; Chelly, J.E. Continuous psoas compartment block vs. continuous femoral block or PCA for total hip arthroplasty. J. Bone Jt. Surg. Am. 2009, 1, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Kozub, E.; Uttermark, A.; Skoog, R.; Dickey, W.J. Preventing Postoperative Opioid-induced respiratory depression through Implementation of an Enhanced Monitoring Program. J. Healthc. Qual. 2021, 44, e7–e14. [Google Scholar] [CrossRef] [PubMed]
- Farmer, A.D.; Holt, C.B.; Downes, T.J.; Ruggeri, E.; Del Vecchio, S.; De Giorgio, R. Pathophysiology, diagnosis, and management of opioid-induced constipation. Lancet Gastroenterol. Hepatol. 2018, 3, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Crockett, S.D.; Greer, K.B.; Heidelbaugh, J.J.; Falck-Ytter, Y.; Hanson, B.J.; Sultan, S. American Gastroenterological Association Institute Guideline on the Medical Management of Opioid-Induced Constipation. Gastroenterology 2019, 156, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Leon, M.M.; Mastaleru, A.; Oancea, A.; Alexa-Stratulat, T.; Peptu, C.A.; Tamba, B.-I.; Harabagiu, V.; Grosu, C.; Alexa, A.I.; Cojocaru, E. Lidocaine–Liposomes—A Promising Frontier for Transdermal Pain Management. J. Clin. Med. 2024, 13, 271. [Google Scholar] [CrossRef]
- Abeyrathne, C.D.; Halgamuge, M.N.; Farrell, P.M.; Skafidas, E. An ab-initio computational method to determine dielectric properties of biological materials. Sci. Rep. 2013, 3, 1796. [Google Scholar] [CrossRef]
- Fukada, E.; Ueda, H.; Rinaldi, R. Piezoelectric and related properties of hydrated collagen. Biophys. J. 1976, 16, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.A.; Uesaka, M. Bioelectrodynamics in living organisms. Int. J. Eng. Sci. 2006, 44, 67–92. [Google Scholar] [CrossRef]
- Tulip, P.R.; Clark, S.J. Lattice dynamical and dielectric properties of L-amino acids. Phys. Rev. B 2006, 74, 064301. [Google Scholar] [CrossRef]
- Netto, T.G.; Zimmerman, R.L. Effect of water on piezoelectricity in bone and collagen. Biophys. J. 1975, 15, 573–576. [Google Scholar] [CrossRef] [PubMed]
Keyword | Study | Authors | # Patients | Treatment vs. Comparison | Results |
---|---|---|---|---|---|
DepoDur™ | Forty-Eight Hours of Postoperative Pain Relief after Total Hip Arthroplasty (THA) | Viscusi et al. (2005) [53] | 200 | 15, 20, or 25 mg DepoDur™ vs. saline | All dosages reduced fentanyl use (510 ± 708 vs. 2091 ± 1803 microg) and delayed time to first dose of fentanyl (21.3 vs. 3.6 h). |
A Comparison of DepoDur™ to Standard Epidural Morphine for Pain Relief After Lower Abdominal Surgery | Gambling et al. (2005) [54] | 541 | 5, 10, 15, 20, or 25 mg of single-dose DepoDur™ vs. 5 mg of standard epidural morphine sulfate | Patients who received 10, 20, or 25 mg single doses used significantly less intravenous fentanyl through 48 h postoperatively. | |
Exparel™ | Exparel™ for Postoperative Pain Management: A Comprehensive Review | Kaye et al. (2020) [56] | Review | Liposomal bupivacaine vs. standard local anesthetic or placebo | Liposomal bupivacaine provided prolonged analgesia and opioid-sparing effect compared to placebo. |
The Efficacy of Liposomal Bupivacaine for Opioid and Pain Reduction: A Systematic Review of Randomized Clinical Trials | Ji et al. (2021) [57] | 6770 | Liposomal bupivacaine vs. other active agents or placebo | Out of 77 identified trials, liposomal bupivacaine did not demonstrate better pain relief in 74.58% of trials compared to other active agents or placebo. It did not show reduction in opioid consumption in 85.71% of trials. | |
Liposomal Bupivacaine in Adductor Canal Block (ACB) before Total Knee Arthroplasty (TKA) | Malige et al. (2022) [58] | 100 | Liposomal bupivacaine 20 cc with 5 cc of 0.5% bupivacaine in ACB and 20 cc of 0.2% ropivacaine in iPACK block vs. 25 cc of 0.2% ropivacaine in ACB and 20 cc of 0.2% ropivacaine in iPACK block | Subjects receiving liposomal bupivacaine had shorter hospital stays compared to the ropivacaine group (36.3 vs. 49.7 h). Liposomal bupivacaine decreased pain and reduced inpatient opioid consumption compared to ropivacaine group (40.9 vs. 47.3 MME/d). | |
Zynrelef™ | HTX-011 Reduced Pain Intensity and Opioid Consumption versus Bupivacaine HCl in Bunionectomy: Phase III Results from the Randomized EPOCH 1 Study Bupivacaine/Meloxicam Prolonged Release: A Review in Postoperative Pain | Viscusi et al. (2019) [61] | 412 subjects undergoing bunionectomy | Bupivacaine/meloxicam 60/1.8 mg vs. bupivacaine HCl 0.5% 50 mg vs. saline placebo 2.1 | Bupivacaine/meloxicam combination reduced pain intensity by 27% vs. saline placebo and 18% compared to bupivacaine. Opioid consumption was reduced by 37% in bupivacaine/meloxicam group vs. saline placebo and 25% vs. bupivacaine group. |
Study Bupivacaine/Meloxicam Prolonged Release: A Review in Postoperative Pain | Blair et al. (2021) [63] | Review of two randomized controlled trials on bunionectomy and herniorrhaphy | Bupivacaine/meloxicam vs. bupivacaine HCl vs. saline placebo | As part of non-opioid multimodal analgesia, bupivacaine/meloxicam improved pain control and reduced need for opioids in postoperative period. | |
Safety and Efficacy of Zynrelef™ in Combination with a Single Unilateral or Bilateral Nerve Block Performed Prior to Surgery | Goel et al. (2023) [64] | 184 | All received bupivacaine/meloxicam | No symptoms suggestive of local anesthetic toxicity were reported. Use of combination was associated with 50% reduction in number of patients filling their opioid prescriptions. |
Keyword | Study | Authors | # Patients | Treatment vs. Comparison | Results |
---|---|---|---|---|---|
Nanocapacitor device/patch | Use of Nanocapacitors for the Control of Chronic Pain Observational study | Gudin et al. (2022) [65] | 148 | Kailo™ Pain Relieving Patch vs. no patch | Over 30 days, Brief Pain Inventory (BPI) severity scores in the treatment group decreased by 61%, and the mean BPI interference score decreased by 61%.In contrast, in the control group, the BPI severity score increased by 23%, and the BPI interference score increased by 58%. |
Role of the NeuroCuple™ Device for the Postoperative Pain Management of Patients Undergoing Unilateral Primary Total Knee and Hip Arthroplasty: A Pilot Prospective, Randomized, Open-Label Study | Chelly et al. (2023) [66] | 69 | NeuroCuple device/patch vs. no device/patch | Patients who received the device/patch experienced lower pain levels at rest during postoperative days 1–3, with a 34% reduction in postoperative pain compared to patients without the device/patch, the standard of care. The use of the device/patch reduced the number of opioid refills by 52%. | |
Use of Nanotechnology as an Alternative to Opioids for Postoperative Pain Management Following TKA Case report | Chelly et al. (2023) [73] | 1 | The patient did not require any opioids postoperatively with the use of the nanocapacitor-based device/patch. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chelly, J.E.; Goel, S.K.; Kearns, J.; Kopac, O.; Sadhasivam, S. Nanotechnology for Pain Management. J. Clin. Med. 2024, 13, 2611. https://doi.org/10.3390/jcm13092611
Chelly JE, Goel SK, Kearns J, Kopac O, Sadhasivam S. Nanotechnology for Pain Management. Journal of Clinical Medicine. 2024; 13(9):2611. https://doi.org/10.3390/jcm13092611
Chicago/Turabian StyleChelly, Jacques E., Shiv K. Goel, Jeremy Kearns, Orkun Kopac, and Senthilkumar Sadhasivam. 2024. "Nanotechnology for Pain Management" Journal of Clinical Medicine 13, no. 9: 2611. https://doi.org/10.3390/jcm13092611
APA StyleChelly, J. E., Goel, S. K., Kearns, J., Kopac, O., & Sadhasivam, S. (2024). Nanotechnology for Pain Management. Journal of Clinical Medicine, 13(9), 2611. https://doi.org/10.3390/jcm13092611