Association between Dexmedetomidine Use and Mortality in Patients with COVID-19 Receiving Invasive Mechanical Ventilation: A U.S. National COVID Cohort Collaborative (N3C) Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Outcomes
2.4. Covariates
2.5. Subgroup Analysis
2.6. Statistical Analysis
3. Results
3.1. Covariate Balance before and after Propensity Score Matching
3.2. Outcomes
3.3. Subgroup Analysis
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. COVID-19 Dashboard; World Health Organization: Geneva, Switzerland, 2020; Available online: https://data.who.int/dashboards/covid19/deaths?n=c (accessed on 20 March 2024).
- Lim, Z.J.; Subramaniam, A.; Ponnapa Reddy, M.; Blecher, G.; Kadam, U.; Afroz, A.; Billah, B.; Ashwin, S.; Kubicki, M.; Bilotta, F.; et al. Case Fatality Rates for Patients with COVID-19 Requiring Invasive Mechanical Ventilation. A Meta-Analysis. Am. J. Respir. Crit. Care Med. 2021, 203, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Karagiannidis, C.; Hentschker, C.; Westhoff, M.; Weber-Carstens, S.; Janssens, U.; Kluge, S.; Pfeifer, M.; Spies, C.; Welte, T.; Rossaint, R.; et al. Observational study of changes in utilization and outcomes in mechanical ventilation in COVID-19. PLoS ONE 2022, 17, e0262315. [Google Scholar] [CrossRef] [PubMed]
- Chandel, A.; Leazer, S.; Alcover, K.C.; Farley, J.; Berk, J.; Jayne, C.; McNutt, R.; Olsen, M.; Allard, R.; Yang, J.; et al. Intensive Care and Organ Support Related Mortality in Patients with COVID-19: A Systematic Review and Meta-Analysis. Crit. Care Explor. 2023, 5, e0876. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Hayek, S.S.; Wang, W.; Chan, L.; Mathews, K.S.; Melamed, M.L.; Brenner, S.K.; Leonberg-Yoo, A.; Schenck, E.J.; Radbel, J.; et al. Factors Associated with Death in Critically Ill Patients with Coronavirus Disease 2019 in the US. JAMA Intern. Med. 2020, 180, 1436–1447. [Google Scholar] [CrossRef] [PubMed]
- Maze, M. From Bench to Bedside and Back Again: A Personal Journey with Dexmedetomidine. Anesthesiology 2016, 125, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, Q.; Wang, P.; Jin, W.; Zhong, C.; Ge, Z.; Xu, K. The Effect of Dexmedetomidine as a Sedative Agent for Mechanically Ventilated Patients with Sepsis: A Systematic Review and Meta-Analysis. Front. Med. 2021, 8, 776882. [Google Scholar] [CrossRef] [PubMed]
- Flanders, C.A.; Rocke, A.S.; Edwardson, S.A.; Baillie, J.K.; Walsh, T.S. The effect of dexmedetomidine and clonidine on the inflammatory response in critical illness: A systematic review of animal and human studies. Crit. Care 2019, 23, 402. [Google Scholar] [CrossRef] [PubMed]
- Lankadeva, Y.R.; Shehabi, Y.; Deane, A.M.; Plummer, M.P.; Bellomo, R.; May, C.N. Emerging benefits and drawbacks of alpha(2)-adrenoceptor agonists in the management of sepsis and critical illness. Br. J. Pharmacol. 2021, 178, 1407–1425. [Google Scholar] [CrossRef] [PubMed]
- Rochwerg, B.; Oczkowski, S.J.; Siemieniuk, R.A.C.; Agoritsas, T.; Belley-Cote, E.; D’Aragon, F.; Duan, E.; English, S.; Gossack-Keenan, K.; Alghuroba, M.; et al. Corticosteroids in Sepsis: An Updated Systematic Review and Meta-Analysis. Crit. Care Med. 2018, 46, 1411–1420. [Google Scholar] [CrossRef]
- Wu, M.; Chen, Y.; Xia, H.; Wang, C.; Tan, C.Y.; Cai, X.; Liu, Y.; Ji, F.; Xiong, P.; Liu, R.; et al. Transcriptional and proteomic insights into the host response in fatal COVID-19 cases. Proc. Natl. Acad. Sci. USA 2020, 117, 28336–28343. [Google Scholar] [CrossRef]
- Group, R.C.; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef] [PubMed]
- WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group; Sterne, J.A.C.; Murthy, S.; Diaz, J.V.; Slutsky, A.S.; Villar, J.; Angus, D.C.; Annane, D.; Azevedo, L.C.P.; Berwanger, O.; et al. Association between Administration of Systemic Corticosteroids and Mortality among Critically Ill Patients with COVID-19: A Meta-Analysis. JAMA 2020, 324, 1330–1341. [Google Scholar] [CrossRef]
- Zhao, H.; Davies, R.; Ma, D. Potential therapeutic value of dexmedetomidine in COVID-19 patients admitted to ICU. Br. J. Anaesth. 2021, 126, e33–e35. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Lamperti, M.; Doyle, D.J. Dexmedetomidine: Another arrow in the quiver to fight COVID-19 in intensive care units. Br. J. Anaesth. 2021, 126, e35–e38. [Google Scholar] [CrossRef]
- Safari, S.; Jahangirifard, A.; Zali, A.; Salimi, A.; Bastanhagh, E.; Aminnejad, R.; Jalili Khoshnood, R.; Ommi, D. Potential Sedative and Therapeutic Value of Dexmedetomidine in Critical COVID-19 Patients. Pharm. Sci. 2021, 27, S86–S93. [Google Scholar] [CrossRef]
- Herrera-Garcia, A.M.; Dominguez-Luis, M.J.; Arce-Franco, M.; Armas-Gonzalez, E.; Alvarez de La Rosa, D.; Machado, J.D.; Pec, M.K.; Feria, M.; Barreiro, O.; Sanchez-Madrid, F.; et al. Prevention of neutrophil extravasation by alpha2-adrenoceptor-mediated endothelial stabilization. J. Immunol. 2014, 193, 3023–3035. [Google Scholar] [CrossRef]
- Miranda, M.L.; Balarini, M.M.; Bouskela, E. Dexmedetomidine attenuates the microcirculatory derangements evoked by experimental sepsis. Anesthesiology 2015, 122, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Yeh, Y.C.; Wu, C.Y.; Cheng, Y.J.; Liu, C.M.; Hsiao, J.K.; Chan, W.S.; Wu, Z.G.; Yu, L.C.; Sun, W.Z. Effects of Dexmedetomidine on Intestinal Microcirculation and Intestinal Epithelial Barrier in Endotoxemic Rats. Anesthesiology 2016, 125, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Yuki, K. The immunomodulatory mechanism of dexmedetomidine. Int. Immunopharmacol. 2021, 97, 107709. [Google Scholar] [CrossRef]
- Belleville, J.P.; Ward, D.S.; Bloor, B.C.; Maze, M. Effects of intravenous dexmedetomidine in humans. I. Sedation, ventilation, and metabolic rate. Anesthesiology 1992, 77, 1125–1133. [Google Scholar] [CrossRef]
- Venn, R.M.; Hell, J.; Grounds, R.M. Respiratory effects of dexmedetomidine in the surgical patient requiring intensive care. Crit. Care 2000, 4, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.T.; Shubash, C.J.; Chong, J.S. The effect of dexmedetomidine on delirium and agitation in patients in intensive care: Systematic review and meta-analysis with trial sequential analysis. Anaesthesia 2019, 74, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Jakob, S.M.; Ruokonen, E.; Grounds, R.M.; Sarapohja, T.; Garratt, C.; Pocock, S.J.; Bratty, J.R.; Takala, J.; Dexmedetomidine for Long-Term Sedation Investigators. Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: Two randomized controlled trials. JAMA 2012, 307, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- Stockton, J.; Kyle-Sidell, C. Dexmedetomidine and worsening hypoxemia in the setting of COVID-19: A case report. Am. J. Emerg. Med. 2020, 38, 2247.e1–2247.e2. [Google Scholar] [CrossRef] [PubMed]
- Uusalo, P.; Valtonen, M.; Jarvisalo, M.J. Hemodynamic and respiratory effects of dexmedetomidine sedation in critically ill COVID-19 patients: A retrospective cohort study. Acta Anaesthesiol. Scand. 2021, 65, 1447–1456. [Google Scholar] [CrossRef] [PubMed]
- Ghajarzadeh, K.; Fard, M.M.; Otaghvar, H.A.; Faiz, S.H.R.; Dabbagh, A.; Mohseni, M.; Kashani, S.S.; Fard, A.M.M.; Alebouyeh, M.R. Effects of Dexmedetomidine and Propofol on Hemodynamic Stability and Ventilation Time in Patients Suffering COVID-19 Admitting to Intensive Care Units. Ann. Rom. Soc. Cell Biol. 2021, 25, 2457–2465. [Google Scholar]
- Hamilton, J.L.; Vashi, M.; Kishen, E.B.; Fogg, L.F.; Wimmer, M.A.; Balk, R.A. The Association of an Alpha-2 Adrenergic Receptor Agonist and Mortality in Patients with COVID-19. Front. Med. 2021, 8, 797647. [Google Scholar] [CrossRef] [PubMed]
- Andreychenko, S.A.; Bychinin, M.V.; Mandel, I.A.; Klypa, T.V. The effectiveness of dexmedetomidine in patients with severe COVID-19. J. Clin. Pract. 2021, 12, 5–11. [Google Scholar] [CrossRef]
- About the National COVID Cohort Collaborative. Available online: https://ncats.nih.gov/n3c/about (accessed on 9 December 2022).
- Haendel, M.A.; Chute, C.G.; Bennett, T.D.; Eichmann, D.A.; Guinney, J.; Kibbe, W.A.; Payne, P.R.O.; Pfaff, E.R.; Robinson, P.N.; Saltz, J.H.; et al. The National COVID Cohort Collaborative (N3C): Rationale, design, infrastructure, and deployment. J. Am. Med. Inform. Assoc. 2021, 28, 427–443. [Google Scholar] [CrossRef]
- Latest Phenotype · National-COVID-Cohort-Collaborative/Phenotype_Data_Acquisition Wiki (github.com). Available online: https://github.com/National-COVID-Cohort-Collaborative/Phenotype_Data_Acquisition/wiki/Latest-Phenotype (accessed on 1 April 2024).
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. Lancet 2007, 370, 1453–1457. [Google Scholar] [CrossRef]
- N3C Privacy-Preserving Record Linkage. Available online: https://covid.cd2h.org/PPRL (accessed on 9 December 2022).
- Chow, J.H.; Rahnavard, A.; Gomberg-Maitland, M.; Chatterjee, R.; Patodi, P.; Yamane, D.P.; Levine, A.R.; Davison, D.; Hawkins, K.; Jackson, A.M.; et al. Association of Early Aspirin Use with In-Hospital Mortality in Patients with Moderate COVID-19. JAMA Netw. Open 2022, 5, e223890. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Li, B.; Couris, C.M.; Fushimi, K.; Graham, P.; Hider, P.; Januel, J.M.; Sundararajan, V. Updating and validating the Charlson comorbidity index and score for risk adjustment in hospital discharge abstracts using data from 6 countries. Am. J. Epidemiol. 2011, 173, 676–682. [Google Scholar] [CrossRef] [PubMed]
- Lambden, S.; Laterre, P.F.; Levy, M.M.; Francois, B. The SOFA score-development, utility and challenges of accurate assessment in clinical trials. Crit. Care 2019, 23, 374. [Google Scholar] [CrossRef] [PubMed]
- Arabi, Y.M.; Mandourah, Y.; Al-Hameed, F.; Sindi, A.A.; Almekhlafi, G.A.; Hussein, M.A.; Jose, J.; Pinto, R.; Al-Omari, A.; Kharaba, A.; et al. Corticosteroid Therapy for Critically Ill Patients with Middle East Respiratory Syndrome. Am. J. Respir. Crit. Care Med. 2018, 197, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Team, R.C. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 20 December 2022).
- Therneau, T.M. A Package for Survival Analysis in R. Available online: https://CRAN.R-project.org/package=survival (accessed on 20 December 2022).
- Stuart, E.A. Matching methods for causal inference: A review and a look forward. Stat. Sci. 2010, 25, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.C.; Yang, D.; Nicolaescu, V.; Best, T.J.; Gula, H.; Saxena, D.; Gabbard, J.D.; Chen, S.N.; Ohtsuki, T.; Friesen, J.B.; et al. Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses. Sci. Adv. 2022, 8, eabi6110. [Google Scholar] [CrossRef] [PubMed]
- Tay, M.Z.; Poh, C.M.; Renia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Abraham, E.; Kaneko, D.J.; Shenkar, R. Effects of endogenous and exogenous catecholamines on LPS-induced neutrophil trafficking and activation. Am. J. Physiol. 1999, 276, L1–L8. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, A.I.; Singanayagam, A. Immunosuppression for hyperinflammation in COVID-19: A double-edged sword? Lancet 2020, 395, 1111. [Google Scholar] [CrossRef]
- Tang, X.; Feng, Y.M.; Ni, J.X.; Zhang, J.Y.; Liu, L.M.; Hu, K.; Wu, X.Z.; Zhang, J.X.; Chen, J.W.; Zhang, J.C.; et al. Early Use of Corticosteroid May Prolong SARS-CoV-2 Shedding in Non-Intensive Care Unit Patients with COVID-19 Pneumonia: A Multicenter, Single-Blind, Randomized Control Trial. Respiration 2021, 100, 116–126. [Google Scholar] [CrossRef]
- Bahsoun, A.; Fakih, Y.; Zareef, R.; Bitar, F.; Arabi, M. Corticosteroids in COVID-19: Pros and cons. Front. Med. 2023, 10, 1202504. [Google Scholar] [CrossRef]
- Hyoju, S.K.; Baral, B.; Jha, P.K. Central catecholaminergic blockade with clonidine prevent SARS-CoV-2 complication: A case series. IDCases 2021, 25, e01219. [Google Scholar] [CrossRef]
- Mathews, K.S.; Soh, H.; Shaefi, S.; Wang, W.; Bose, S.; Coca, S.; Gupta, S.; Hayek, S.S.; Srivastava, A.; Brenner, S.K.; et al. Prone Positioning and Survival in Mechanically Ventilated Patients with Coronavirus Disease 2019-Related Respiratory Failure. Crit. Care Med. 2021, 49, 1026–1037. [Google Scholar] [CrossRef] [PubMed]
- Alwakeel, M.; Wang, Y.; Torbic, H.; Sacha, G.L.; Wang, X.; Abi Fadel, F.; Duggal, A. Impact of Sedation Practices on Mortality in COVID-19-Associated Adult Respiratory Distress Syndrome Patients: A Multicenter Retrospective Descriptive Study. J. Intensive Care Med. 2024, 39, 646–654. [Google Scholar] [CrossRef]
- Martinuka, O.; von Cube, M.; Wolkewitz, M. Methodological evaluation of bias in observational coronavirus disease 2019 studies on drug effectiveness. Clin. Microbiol. Infect. 2021, 27, 949–957. [Google Scholar] [CrossRef]
- Jones, M.; Fowler, R. Immortal time bias in observational studies of time-to-event outcomes. J. Crit. Care 2016, 36, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Suissa, S. Immortal time bias in pharmaco-epidemiology. Am. J. Epidemiol. 2008, 167, 492–499. [Google Scholar] [CrossRef]
- Wang, K.; Wu, M.; Xu, J.; Wu, C.; Zhang, B.; Wang, G.; Ma, D. Effects of dexmedetomidine on perioperative stress, inflammation, and immune function: Systematic review and meta-analysis. Br. J. Anaesth. 2019, 123, 777–794. [Google Scholar] [CrossRef] [PubMed]
- Weerink, M.A.S.; Struys, M.; Hannivoort, L.N.; Barends, C.R.M.; Absalom, A.R.; Colin, P. Clinical Pharmacokinetics and Pharmacodynamics of Dexmedetomidine. Clin. Pharmacokinet. 2017, 56, 893–913. [Google Scholar] [CrossRef]
- Keating, G.M. Dexmedetomidine: A Review of Its Use for Sedation in the Intensive Care Setting. Drugs 2015, 75, 1119–1130. [Google Scholar] [CrossRef]
Model 1 a | Model 2 b | |||||
---|---|---|---|---|---|---|
n = 3806 | n = 576 | |||||
Variable | No DEX (n = 1903) | DEX (n = 1903) | SMD | No DEX (n = 288) | DEX (n = 288) | SMD |
Age (SD) | 63.7 (13.6) | 61.6 (14.5) | 0.14 | 64.0 (12.7) | 63.1 (13.4) | 0.07 |
Male sex (%) | 1169 (61.4) | 1176 (61.8) | 0.01 | 188 (65.3) | 178 (61.8) | 0.07 |
Race (%) | ||||||
Black | 325 (17.1) | 337 (17.7) | 0.08 | <20 * | <20 * | 0.11 |
Other | 63 (3.3) | 82 (4.3) | <20 * | <20 * | ||
Unknown | 354 (18.6) | 387 (20.3) | 37 (12.8) | 41 (14.2) | ||
White | 1161 (61.0) | 1097 (57.6) | 227 (78.8) | 221 (76.7) | ||
Ethnicity (%) | ||||||
Hispanic | 329 (17.3) | 344 (18.1) | 0.03 | 43 (14.9) | 31 (10.8) | 0.13 |
Not Hispanic | 1479 (77.7) | 1454 (76.4) | 240 (83.3) | 251 (87.2) | ||
Unknown | 95 (5.0) | 105 (5.5) | <20 * | <20 * | ||
Active cancer (%) | 179 (9.4) | 163 (8.6) | 0.03 | 24 (8.3) | 22 (7.6) | 0.03 |
Cardiovascular disease (%) | ||||||
Hypertension | 1424 (74.8) | 1355 (71.2) | 0.08 | 205 (71.2) | 206 (71.5) | 0.01 |
Coronary artery disease | 435 (22.9) | 414 (21.8) | 0.03 | 71 (24.7) | 62 (21.5) | 0.07 |
Congestive heart failure | 465 (24.4) | 457 (24.0) | 0.01 | 80 (27.8) | 71 (24.7) | 0.07 |
Chronic respiratory disease (%) | ||||||
Asthma | 225 (11.8) | 217 (11.4) | 0.01 | 32 (11.1) | 30 (10.4) | 0.02 |
COPD | 590 (31.0) | 573 (30.1) | 0.02 | 97 (33.7) | 92 (31.9) | 0.04 |
Interstitial lung disease | 49 (2.6) | 39 (2.0) | 0.04 | <20 * | <20 * | 0.07 |
Obstructive sleep apnea | 370 (19.4) | 355 (18.7) | 0.02 | 53 (18.4) | 64 (22.2) | 0.10 |
Immunosuppression (%) | ||||||
HIV | <20 * | <20 * | 0.03 | <20 * | <20 * | 0.08 |
Kidney disease (%) | ||||||
Chronic | 495 (26.0) | 451 (23.7) | 0.05 | 64 (22.2) | 52 (18.1) | 0.10 |
End-stage | 75 (3.9) | 80 (4.2) | 0.01 | <20 * | <20 * | 0.03 |
Liver disease (%) | ||||||
Cirrhosis | 65 (3.4) | 62 (3.3) | 0.01 | <20 * | <20 * | 0.04 |
Hepatitis B | <20 * | <20 * | 0.05 | <20 * | <20 * | 0.08 |
Hepatitis C | 37 (1.9) | 63 (3.3) | 0.09 | <20 * | <20 * | 0.07 |
Metabolic disease | ||||||
Obesity (%) | 763 (40.1) | 764 (40.1) | 0.00 | 118 (41.0) | 109 (37.8) | 0.06 |
Morbid obesity (%) | 359 (18.9) | 355 (18.7) | 0.01 | 47 (16.3) | 54 (18.8) | 0.06 |
BMI (SD) | 33.3 (9.6) | 33.4 (9.4) | 0.01 | 33.0 (9.6) | 33.5 (9.5) | 0.05 |
Diabetes (%) | 876 (46.0) | 895 (47.0) | 0.02 | 127 (44.1) | 121 (42.0) | 0.04 |
mCCI (SD) | 2.49 (2.39) | 2.41 (2.39) | 0.03 | 2.31 (2.30) | 2.14 (2.15) | 0.08 |
Model 1 a | Model 2 b | |||||
---|---|---|---|---|---|---|
n = 3806 | n = 576 | |||||
Variable | No DEX (n = 1903) | DEX (n = 1903) | SMD | No DEX (n = 288) | DEX (n = 288) | SMD |
PaO2/FiO2 (SD) | -- | -- | 85.5 (57.1) | 84.8 (44.8) | 0.01 | |
mSOFA score (SD) c | 4.75 (2.37) | 4.78 (2.23) | 0.01 | 8.74 (1.94) | 8.66 (1.75) | 0.04 |
Sedative use (%) | ||||||
GABA receptor ligand (%) | 1901 (99.9) | 1878 (98.7) | 0.14 | 288 (100.0) | 278 (96.5) | 0.27 |
Propofol | 1637 (86.0) | 1696 (89.1) | 0.09 | 223 (77.4) | 232 (80.6) | 0.08 |
Midazolam | 1483 (77.9) | 1581 (83.1) | 0.13 | 221 (76.7) | 234 (81.2) | 0.11 |
Lorazepam | 922 (48.4) | 1004 (52.8) | 0.09 | 153 (53.1) | 167 (58.0) | 0.10 |
Ketamine | 283 (14.9) | 365 (19.2) | 0.11 | 50 (17.4) | 68 (23.6) | 0.16 |
Opioid use (%) | 1850 (97.2) | 1858 (97.6) | 0.03 | 280 (97.2) | 281 (97.6) | 0.02 |
Corticosteroid (any) use (%) | 1559 (81.9) | 1567 (82.3) | 0.01 | 231 (80.2) | 217 (75.3) | 0.12 |
Methylprednisolone | 314 (16.5) | 364 (19.1) | 0.07 | 55 (19.1) | 48 (16.7) | 0.06 |
Dexamethasone | 1221 (64.2) | 1249 (65.6) | 0.03 | 173 (60.1) | 171 (59.4) | 0.01 |
Hydrocortisone | 301 (15.8) | 303 (15.9) | 0.00 | 46 (16.0) | 53 (18.4) | 0.06 |
Prednisone | 157 (8.3) | 199 (10.5) | 0.08 | 33 (11.5) | 38 (13.2) | 0.05 |
Remdesivir use (%) | 598 (31.4) | 558 (29.3) | 0.05 | 71 (24.7) | 68 (23.6) | 0.02 |
Antibiotic (any) use (%) | 1733 (91.1) | 1762 (92.6) | 0.06 | 228 (79.2) | 238 (82.6) | 0.09 |
Anticoagulant (any) use (%) | 1833 (96.3) | 1868 (98.2) | 0.11 | 272 (94.4) | 269 (93.4) | 0.04 |
Heparin | 1365 (71.7) | 1409 (74.0) | 0.05 | 191 (66.3) | 207 (71.9) | 0.12 |
LMWH | 1285 (67.5) | 1354 (71.2) | 0.08 | 169 (58.7) | 174 (60.4) | 0.04 |
Factor Xa inhibitor | 318 (16.7) | 346 (18.2) | 0.04 | 47 (16.3) | 44 (15.3) | 0.03 |
Direct thrombin inhibitor | 50 (2.6) | 78 (4.1) | 0.08 | <20 * | <20 * | 0.08 |
Warfarin | 52 (2.7) | 68 (3.6) | 0.05 | <20 * | <20 * | 0.05 |
Inhaled NO Use (%) | <20 * | <20 * | 0.02 | <20 * | <20 * | <0.01 |
Vasopressor Use (%) | 1569 (82.4) | 1685 (88.5) | 0.17 | 254 (88.2) | 263 (91.3) | 0.10 |
Paralytic/NMB (%) | 1503 (79.0) | 1587 (83.4) | 0.11 | 204 (70.8) | 213 (74.0) | 0.07 |
RRT (%) | 93 (4.9) | 159 (8.4) | 0.14 | 29 (10.1) | 30 (10.4) | 0.01 |
ECMO (%) | 42 (2.2) | 78 (4.1) | 0.11 | <20 * | <20 * | 0.14 |
Model 1 a | Model 2 b | |||
---|---|---|---|---|
n = 3806 | n = 576 | |||
Cox Regression Model | aHR (95% CI) | p | aHR (95% CI) | p |
Multivariable (DEX use) c | 0.81 (0.73, 0.90) | <0.001 | 0.95 (0.72, 1.25) | 0.73 |
Univariable (DEX use) d | 0.90 (0.81, 0.99) | 0.04 | 1.05 (0.80, 1.36) | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamilton, J.L.; Baccile, R.; Best, T.J.; Desai, P.; Landay, A.; Rojas, J.C.; Wimmer, M.A.; Balk, R.A.; on behalf of the N3C Consortium. Association between Dexmedetomidine Use and Mortality in Patients with COVID-19 Receiving Invasive Mechanical Ventilation: A U.S. National COVID Cohort Collaborative (N3C) Study. J. Clin. Med. 2024, 13, 3429. https://doi.org/10.3390/jcm13123429
Hamilton JL, Baccile R, Best TJ, Desai P, Landay A, Rojas JC, Wimmer MA, Balk RA, on behalf of the N3C Consortium. Association between Dexmedetomidine Use and Mortality in Patients with COVID-19 Receiving Invasive Mechanical Ventilation: A U.S. National COVID Cohort Collaborative (N3C) Study. Journal of Clinical Medicine. 2024; 13(12):3429. https://doi.org/10.3390/jcm13123429
Chicago/Turabian StyleHamilton, John L., Rachel Baccile, Thomas J. Best, Pankaja Desai, Alan Landay, Juan C. Rojas, Markus A. Wimmer, Robert A. Balk, and on behalf of the N3C Consortium. 2024. "Association between Dexmedetomidine Use and Mortality in Patients with COVID-19 Receiving Invasive Mechanical Ventilation: A U.S. National COVID Cohort Collaborative (N3C) Study" Journal of Clinical Medicine 13, no. 12: 3429. https://doi.org/10.3390/jcm13123429
APA StyleHamilton, J. L., Baccile, R., Best, T. J., Desai, P., Landay, A., Rojas, J. C., Wimmer, M. A., Balk, R. A., & on behalf of the N3C Consortium. (2024). Association between Dexmedetomidine Use and Mortality in Patients with COVID-19 Receiving Invasive Mechanical Ventilation: A U.S. National COVID Cohort Collaborative (N3C) Study. Journal of Clinical Medicine, 13(12), 3429. https://doi.org/10.3390/jcm13123429