Antithrombotic Use Patterns in COVID-19 Patients from Spain: A Real-World Data Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Ethics
2.2. Source of Data
2.3. Study Population
2.4. Outcomes
2.5. Antithrombotic Use
2.6. Statistical Analysis
3. Results
3.1. Study Population
3.2. Comorbidities and Other Prescriptions at Baseline
3.3. Antithrombotic Use Patterns
Post-Discharge Use
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tan, B.K.; Mainbourg, S.; Friggeri, A.; Bertoletti, L.; Douplat, M.; Dargaud, Y.; Grange, C.; Lobbes, H.; Provencher, S.; Lega, J.-C. Arterial and venous thromboembolism in COVID-19: A study-level meta-analysis. Thorax 2021, 76, 970–979. [Google Scholar] [CrossRef]
- Suh, Y.J.; Hong, H.; Ohana, M.; Bompard, F.; Revel, M.-P.; Valle, C.; Gervaise, A.; Poissy, J.; Susen, S.; Hékimian, G.; et al. Pulmonary Embolism and Deep Vein Thrombosis in COVID-19: A Systematic Review and Meta-Analysis. Radiology 2021, 298, E70–E80. [Google Scholar] [CrossRef]
- Quintana-Díaz, M.; Andrés-Esteban, E.M.; Ramírez-Cervantes, K.L.; Olivan-Blázquez, B.; Juárez-Vela, R.; Gea-Caballero, V. Coagulation Parameters: An Efficient Measure for Predicting the Prognosis and Clinical Management of Patients with COVID-19. J. Clin. Med. 2020, 9, 3482. [Google Scholar] [CrossRef]
- Cervantes, K.L.R.; Mora, E.; Morales, S.C.; Álvarez, C.H.; Neira, P.M.; Nanwani, K.L.N.; Lázaro, A.S.; Obregón, J.A.S.; Díaz, M.Q. A Clinical Prediction Rule for Thrombosis in Critically Ill COVID-19 Patients: Step 1 Results of the Thromcco Study. J. Clin. Med. 2023, 12, 1253. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Bai, H.; Chen, X.; Gong, J.; Li, D.; Sun, Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J. Thromb. Haemost. 2020, 18, 1094–1099. [Google Scholar] [CrossRef] [PubMed]
- Nadkarni, G.N.; Lala, A.; Bagiella, E.; Chang, H.L.; Moreno, P.R.; Pujadas, E.; Arvind, V.; Bose, S.; Charney, A.W.; Chen, M.D.; et al. Anticoagulation, Bleeding, Mortality, and Pathology in Hospitalized Patients With COVID-19. J. Am. Coll. Cardiol. 2020, 76, 1815–1826. [Google Scholar] [CrossRef] [PubMed]
- Spyropoulos, A.C.; Levy, J.H.; Ageno, W.; Connors, J.M.; Hunt, B.J.; Iba, T.; Levi, M.; Samama, C.M.; Thachil, J.; Giannis, D.; et al. Scientific and Standardization Committee communication: Clinical guidance on the diagnosis, prevention, and treatment of venous thromboembolism in hospitalized patients with COVID-19. J. Thromb. Haemost. 2020, 18, 1859–1865. [Google Scholar] [CrossRef]
- Escobar, C.; Freire, R.B.; Marimón, X.G.-M.; González-Juanatey, C.; Morillas, M.; Muñoz, A.V.; Doblas, J.J.G. A Delphi consensus on the management of anticoagulation in the COVID-19 pandemic: The MONACO study. Cardiovasc. Diagn. Ther. 2023, 13, 777–791. [Google Scholar] [CrossRef]
- Cuker, A.; Tseng, E.K.; Nieuwlaat, R.; Angchaisuksiri, P.; Blair, C.; Dane, K.; Davila, J.; DeSancho, M.T.; Diuguid, D.L.; Griffin, D.O.; et al. American Society of Hematology living guidelines on the use of anticoagulation for thromboprophylaxis in patients with COVID-19: July 2021 update on postdischarge thromboprophylaxis. Blood Adv. 2022, 6, 664–671. [Google Scholar] [CrossRef]
- NIH. COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines; National Institutes of Health: Bethesda, MN, USA, 2020; Volume 2019. [Google Scholar]
- Rosovsky, R.P.; Sanfilippo, K.M.; Wang, T.F.; Rajan, S.K.; Shah, S.; Martin, K.A.; Áinle, F.N.; Huisman, M.; Hunt, B.J.; Kahn, S.R.; et al. Anticoagulation practice patterns in COVID-19: A global survey. Res. Pract. Thromb. Haemost. 2020, 4, 969–983. [Google Scholar] [CrossRef]
- Nadeem, R.; Thomas, S.J.; Fathima, Z.; Palathinkal, A.S.; Alkilani, Y.E.; Dejan, E.A.; Darwish, I.M.I.; Alsubousi, A.A.; Backour, A.M.; Kandeel, H.; et al. Pattern of anticoagulation prescription for patients with COVID-19 acute respiratory distress syndrome admitted to ICU. Does it impact outcome? Heart Lung 2021, 50, 1–5. [Google Scholar] [CrossRef]
- Rahman, T.; Islam, S.; Paul, S.; Islam, M.; Samadd, A.; Reyda, R.N.; Sarkar, R. Prescription patterns in an intensive care unit of COVID-19 patients in Bangladesh: A cross-sectional study. Health Sci. Rep. 2023, 6, e1711. [Google Scholar] [CrossRef]
- Maciá-Martínez, M.; Gil, M.; Huerta, C.; Martín-Merino, E.; Álvarez, A.; Bryant, V.; Montero, D.; Bifap the BIFAP Team. Base de Datos para la Investigación Farmacoepidemiológica en Atención Primaria (BIFAP): A data resource for pharmacoepidemiology in Spain. Pharmacoepidemiol. Drug Saf. 2020, 29, 1236–1245. [Google Scholar] [CrossRef]
- Gonzalez-Porras, J.R.; Belhassen-Garcia, M.; Lopez-Bernus, A.; Vaquero-Roncero, L.M.; Rodriguez, B.; Carbonell, C.; Azibeiro, R.; Hernandez-Sanchez, A.; Martin-Gonzalez, J.I.; Manrique, J.M.; et al. Low molecular weight heparin is useful in adult COVID-19 inpatients. Experience during the first Spanish wave: Observational study. Sao Paulo Med. J. 2022, 140, 123–133. [Google Scholar] [CrossRef]
- Giner-Soriano, M.; Gomez-Lumbreras, A.; Vedia, C.; Ouchi, D.; Morros, R. Risk of thrombotic events and other complications in anticoagulant users infected with SARS-CoV-2: An observational cohort study in primary health care in SIDIAP (Catalonia, Spain). BMC Prim. Care 2022, 23, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Mota-Pérez, M.; Huerta-Álvarez, C.; Llorente, A.; Cea-Soriano, L. COVID-19 Distribution in Pregnancy, Drug Use Patterns and COVID-19 Medication during the Pandemic in Spain: Data from Real-World Electronic Health Records. Pharmaceuticals 2024, 17, 207. [Google Scholar] [CrossRef]
- Puerta, J.-L.; Torrego-Ellacuría, M.; Del Rey-Mejías, Á.; López, C.B. Capacity and organisation of Madrid’s community hospitals during first wave of COVID-19 pandemic. J. Healthc Qual. Res. 2022, 37, 275–282. [Google Scholar] [CrossRef]
- Ramírez-Cervantes, K.L.; Romero-Pardo, V.; Pérez-Tovar, C.; Martínez-Alés, G.; Quintana-Diaz, M. A medicalized hotel as a public health resource for the containment of COVID-19: More than a place for quarantining. J. Public Health 2021, 43, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, L.A.G.; Soriano, L.C.; de Abajo, F.J.; Valent, F.; Hallas, J.; Gil, M.; Cattaruzzi, C.; Rodriguez-Martin, S.; Vora, P.; Soriano-Gabarró, M.; et al. Trends in the use of oral anticoagulants, antiplatelets and statins in four European countries: A population-based study. Eur. J. Clin. Pharmacol. 2022, 78, 497–504. [Google Scholar] [CrossRef]
- Zong, X.; Wang, X.; Liu, Y.; Li, Z.; Wang, W.; Wei, D.; Chen, Z. Antiplatelet therapy for patients with COVID-19: Systematic review and meta-analysis of observational studies and randomized controlled trials. Front. Med. 2022, 9, 965790. [Google Scholar] [CrossRef]
- Wilcox, T.; Smilowitz, N.R.; Seda, B.; Xia, Y.; Hochman, J.; Berger, J.S. Sex Differences in Thrombosis and Mortality in Patients Hospitalized for COVID-19. Am. J. Cardiol. 2022, 170, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Palareti, G.; for the DULCIS (D-dimer and ULtrasonography in Combination Italian Study) Investigators; Legnani, C.; Antonucci, E.; Cosmi, B.; Poli, D.; Testa, S.; Tosetto, A.; Ageno, W.; Falanga, A.; et al. D-dimer testing, with gender-specific cutoff levels, is of value to assess the individual risk of venous thromboembolic recurrence in non-elderly patients of both genders: A post hoc analysis of the DULCIS study. Intern. Emerg. Med. 2020, 15, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Roach, R.E.J.; Cannegieter, S.C.; Lijfering, W.M. Differential risks in men and women for first and recurrent venous thrombosis: The role of genes and environment. J. Thromb. Haemost. 2014, 12, 1593–1600. [Google Scholar] [CrossRef] [PubMed]
Characteristics | All Cases | Non-Users | Users | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n = 882,540 | n = 803,306 | n = 79,234 (9%) | ||||||||||||
−100% | −91% | |||||||||||||
Primary Care | Hospital | |||||||||||||
n = 37,183 | n = 42,051 | |||||||||||||
Post-Discharge | ||||||||||||||
n = 6686 | ||||||||||||||
Total Users | Prior Users | Naïve Users | p-Value | Total Users | Prior Users | Naïve Users | p-Value | Total Users | Prior Users | Naïve Users | p-Value | |||
n = 37,183 | n = 29,678 | n = 7505 | n = 42,051 | n = 21,751 | n = 20,300 | n = 6686 | n = 4531 | n = 2155 | ||||||
(100%) | (79.8%) | (20.2%) | (100%) | (51.7%) | (48.3%) | −100% | (67.8%) | (32.2%) | ||||||
Gender | ||||||||||||||
Female | 471,267 (53.4%) | 433,010 (53.9%) | 19,544 (52.6%) | 14,463 (48.7%) | 5081 (67.7%) | <0.0001 | 18,713 (45.5%) | 9864 (45.3%) | 11,451 (56.4%) | <0.0001 | 3659 (54.7%) | 2513 (55.5%) | 1146 (53.2%) | 0.084 |
Male | 411,273 (46.6%) | 370,296 (46.1%) | 17,639 (47.4%) | 15,215 (51.3%) | 2424 (32.3%) | 23,338 (55.5%) | 11,887 (54.7%) | 8849 (45.6%) | 3027 (45.3%) | 2018 (44.5%) | 1009 (46.8%) | |||
Age (y) | ||||||||||||||
Median, years (IQR) | 45 (33–59) | 44 (32–56) | 70 (57–82) | 73 (62–84) | 49 (35–63) | <0.0001 | 70 (56–83) | 78 (67–86) | 60 (48–73) | <0.0001 | 75 (63–85) | 79 (70–86) | 63 (52–76) | <0.0001 |
18–25 | 100,604 (11.4%) | 99,774 (12.4%) | 418 (1.1%) | 78 (0.2%) | 340 (0.5%) | 412 (0.9%) | 43 (0.2%) | 369 (1.8%) | 24 (0.4%) | 0 (0%) | 24 (1.1%) | |||
25–40 | 223,369 (25.3%) | 217,729 (27.1%) | 3060 (8.3%) | 778 (2.6%) | 2282 (30.4%) | 2580 (6.1%) | 403 (1.9%) | 2177 (10.7%) | 201 (3%) | 32 (0.7%) | 169 (7.8%) | |||
40–55 | 275,987 (31.3%) | 264,513 (32.9%) | 4758 (12.8%) | 2870 (9.7%) | 1888 (25.2%) | 6716 (16%) | 1503 (6.9%) | 5213 (25.7%) | 638 (9.5%) | 186 (4.1%) | 452 (20.1%) | |||
55–70 | 163,509 (18.5%) | 142,507 (17.8%) | 10,128 (27.2%) | 8462 (28.6%) | 1666 (22.2%) | 10,874 (25.9%) | 4417 (20.3%) | 6457 (31.8%) | 1570 (23.5%) | 877 (19.3%) | 693 (32.2%) | |||
>70 | 119,071 (13.5%) | 78783 (9.8%) | 18,819 (50.6%) | 17,490 (58.9%) | 1329 (17.7%) | 21,469 (51.1%) | 15,385 (70.7%) | 6084 (30%) | 4253 (63.6%) | 3436 (78.5%) | 817 (37.9%) | |||
Comorbidities | ||||||||||||||
Obesity | 97,000 (11%) | 80,329 (10%) | 7743 (20.9%) | 6776 (22.8%) | 967 (12.9%) | <0.0001 | 8928 (21.2%) | 5354 (24.6%) | 3574 (17.6%) | <0.0001 | 1664 (25%) | 1172 (25.9%) | 492 (22.8%) | 0.0074 |
Cardiovascular diseases | 238,176 (27%) | 185,949 (23.1%) | 26,491 (72.5%) | 24,430 (82.3%) | 2061 (27.5%) | <0.0001 | 25,736 (61.2%) | 17,333 (79.7%) | 8403 (41.4%) | <0.0001 | 4928 (74%) | 3913 (86.3%) | 1015 (47.1%) | <0.00001 |
Hypertension | 191,354 (21.7%) | 148,044 (18.4%) | 21,169 (56.9%) | 19,411 (65.4%) | 1758 (23.4%) | <0.0001 | 22,141 (52.7%) | 14,590 (67.1%) | 7551 (37.2%) | <0.0001 | 4154 (62.4%) | 3231 (71.3%) | 923 (42.8%) | <0.00001 |
Heart failure | 16,838 (1.9%) | 9547 (1.2%) | 3164 (8.5%) | 3082 (10.4%) | 82 (1.1%) | <0.0001 | 4127 (9.8%) | 3725 (17.1%) | 402 (2%) | <0.0001 | 881 (13.2%) | 833 (18.4%) | 48 (2.2%) | <0.00001 |
Arrhythmia | 61,617 (7%) | 45,728 (5.7%) | 8758 (23.6%) | 8393 (28.3%) | 365 (4.9%) | <0.0001 | 7131 (17%) | 5994 (27.6%) | 1137 (5.6%) | <0.0001 | 1544 (23.2%) | 1422 (31.4%) | 122 (5.7%) | <0.00001 |
Ischemic heart disease | 29,701 (3.4%) | 17,351 (2.2%) | 7673 (20.6%) | 7605 (25.6%) | 68 (0.9%) | <0.0001 | 4677 (11.1%) | 4339 (20%) | 338 (1.7%) | <0.0001 | 1236 (18.6%) | 1199 (26.5%) | 37 (1.7%) | <0.00001 |
Coronary artery disease | 18,989 (2.4%) | 10,011 (1.2%) | 5576 (15%) | 5534 (18.6%) | 42 (0.6%) | <0.0001 | 3402 (8.1%) | 3260 (15%) | 142 (0.7%) | <0.0001 | 1017 (15.3%) | 999 (22%) | 18 (0.8%) | <0.00001 |
IAM | 10,463 (1.2%) | 5108 (0.6%) | 3576 (9.6%) | 3558 (12%) | 18 (0.2%) | <0.0001 | 1779 (4.2%) | 1719 (8%) | 60 (0.3%) | <0.00001 | 465 (7%) | 455 (10%) | 10 (0.5%) | <0.00001 |
Valvopathies | 6868 (0.8%) | 4344 (0.5%) | 1340 (3.6%) | 1289 (4.3%) | 51 (0.7%) | <0.0001 | 1184 (2.8%) | 1026 (4.7%) | 158 (0.8%) | <0.00001 | 247 (3.7%) | 224 (5%) | 23 (1.1%) | <0.00001 |
Peripheral arterial disease | 6898 (0.8%) | 3890 (0.5%) | 1638 (4.4%) | 1614 (5.4%) | 24 (0.3%) | <0.0001 | 1370 (3.3%) | 1252 (5.8%) | 118 (0.6%) | <0.00001 | 308 (4.6%) | 295 (6.5%) | 13 (0.6%) | <0.00001 |
Cancer history | 54,846 (6.2%) | 44,097 (5.5%) | 4592 (12.3%) | 4178 (14.1%) | 414 (5.5%) | <0.0001 | 6157 (14.6%) | 4314 (19.8%) | 1843 (9.1%) | <0.00001 | 993 (14.9%) | 802 (17.7%) | 191 (8.9%) | <0.00001 |
Hereditary thrombophilia | 654 (0.1%) | 503 (0.1%) | 111 (0.3%) | 88 (0.3%) | 23 (0.3%) | 0.876 | 40 (0.1%) | 34 (0.2%) | 6 (0.03%) | <0.00001 | 13 (0.2%) | 13 (0.3%) | 0 (0%) | 0.052 |
Stroke | 20,382 (2.3%) | 10,962 (1.4%) | 5615 (15.1%) | 5555 (18.7%) | 60 (0.8%) | <0.0001 | 3805 (9%) | 3577 (16.4%) | 228 (1.1%) | <0.00001 | 958 (14.3%) | 920 (20.3%) | 38 (1.8%) | <0.00001 |
Ischemic stroke | 18,967 (2.1%) | 9893 (1.2%) | 5471 (14.7%) | 5420 (18.3%) | 51 (0.7%) | <0.0001 | 3603 (8.6%) | 3433 (15.8%) | 170 (0.8%) | <0.00001 | 900 (13.5%) | 870 (19.2%) | 30 (1.4%) | <0.00001 |
Hemorrhagic stroke | 2095 (0.2%) | 1483 (0.2%) | 287 (0.8%) | 277 (0.9%) | 10 (0.1%) | <0.0001 | 325 (0.8%) | 256 (1.2%) | 69 (0.3%) | <0.00001 | 58 (0.9%) | 49 (1%) | 9 (0.4%) | 0.006 |
Acute liver disease | 103 (0.0%) | 85 (0.0%) | 9 (0.02%) | 8 (0.03%) | 1 (0.01%) | 0.499 | 9 (0.02%) | 5 (0.02%) | 4 (0.02%) | 0.8181 | 0 (0%) | 0 (0%) | 0 (0%) | NA |
CKD | 18,317 (2.1%) | 11,633 (1.4%) | 2891 (7.8%) | 2780 (9.4%) | 111 (1.5%) | <0.0001 | 3793 (9%) | 3117 (14.3%) | 676 (3.3%) | <0.00001 | 762 (11.4%) | 675 (14.9%) | 87 (4%) | <0.00001 |
COPD | 17,962 (2%) | 12,164 (1.5%) | 2209 (5.9%) | 2064 (6.7%) | 145 (1.9%) | <0.0001 | 3589 (8.5%) | 2687 (12.4%) | 902 (4.4%) | <0.00001 | 676 (10.2%) | 570 (12.6%) | 106 (4.9%) | <0.00001 |
Asthma | 77,974 (8.8%) | 71,307 (8.9%) | 3029 (8.2%) | 2340 (7.9%) | 689 (9.2%) | 0.0002 | 3638 (8.7%) | 2012 (9.2%) | 1626 (8%) | <0.00001 | 595 (8.9%) | 436 (9.6%) | 159 (7.4%) | 0.0026 |
Multiple sclerosis | 1744 (0.2%) | 1565 (0.2%) | 70 (0.2%) | 51 (0.2%) | 19 (0.3%) | 0.143 | 109 (0.3%) | 54 (0.2%) | 55 (0.3%) | 0.645 | 13 (0.2%) | 12 (0.3%) | 1 (0.004%) | 0.587 |
Parkinson’s disease | 4125 (0.5%) | 2605 (0.3%) | 658 (1.8%) | 608 (2%) | 50 (0.7%) | <0.0001 | 862 (2%) | 654 (3%) | 208 (1%) | <0.00001 | 153 (2.3%) | 131 (2.9%) | 22 (1%) | <0.00001 |
Dementia | 10,598 (1.2%) | 6806 (0.8%) | 1870 (5%) | 1718 (5.8%) | 152 (2%) | <0.0001 | 1922 (4.6%) | 1502 (6.9%) | 420 (2%) | <0.00001 | 330 (5%) | 283 (6.2%) | 47 (2.2%) | <0.00001 |
Alzheimer’s disease | 5453 (0.6%) | 3604 (0.4%) | 901 (2.4%) | 806 (2.7%) | 95 (1.3%) | <0.0001 | 948 (2.3%) | 712 (3.3%) | 236 (1.2%) | <0.0001 | 159 (2.4%) | 133 (2.9%) | 26 (1.2%) | <0.00001 |
IBD | 5764 (0.7%) | 5196 (0.6%) | 254 (0.7%) | 199 (0.7%) | 55 (0.7%) | 0.543 | 314 (0.7%) | 172 (0.8%) | 142 (0.7%) | 0.276 | 41 (0.6%) | 30 (0.7%) | 11 (0.5%) | 0.459 |
Study Cohort | Hospitalized Population | Primary Care Population | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
n = 882,540 | n = 78,499 | n = 804,041 | ||||||||
Antithrombotic | Global Use | Total Use in Hospitals | Total Use in Primary Care | p Value | New Users | Prior Users | p Value | New Users | Prior Users | p Value |
Acenocoumarol | 130.6 (125.7–161.3) | 147.1(143.7–198.8) | 111.2 (92.8–133.4) | 0.000 | 66.6 (62.6–102.2) | 69.3 (69–103.8) | 0.838 | 29.5 ± 13.2 | 70.7 (66–101) | 0.000 |
Acetylsalicylic acid | 723 (670.1–839.9) | 973.4 (905–1132.5) | 466.3 (410.6–544.9) | 0.000 | 390.2 (372.9–529) | 486.6 (480.1–655.4) | 0.307 | 139.9 ± 45.2 | 331.3 (278.8–396.8) | 0.000 |
Apixaban | 102.5 (93.3–122.5) | 121.6 (129–160.8) | 61.4 (58.3–88.6) | 0.000 | 47.2 (43.9–68.6) | 67.1 (66.9–100.2) | 0.066 | 15.7 ± 9.7 | 46.9 (44.4–71.1) | 0.000 |
Bemiparin | 694.8 (583.8–860.8) | 1341.3 (1242.3–1445.6) | 69.8 (67.3–103.9) | 0.000 | 902.2 ± 368.9 | 375 (361.1–522.4) | 0.000 | 22.1 (18.9–28.7) | 48.2 (47.3–76.2) | 0.000 |
Cilostazol | 6.4 (6–11.6) | 0.0 | 8.4 (6.9–15.5) | 0.008 | 0.0 | 4.5 (2–7) | 0.020 | 1.5 (1.3–2.4) | 5.8 (5–13.6) | 0.000 |
Clopidogrel | 141.8 (131.6–180.8) | 229 (212.5–274.9) | 56.7 (53–78.5) | 0.000 | 105 (89.6–122.7) | 119.5 (110.4–164.6) | 0.838 | 14.6 (13–17.9) | 42.4 (38.5–62) | 0.000 |
Dabigatran | 19.6 (19–29.5) | 26.4 (24.3–40.4) | 16.5 (14.3–20.2) | 0.002 | 8.4 (7.4–17.3) | 17 (13.3–26.6) | 0.307 | 4.1 (3.2–4.9) | 11.7 (10.1–16.2) | 0.000 |
Dalteparin | 0.0 | 0.0 | 0.0 | 0.066 | 0.0 | 0.0 | 0.561 | 0.0 | 0.0 | 0.674 |
Dipyridamole | 0.0 | 0.0 | 0.0 | 0.340 | 0.0 | 0.0 | 0.991 | 0.0 | 0.0 | 0.240 |
Edoxaban | 35.7 (35–51.6) | 44 (39.5–66.2) | 32 (28.4–40.9) | 0.066 | 17.8 (15.3–32.2) | 20 (18.4–39.7) | 0.838 | 7.9 (7.3–10.5) | 24.3 (20.4–30.9) | 0.000 |
Enoxaparin | 750 (1888.8–2727) | 4408.5 (3934.4–4492.7) | 297.1 (291.4–418.3) | 0.000 | 2348.2 (2390–3123.1) | 1378 (1162–1751.6) | 0.002 | 115.9 (109.5–152.4) | 169.5 (178–626.9) | 0.025 |
Fondaparinux | 8 (8.7–18) | 19.8 (18.3–33.7) | 0.0 | 0.000 | 13.7 (10.5–21.4) | 8.4 (6.2–13.9) | 0.153 | 0.0 | 0.0 | 0.233 |
Heparin | 6.5 (6.3–13) | 19.9 (14.2–19.1) | 0.0 | 0.000 | 8.1 (8–19) | 5.3 (3.8–8.3) | 0.025 | 0.0 | 0.0 | 0.516 |
Iloprost | 0.0 | 0.0 | 0.0 | 0.125 | 0.0 | 0.0 | 0.241 | 0.0 | 0.0 | 0.716 |
Nadroparin | 0.0 | 0.0 | 0.0 | 0.326 | 0.0 | 0.0 | 0.998 | 0.0 | 0.0 | 0.225 |
Prasugrel | 0.0 | 0.0 | 0.0 | 0.301 | 0.0 | 0.0 | 0.808 | 0.0 | 0.0 | 0.831 |
Rivaroxaban | 49.5 (49.2–63.4) | 56.6 (54.5–76.8) | 40 (37.6–54.3) | 0.008 | 25.6 (22.8–42.4) | 32 (26.8–39.2) | 0.307 | 11.9 (10.8–16.4) | 29.4 (25.4–39.1) | 0.000 |
Selexipag | 0.0 | 0.0 | 0.0 | 0.125 | 0.0 | 0.0 | 0.475 | 0.0 | 0.0 | 0.479 |
Sulodexide | 2.8 (2–4.9) | 0.0 | 6 (5.7–8.6) | 0.000 | 0.0 | 0.0 | 0.475 | 1.6 (1.5–3.1) | 3.8 (3.5–6.1) | 0.008 |
Ticagrelor | 12.1 (13.1–22) | 22.7 (17.4–34) | 7.9 (7.6–10.9) | 0.000 | 7.7 (6.7–15) | 11.8 (9.4–20.2) | 0.117 | 1.9 (1.6–3.4) | 6.0 (5.4–8.0) | 0.000 |
Ticlopidine | 0.0 | 0.0 | 0.0 | 0.125 | 0.0 | 0.0 | 0.125 | 0.0 | 0.0 | 0.109 |
Tinzaparin | 2.2 (2.1–4.1) | 0.0 | 2.9 (2.9–5.7) | 0.040 | 0.0 | 0.0 | 0.522 | 0.0 | 2.7 (2.7–5.5) | 0.000 |
Triflusal | 9.4 (9.3–14.1) | 10.5 (9.8–17.7) | 8.2 (7–12.1) | 0.307 | 0.0 | 6.4 (5.4–12.8) | 0.066 | 2.4 (1.9–3.5) | 5.8 (4.4–9.1) | 0.002 |
Warfarin | 3 (2.4–8.4) | 0.0 | 4 (3.2–5.7) | 0.066 | 0.0 | 0.0 | 0.999 | 1.1 (0.8–1.8) | 2.4 (2.2–4.1) | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramirez-Cervantes, K.L.; Campillo-Morales, S.; García-Poza, P.; Quintana-Díaz, M.; Huerta-Álvarez, C. Antithrombotic Use Patterns in COVID-19 Patients from Spain: A Real-World Data Study. J. Clin. Med. 2024, 13, 2403. https://doi.org/10.3390/jcm13082403
Ramirez-Cervantes KL, Campillo-Morales S, García-Poza P, Quintana-Díaz M, Huerta-Álvarez C. Antithrombotic Use Patterns in COVID-19 Patients from Spain: A Real-World Data Study. Journal of Clinical Medicine. 2024; 13(8):2403. https://doi.org/10.3390/jcm13082403
Chicago/Turabian StyleRamirez-Cervantes, Karen Lizzette, Salvador Campillo-Morales, Patricia García-Poza, Manuel Quintana-Díaz, and Consuelo Huerta-Álvarez. 2024. "Antithrombotic Use Patterns in COVID-19 Patients from Spain: A Real-World Data Study" Journal of Clinical Medicine 13, no. 8: 2403. https://doi.org/10.3390/jcm13082403
APA StyleRamirez-Cervantes, K. L., Campillo-Morales, S., García-Poza, P., Quintana-Díaz, M., & Huerta-Álvarez, C. (2024). Antithrombotic Use Patterns in COVID-19 Patients from Spain: A Real-World Data Study. Journal of Clinical Medicine, 13(8), 2403. https://doi.org/10.3390/jcm13082403