The Clinical Role of CXCR4-Targeted PET on Lymphoproliferative Disorders: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Literature Review Method and Study Selection
2.3. Inclusion and Exclusion Criteria
2.4. Data Extraction
2.5. Quality Assessment (Risk of Bias)
3. Results
3.1. Collected Studies and Quality Assessment
3.2. Description of Studies
3.3. Data Clustering
3.3.1. MM
3.3.2. MZL/MALT
3.3.3. MCL
3.3.4. WM/LPL
3.3.5. CNSL
3.3.6. CLL/ALL
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, C.; Gu, Y.D.; Geskin, L.J. A Review of Primary Cutaneous CD30+ Lymphoproliferative Disorders. Hematol. Oncol. Clin. N. Am. 2019, 33, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Justiz Vaillant, A.A.; Stang, C.M. Lymphoproliferative Disorders; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Litz, C.E.; Brunning, R.D. Chronic lymphoproliferative disorders: Classification and diagnosis. Baillieres Clin. Haematol. 1993, 6, 767–783. [Google Scholar] [CrossRef] [PubMed]
- Moticka, E.J. Chapter 35—Lymphoproliferative Diseases. In A Historical Perspective on Evidence-Based Immunology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 309–316. [Google Scholar]
- Matson, D.R.; Yang, D.T. Autoimmune Lymphoproliferative Syndrome: An Overview. Arch. Pathol. Lab. Med. 2020, 144, 245–251. [Google Scholar] [CrossRef]
- Sawada, A.; Inoue, M. Hematopoietic Stem Cell Transplantation for the Treatment of Epstein-Barr Virus-Associated T- or NK-Cell Lymphoproliferative Diseases and Associated Disorders. Front. Pediatr. 2018, 6, 334. [Google Scholar] [CrossRef] [PubMed]
- Teachey, D.T.; Obzut, D.A.; Axsom, K.; Choi, J.K.; Goldsmith, K.C.; Hall, J.; Hulitt, J.; Manno, C.S.; Maris, J.M.; Rhodin, N.; et al. Rapamycin improves lymphoproliferative disease in murine autoimmune lymphoproliferative syndrome (ALPS). Blood 2006, 6, 1965–1971. [Google Scholar] [CrossRef] [PubMed]
- Clemente, S.; Oliviero, C.; Palma, G.; D’Avino, V.; Liuzzi, R.; Conson, M.; Pacelli, R.; Cella, L. Auto- versus human-driven plan in mediastinal Hodgkin lymphoma radiation treatment. Radiat. Oncol. 2018, 13, 202. [Google Scholar] [CrossRef] [PubMed]
- Freeman, C.L.; Sehn, L. Anti-CD20 Directed Therapy of B Cell Lymphomas: Are New Agents Really Better? Curr. Oncol. Rep. 2018, 20, 103. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.B.; Bleesing, J.J.; Dianzani, U.; Fleisher, T.A.; Jaffe, E.S.; Lenardo, M.J.; Rieux-Laucat, F.; Siegel, R.M.; Su, H.C.; Teachey, D.T.; et al. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): Report from the 2009 NIH International Workshop. Blood 2010, 116, e35–e40. [Google Scholar] [CrossRef] [PubMed]
- Karaosmanoglu, A.D.; Onur, M.R.; Tabari, A.; Karcaaltincaba, M.; Arellano, R.S. Role of multimodality imaging in the diagnosis of lymphoproliferative malignancies and hematologic disorders of the kidneys. Abdom. Radiol. 2017, 42, 242–253. [Google Scholar] [CrossRef]
- Müller, A.; Homey, B.; Ge, N.; Catron, D.; Buchanan, M.E.; McClanahan, T.; Murphy, E.; Yuan, W.; Wagner, S.N.; Barrera, J.L.; et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001, 410, 50–56. [Google Scholar] [CrossRef]
- Sallusto, F.; Baggiolini, M. Chemokines and leukocyte traffic. Nat. Immunol. 2008, 9, 949–952. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.A.; Kipps, T.J. CXCR4: A key receptor in the crosstalk between tumor cells and their microenvironment. Blood 2006, 107, 1761–1767. [Google Scholar] [CrossRef] [PubMed]
- Balkwill, F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin. Cancer Biol. 2003, 14, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Teicher, B.A.; Fricker, S.P. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin. Cancer Res. 2010, 16, 2927–2931. [Google Scholar] [CrossRef] [PubMed]
- Cojoc, M.; Peitzsch, C.; Trautmann, F.; Polishchuk, L.; Telegeev, G.D.; Dubrovska, A. Emerging targets in cancer management: Role of the CXCL12/CXCR4 axis. OncoTargets Ther. 2013, 6, 1347–1361. [Google Scholar]
- Tang, Y.; Gu, Z.; Fu, Y.; Wang, J. CXCR3 from chemokine receptor family correlates with immune infiltration and predicts poor survival in osteosarcoma. Biosci. Rep. 2019, 39, BSR20192134. [Google Scholar] [CrossRef] [PubMed]
- James, M.L.; Gambhir, S. A molecular imaging primer: Modalities, imaging agents, and applications. Physiol. Rev. 2012, 92, 897–965. [Google Scholar] [CrossRef] [PubMed]
- George, G.P.; Stevens, E.; Åberg, O.; Nguyen, Q.D.; Pisaneschi, F.; Spivey, A.C.; Aboagye, E.O. Preclinical evaluation of a CXCR4-specific 68Ga-labelled TN14003 derivative for cancer PET imaging. Bioorg. Med. Chem. 2014, 22, 796–803. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.X.; Sun, Z.; Guo, J.; Wang, Z.; Wu, C.; Niu, G.; Ma, Y.; Kiesewetter, D.O.; Chen, X. Comparison of 18F-labeled CXCR4 antagonist peptides for PET imaging of CXCR4 expression. Mol. Imaging Biol. 2013, 15, 758–767. [Google Scholar] [CrossRef]
- Jacobson, O.; Weiss, I.D.; Szajek, L.P.; Niu, G.; Ma, Y.; Kiesewetter, D.O.; Farber, J.M.; Chen, X. PET imaging of CXCR4 using copper-64 labeled peptide antagonist. Theranostics 2011, 1, 251–262. [Google Scholar] [CrossRef]
- Hanaoka, H.; Mukai, T.; Tamamura, H.; Mori, T.; Ishino, S.; Ogawa, K.; Iida, Y.; Doi, R.; Fujii, N.; Saji, H. Development of a 111In-labeled peptide derivative targeting a chemokine receptor, CXCR4, for imaging tumors. Nucl. Med. Biol. 2006, 33, 489–494. [Google Scholar] [CrossRef]
- Gourni, E.; Demmer, O.; Schottelius, M.; D’Alessandria, C.; Schulz, S.; Dijkgraaf, I.; Schumacher, U.; Schwaiger, M.; Kessler, H.; Wester, H.J. PET of CXCR4 expression by a 68Ga-labeled highly specific targeted contrast agent. J. Nucl. Med. 2011, 52, 1803–1810. [Google Scholar] [CrossRef] [PubMed]
- Demmer, O.; Gourni, E.; Schumacher, U.; Kessler, H.; Wester, H.J. PET imaging of CXCR4 receptors in cancer by a new optimised ligand. Chem. Med. Chem. 2011, 6, 1789–1791. [Google Scholar] [CrossRef]
- Shekhawat, A.S.; Singh, B.; Malhotra, P.; Watts, A.; Basher, R.; Kaur, H.; Hooda, M.; Radotra, B.D. Imaging CXCR4 receptors expression for staging multiple myeloma by using 68Ga-Pentixafor PET/CT: Comparison with 18F-FDG PET/CT. Br. J. Radiol. 2022, 95, 20211272. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, A.; Zhang, J.; Chen, A.; Zhang, Y.; Huang, C.; Chen, S.; Yao, S.; Miao, W. CXCR4-Directed PET/CT with [68Ga]Pentixafor in Central Nervous System Lymphoma: A Comparison with [18F]FDG PET/CT. Mol. Imaging Biol. 2022, 24, 416–424. [Google Scholar] [CrossRef]
- Duell, J.; Buck, A.K.; Hartrampf, P.E.; Schlötelburg, W.; Schneid, S.; Weich, A.; Dreher, N.; Lapa, C.; Kircher, M.; Higuchi, T.; et al. Chemokine Receptor PET/CT Provides Relevant Staging and Management Changes in Marginal Zone Lymphoma. J. Nucl. Med. 2023, 64, 1889–1894. [Google Scholar] [CrossRef]
- Mayerhoefer, M.E.; Raderer, M.; Lamm, W.; Weber, M.; Kiesewetter, B.; Rohrbeck, J.; Simonitsch-Klupp, I.; Hacker, M.; Leisser, A.; Nics, L.; et al. CXCR4 PET/MRI for follow-up of gastric mucosa-associated lymphoid tissue lymphoma after first-line Helicobacter pylori eradication. Blood 2022, 139, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Kuyumcu, S.; Isik, E.G.; Tiryaki, T.O.; Has-Simsek, D.; Sanli, Y.; Buyukkaya, F.; Özkan, Z.G.; Kalayoglu-Besisik, S.; Unal, S.N. Prognostic significance of 68Ga-Pentixafor PET/CT in multiple myeloma recurrence: A comparison to 18F-FDG PET/CT and laboratory results. Ann. Nucl. Med. 2021, 35, 1147–1156. [Google Scholar] [CrossRef]
- Luo, Y.; Cao, X.; Pan, Q.; Li, J.; Feng, J.; Li, F. 68Ga-Pentixafor PET/CT for Imaging of Chemokine Receptor 4 Expression in Waldenström Macroglobulinemia/Lymphoplasmacytic Lymphoma: Comparison to 18F-FDG PET/CT. J. Nucl. Med. 2019, 60, 1724–1729. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Mayerhoefer, M.E.; Raderer, M.; Weber, M.; Lamm, W.; Kiesewetter, B.; Hacker, M.; Nics, L.; Schmitl, S.; Leithner, D.; Wester, H.J.; et al. 68Ga-Pentixafor PET/MRI for Treatment Response Assessment in Mantle Cell Lymphoma: Comparison Between Changes in Lesion CXCR4 Expression on PET and Lesion Size and Diffusivity on MRI. Clin. Nucl. Med. 2023, 48, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Kosmala, A.; Seifert, S.; Schneid, S.; Dreher, N.; Higuchi, T.; Weich, A.; Serfling, S.E.; Hartrampf, P.E.; Einsele, H.; Buck, A.K.; et al. Comparison of FDG-PET/CT and bone scintigraphy for detection of bone metastases in breast cancer. Mol. Imaging Biol. 2023, 25, 758–764. [Google Scholar] [CrossRef] [PubMed]
- Kraus, S.; Klassen, P.; Kircher, M.; Dierks, A.; Habringer, S.; Gäble, A.; Kortüm, K.M.; Weinhold, N.; Ademaj-Kospiri, V.; Werner, R.A.; et al. Reduced splenic uptake on 68Ga-Pentixafor-PET/CT imaging in multiple myeloma—A potential imaging biomarker for disease prognosis. Theranostics 2022, 12, 5986–5994. [Google Scholar] [CrossRef] [PubMed]
- Buck, A.K.; Haug, A.; Dreher, N.; Lambertini, A.; Higuchi, T.; Lapa, C.; Weich, A.; Pomper, M.G.; Wester, H.-J.; Zehndner, A. A Imaging of CXC motif chemokine receptor 4 expression in 690 patients with solid or hematologic neoplasms using 68Ga-pentixafor PET. J. Nucl. Med. 2022, 63, 1687–1692. [Google Scholar] [PubMed]
- Kuyumcu, S.; Kıran, M.Y.; Arıkan, E.A.; Yeğen, G.; Şanlı, Y. [68Ga]-Pentixafor PET/CT imaging of lymphoproliferative malignancies. Clin. Transl. Imaging 2021, 9, 641–648. [Google Scholar] [CrossRef]
- Mayerhoefer, M.E.; Raderer, M.; Lamm, W.; Pichler, V.; Pfaff, S.; Weber, M.; Kiesewetter, B.; Hacker, M.; Kazianka, L.; Staber, P.B.; et al. CXCR4 PET imaging of mantle cell lymphoma using [68Ga]Pentixafor: Comparison with [18F]FDG-PET. Theranostics 2021, 11, 567–578. [Google Scholar] [CrossRef] [PubMed]
- Sc Starzer, A.M.; Berghoff, A.S.; Traub-Weidinger, T.; Haug, A.R.; Widhalm, G.; Hacker, M.; Rausch, I.; Preusser, M.; Mayerhoefer, M.E. Assessment of central nervous system lymphoma based on CXCR4 expression in vivo using [68Ga] Pentixafor-PET/MRI. Clin. Nucl. Med. 2021, 46, 16. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Cao, X.; Luo, Y.; Li, J.; Li, F. Semiquantitative measurements of chemokine receptor 4-targeted 68Ga-pentixafor PET/CT in response assessment of Waldenström macroglobulinemia/lymphoplasmacytic lymphoma. EJNMMI Res. 2021, 11, 110. [Google Scholar] [CrossRef] [PubMed]
- Pan, Q.; Cao, X.; Luo, Y.; Li, J.; Li, F. Chemokine Receptor 4-Targeted 68Ga-Pentixafor PET/CT in Response Assessment of Waldenström Macroglobulinemia/Lymphoplasmacytic Lymphoma: Comparison to 18F-FDG PET/CT. Clin. Nucl. Med. 2021, 46, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Duell, J.; Krummenast, F.; Schirbel, A.; Klassen, P.; Samnick, S.; Rauert-Wunderlich, H.; Rasche, L.; Buck, A.K.; Wester, H.J.; Rosenwald, A.; et al. Improved Primary Staging of Marginal-Zone Lymphoma by Addition of CXCR4-Directed PET/CT. J. Nucl. Med. 2021, 62, 1415–1421. [Google Scholar] [CrossRef]
- Zhou, X.; Dierks, A.; Kertels, O.; Kircher, M.; Schirbel, A.; Samnick, S.; Buck, A.K.; Knorz, S.; Böckle, D.; Scheller, L.; et al. 18F-FDG, 11C-Methionine, and 68Ga-Pentixafor PET/CT in Patients with Smoldering Multiple Myeloma: Imaging Pattern and Clinical Features. Cancers 2020, 12, 2333. [Google Scholar] [CrossRef]
- Herhaus, P.; Lipkova, J.; Lammer, F.; Yakushev, I.; Vag, T.; Slotta-Huspenina, J.; Habringer, S.; Lapa, C.; Pukrop, T.; Hellwig, D.; et al. CXCR4-Targeted PET Imaging of Central Nervous System B-Cell Lymphoma. J. Nucl. Med. 2020, 61, 1765–1771. [Google Scholar] [CrossRef]
- Mayerhoefer Meh, A.R.; Jager, U.; Pichler, V.; Pfaff, S.; Wester, H.J.; Hacker, M.; Kaizanka, L.; Staber, P.B. Endocrine therapy plus zoledronic acid in premenopausal breast cancer. Cancer Immunol. Res. 2020, 8, 984–989. [Google Scholar]
- Ozkan, E.; Soydal, C.; Sahin, U.; Beksac, M.; Ozturk, C.; Bozdag, S.C.; Topcuoglu, P.; Kropf, S.; Wester, H.-J.; Kucuk, O.N. Evaluation of chemokine receptor-4 expression by 68Ga–Pentixafor pet/ct in patients with multiple myeloma. Int. J. Hematol. Oncol. 2020, 33, 210–218. [Google Scholar]
- Haug, A.R.; Leisser, A.; Wadsak, W.; Mitterhauser, M.; Pfaff, S.; Kropf, S.; Wester, H.J.; Hacker, M.; Hartenbach, M.; Kiesewetter-Wiederkehr, B.; et al. Prospective non-invasive evaluation of CXCR4 expression for the diagnosis of MALT lymphoma using [68Ga]Ga-Pentixafor-PET/MRI. Theranostics 2019, 9, 3653–3658. [Google Scholar] [CrossRef]
- Pan, Q.; Cao, X.; Luo, Y.; Li, J.; Feng, J.; Li, F. Chemokine receptor-4 targeted PET/CT with 68Ga-Pentixafor in assessment of newly diagnosed multiple myeloma: Comparison to 18F-FDG PET/CT. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 537–546. [Google Scholar] [CrossRef]
- Mayerhoefer, M.E.; Jaeger, U.; Staber, P.; Raderer, M.; Wadsak, W.; Pfaff, S.; Kornauth, C.; Senn, D.; Weber, M.; Wester, H.J.; et al. A Fully Automatic Approach for Multimodal PET and MR Image Segmentation in Gamma Knife Treatment Planning. Investig. Radiol. 2018, 53, 403–408. [Google Scholar] [CrossRef]
- Lapa, C.; Schreder, M.; Schirbel, A.; Samnick, S.; Kortüm, K.M.; Herrmann, K.; Kropf, S.; Einsele, H.; Buck, A.K.; Wester, H.J.; et al. [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma—Comparison to [18F]FDG and laboratory values. Theranostics 2017, 7, 205–212. [Google Scholar] [CrossRef]
- Philipp-Abbrederis, K.; Herrmann, K.; Knop, S.; Schottelius, M.; Eiber, M.; Lückerath, K.; Pietschmann, E.; Habringer, S.; Gerngroß, C.; Franke, K.; et al. In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma. EMBO Mol. Med. 2015, 7, 477–487. [Google Scholar] [CrossRef]
- Fulton, A.M. The chemokine receptors CXCR4 and CXCR3 in cancer. Curr. Oncol. Rep. 2009, 11, 125–131. [Google Scholar] [CrossRef]
- Kerbauy, M.N.; Moraes, F.Y.; Lok, B.H.; Ma, J.; Kerbauy, L.N.; Spratt, D.E.; Santos, F.P.; Perini, G.F.; Berlin, A.; Chung, C.; et al. Challenges and opportunities in primary CNS lymphoma: A systematic review. Radiother. Oncol. 2017, 122, 352–361. [Google Scholar] [CrossRef]
- What is an MRI scan and what can it do? Drug Ther. Bull. 2011, 49, 141–144. [CrossRef]
- Hustinx, R.; Smith, R.J.; Benard, F.; Bhatnagar, A.; Alavi, A. The chemokine receptors CXCR4 and CXCR3 in cancer. Eur. J. Nucl. Med. 1999, 26, 1501–1509. [Google Scholar] [CrossRef]
- Baltzer, P.A.T.; Kapetas, P.; Sodano, C.; Dietzel, M.; Pinker, K.; Helbich, T.H.; Clauser, P. Contrast agent-free breast MRI: Advantages and potential disadvantages. Der Radiol. 2019, 59, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Albano, D.; Dondi, F.; Bertagna, F.; Treglia, G. The role of [68Ga] Ga-Pentixafor PET/CT or PET/MRI in lymphoma: A systematic review. Cancers 2022, 14, 3814. [Google Scholar] [CrossRef]
First Author | Publication Year | Country | Sample Size | Sex | Age Mean (or Min–Max) in Years | Study Type | Lymphoproliferative Disorder Type |
---|---|---|---|---|---|---|---|
Mayerhoefer et al. [33] | 2023 | Austria | 16 |
7F 9M | 69.9 ± 7.9 | Prospective | MCL |
Kosmala et al. [34] | 2023 | Germany and USA | 73 | NM | 66.2 ± 12.3 | Retrospective | MCL |
Shkhawat et al. [26] | 2022 | India | 34 | 13F 21M | 57.5 (35–78) | Retrospective | MM |
Kraus et al. [35] | 2022 | Germany | 87 | 34F | 59 ± 8 | NM | MM |
Buck et al. [36] | 2022 | Germany and Austria | 389 | NM | NM | Retrospective | MCL (20); MZL (187); MM (113); B-cell lymphoma (10); T-cell lymphoma (3); CLL (50); ALL (6) |
Chen et al. [27] | 2022 | China | 26 | 8F 18M | NM | Retrospective | CNSL |
Mayerhoefer et al. [29] | 2022 | Austria | 26 | 12F 14M | 64.1 ± 11.9 | Prospective | MALT |
Kuyumcu et al. [37] | 2021 | Turkey | 11 | 4F 7M | 56.8 | Retrospective | CLL (2) B-cell lymphoma (5) T-cell lymphoma (4) |
Mayerhoefer et al. [38] | 2021 | Austria | 22 | 11F 11M | 70.0 ± 8.5 | Prospective | MCL |
Starzer et al. [39] | 2021 | Austria | 7 | 4F 3M | 54.9 ± 15.0 | Prospective | CNSL |
Pan et al. [40] | 2021 | China | 15 | 3F 12M | 60.9 ± 8.6 | Prospective | WM |
Pan et al. [41] | 2021 | China | 15 | 3F 12M | 60.9 ± 8.6 | Prospective | WM |
Kuyumcu et al. [30] | 2021 | Turkey | 17 | 11F 6M | 60.2 ± 11.5 | Retrospective | MM |
Duell et al. [42] | 2021 | Germany | 22 | 15F 7M | 65 | Retrospective | MZL (MALT) |
Zhou et al. [43] | 2020 | Germany | 10 | 2F 8M | 62 | Retrospective | MM |
Herhaus et al. [44] | 2020 | Germany | 10 | 2F 8M | 62 | Retrospective | MM |
Mayerhoefer et al. [45] | 2020 | Germany | 11 | 3F 8M | 64.1 | Retrospective | CNSL |
Luo et al. [31] | 2020 | Austria | 9 | NM | NM | Prospective | CLL |
Ozkan et al. [46] | 2019 | China | 17 | 6F 11M | 62.6 ± 10.5 | Prospective | WM/LPL |
Haug et al. [47] | 2019 | Turkey | 24 | 17F 7M | 58.9 ± 12.7 | NM | MM |
Pan et al. [48] | 2019 | Austria | 36 | 19F 17M | 62 | Prospective | MALT |
Mayerhoefer et al. [49] | 2020 | China | 30 | 11F 19M | 59.1 ± 9.8 | Prospective | MM |
Lapa et al. [50] | 2018 | Austria | 13 | 6F 7M | 65.6 ± 11.2 | Prospective | CLL |
First Author | Aim | Device | Injected Activity (MBq) | Uptake Time (min) | Semiquantitative Parameters | Target Involvement | Standard Reference | Comparison with [18F]FDG PET |
---|---|---|---|---|---|---|---|---|
Mayerhoefer et al. [33] | Treatment response assessment | PET/MRI | 150 MBq | 60 | SUVmax SUVmean | Liver, and blood pool uptake | Biopsy | No |
Kosmala et al. [34] | Diagnosing | PET/CT | 128 ± 24.5 MBq | 60 | SUVmean SUVmax SUVpeak | Nodal, extra-nodal, heart, liver, spleen, bone marrow, kidneys | Biopsy and expert reader | No |
Shkhawat et al. [26] | Staging | PET/CT | 148–185 MBq | 60 | SUVmax TBRmax | Bone marrow | Laboratory test | Yes |
Kraus et al. [35] | Treatment response assessment | PET/CT | 43–207 MBq | NM | SUVpeak TBR | Splenic | Laboratory tests and biopsy | No |
Buck et al. [36] | Diagnosing | PET/CT | 134 MBq | 60 | SUVmax SUVmean SUVpeak TBR | NC | Expert reader | No |
Chen et al. [27] | Diagnosing | PET/CT | 77.7–166.5 MBq | 60 | SUVmax | CNS lesion | Biopsy, T/N, histology, and the MRI | Yes |
Mayerhoefer et al. [29] | Treatment response assessment | PET/MRI | 150 MBq | 60 | SUVmax SUVmean TBR | Gastric | Biopsy, immunohistochemistry | No |
Kuyumcu et al. [37] | Diagnosing | PET/CT | 185 MBq | 60 | SUVmax | Bone marrow, lymphnodal, extra-lymphnodal, | Biopsy and histology | Yes |
Mayerhoefer et al. [38] | Diagnosing | PET/MRI | 150 MBq | 60 | SUVmax SUVmean TBR | Nodal, and extra-nodal in Waldeyer ring; lungs; liver; pancreas; stomach; small intestine; large intestine; adrenal glands; kidneys; soft tissues (skin/fat/muscle) and other | MRI and biopsy | Yes |
Starzer et al. [39] | Treatment response assessment | PET/MRI | 150 MBq | 60 | SUVmax SUVmean VOLMRI | CNS lesion | Histology | No |
Pan et al. [40] | Treatment response assessment | PET/CT | 85.1 ± 27.4 MBq | 45.9 ± 19.7 | MTV TLUCXCR4 SUVpeak | Bone marrow | Laboratory tests and biopsy | Yes |
Pan et al. [41] | Treatment response assessment | PET/CT | 2.8/kg | 56 | SUVmax TBRbloodTBRliver | Blood, liver, Nodal, extra-nodal | Laboratory tests and biopsy | Yes |
Kuyumcu et al. [30] | Treatment response assessment | PET/CT | 185 ± 10 MBq | 60 | SUVmax, SUVmean TMB | Bone marrow | Clinical, laboratory test findings, imaging, histology | Yes |
Duell et al. [42] | Staging and Treatment response assessment | PET/CT | 117 MBq | 60 | SUVmax | gastrointestinal tract, bone marrow, lymph nodes, tonsils, glands, soft tissues | Biopsy and histology | No |
Zhou et al. [43] | Diagnosing | PET/CT | 2–3 MBq/kg | 60 | SUVmax SUVmean TBRmax TBRmean | Bone marrow | Laboratory tests and biopsy | Yes |
Herhaus et al. [44] | Diagnosing | PET/CT | 2–3 MBq/kg | 60 | SUVmax SUVmean TBRmax TBRmean | Bone marrow | Laboratory tests and biopsy | Yes |
Mayerhoefer et al. [45] | Diagnosing | PET/CT and PET/MRI | 1–2.9 MBq/kg | NM | SUVmax TBR | CNS lesion | Biopsy, histology, and expert reader | No |
Luo et al. [31] | Treatment response assessment | PET/MRI | 150 MBq | 60 | SUVmax, SUVmean PTV | Lymph nodes, bone marrow, spleen | Biopsy | No |
Ozkan et al. [46] | Diagnosing | PET/CT | 84.6 ± 26.2 MBq | 30–90 | SUVmax | Bone marrow; lymph node; CSF | Bone marrow aspiration and biopsy | Yes |
Haug et al. [47] | Diagnosing | PET/CT | 130–185 MBq | 30 | SUV | Bone marrow and kidney | Laboratory tests and expert reader | Yes |
Pan et al. [48] | Diagnosing | PET/MRI | 172 MBq | 60 | SUVmax SUVpeak SUVmean TBRmean | Orbit; stomach; lungs; soft tissues; adrenal gland; tonsils; parotid gland; and urinary bladder | Endoscopy, biopsy, and histology | Yes |
Mayerhoefer et al. [49] | Diagnosing | PET/CT | 40.7–170.2 MBq | 30–90 | SUVmean, SUVmax TBmV | Bone marrow | Expert reader | Yes |
Lapa et al. [50] | Diagnosing | PET/MRI | 150 MBq | 60 | SUVmax, SUVmean | Bone marrow and spleen | Laboratory test | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamanian, M.; Albano, D.; Treglia, G.; Rizzo, A.; Abedi, I. The Clinical Role of CXCR4-Targeted PET on Lymphoproliferative Disorders: A Systematic Review. J. Clin. Med. 2024, 13, 2945. https://doi.org/10.3390/jcm13102945
Zamanian M, Albano D, Treglia G, Rizzo A, Abedi I. The Clinical Role of CXCR4-Targeted PET on Lymphoproliferative Disorders: A Systematic Review. Journal of Clinical Medicine. 2024; 13(10):2945. https://doi.org/10.3390/jcm13102945
Chicago/Turabian StyleZamanian, Maryam, Domenico Albano, Giorgio Treglia, Alessio Rizzo, and Iraj Abedi. 2024. "The Clinical Role of CXCR4-Targeted PET on Lymphoproliferative Disorders: A Systematic Review" Journal of Clinical Medicine 13, no. 10: 2945. https://doi.org/10.3390/jcm13102945
APA StyleZamanian, M., Albano, D., Treglia, G., Rizzo, A., & Abedi, I. (2024). The Clinical Role of CXCR4-Targeted PET on Lymphoproliferative Disorders: A Systematic Review. Journal of Clinical Medicine, 13(10), 2945. https://doi.org/10.3390/jcm13102945