Personalized Assessment of Mortality Risk and Hospital Stay Duration in Hospitalized Patients with COVID-19 Treated with Remdesivir: A Machine Learning Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Study Design and Population
2.3. Study Data
- Patient profile: This section covered demographic factors like age and sex, as well as clinical aspects including:
- (a)
- Weight and height or body mass index.
- (b)
- Presence of comorbidities, such as smoking, obesity, hypertension, diabetes mellitus (DM), chronic obstructive pulmonary disease (COPD), asthma, and other chronic respiratory conditions. Details on other serious underlying conditions are provided in an open-text section. The number of comorbidities was categorized (1, 2, 3, and >3).
- (c)
- Pre-admission pharmacological treatment: This included the use of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, non-steroidal anti-inflammatory drugs, antihistamines, and/or montelukast, as well as information on the type of COVID-19 vaccine received and the number of doses administered.
- (d)
- COVID-19 Symptoms: A detailed list of symptoms was recorded, including fever, cough, dyspnea, fatigue, loss of taste or smell, headache, myalgia, sore throat, nasal congestion, rhinorrhea, conjunctivitis, rash, nausea, vomiting, and diarrhea.
- Initial hospitalization details:
- -
- Date of admission to the emergency department.
- -
- Date of admission to the hospital.
- -
- Date of symptom onset.
- -
- Date of microbiological confirmation of SARS-CoV-2 infection.
- -
- Any life support limitations and date implemented.
- -
- Whether the patient needed ICU admission.
- ICU admission details:
- -
- ICU admission date.
- -
- Mortality risk assessed by the CURB-65 scale.
- -
- Level of consciousness evaluated using the Glasgow Coma Scale.
- -
- Other clinical variables in the first 24 h: fever (≥38 °C), RR > 24 breaths/minute, systolic blood pressure < 90 mmHg, SpO2, and number of lung quadrants affected in imaging tests (ranging from 1 to 4).
- -
- Severity of illness assessed using the APACHE II scale within the first 24 h of admission
- -
- Patient’s condition evaluated using the SOFA scale during their ICU stay.
- Analytical and radiological data overview:
- -
- Affected side (bilateral or unilateral);
- -
- Type of lung injury (ground-glass opacity, consolidation, or mixed);
- -
- Density pattern (patchy, confluent, or mixed).
- 5.
- Pharmacological treatment during hospitalization:
- 6.
- Microbiological testing:
- 7.
- Medical procedures during hospitalization:
- -
- Hemodialysis/hemofiltration;
- -
- Oxygen therapy;
- -
- Non-invasive ventilation (NIV);
- -
- IMV;
- -
- Extracorporeal membrane oxygenation;
- -
- Prone ventilation.
- 8.
- Patients’ final outcomes:
2.4. Method
2.4.1. Model Development
2.4.2. Performance Evaluation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, R.; Zhao, X.; Li, J.; Wu, G.; Wang, W.; Liu, K.; Wu, J.; Wu, F.; Chen, X.; Zheng, Y.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020, 395, 565–574. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Coronavirus Disease 2019 (COVID-19) Outbreak. Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed on 12 February 2024).
- Yuan, Z.; Shao, Z.; Ma, L.; Guo, R. Clinical Severity of SARS-CoV-2 Variants during COVID-19 Vaccination: A Systematic Review and Meta-Analysis. Viruses 2023, 15, 1994. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Tian, F. Evaluation of oral small molecule drugs for the treatment of COVID-19 patients: A systematic review and network meta-analysis. Ann. Med. 2023, 55, 2274511. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Li, Y.; Sun, W.; Zhang, W.; Yang, J.; Zhang, W.; Zhang, L.; Ma, L.; Yuan, Z.; Shao, Z. Effect of anti-inflammatory drugs on the storm of inflammatory factors in respiratory tract infection caused by SARS-CoV-2: An updated meta-analysis. Front. Public Health 2023, 11, 1198987. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069, Correction in JAMA 2021, 325, 1113. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, A.; Hamilton, J.P.; Alqahtani, S.A.; AWoreta, T.; Mallampalli, A.; Brahma, S.; Zhang, M.; Konuthula, N.; Steward, D.; Hirani, N. A narrative review of coronavirus disease 2019 (COVID-19): Clinical, epidemiological characteristics, and systemic manifestations. Intern. Emerg. Med. 2021, 16, 815–830. [Google Scholar] [CrossRef] [PubMed]
- Thapa, K.; Verma, N.; Singh, T.G.; Kaur Grewal, A.; Kanojia, N.; Rani, L.; Jayaswal, S.; Kumar, A.; Kumar, P.; Pal, P.; et al. COVID-19-Associated acute respiratory distress syndrome (CARDS): Mechanistic insights on therapeutic intervention and emerging trends. Int. Immunopharmacol. 2021, 101 Pt A, 108328. [Google Scholar] [CrossRef]
- Wang, Z.; Deng, H.; Ou, C.; Liang, J.; Wang, Y.; Li, S.; He, G.; Zhang, X.; Zhang, X.; Wang, X.; et al. Clinical symptoms, comorbidities and complications in severe and non-severe patients with COVID-19: A systematic review and meta-analysis without cases duplication. Medicine 2020, 99, e23327. [Google Scholar] [CrossRef]
- Sungnak, W.; Huang, N.; Bécavin, C.; Berg, M.; Queen, R.; Litvinukova, M.; Talavera-López, C.; Maatz, H.; Reichart, D.; Sampaziotis, F.; et al. HCA Lung Biological Network. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat. Med. 2020, 26, 681–687. [Google Scholar] [CrossRef]
- Zeng, F.; Huang, Y.; Guo, Y.; Yin, M.; Chen, X.; Xiao, L.; Deng, G. Association of inflammatory markers with the severity of COVID-19: A meta-analysis. Int. J. Infect. Dis. 2020, 96, 467–474. [Google Scholar] [CrossRef]
- Gordon, C.J.; Tchesnokov, E.P.; Woolner, E.; Perry, J.K.; Feng, J.Y.; Porter, D.P.; Götte, M. Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J. Biol. Chem. 2020, 295, 6785–6797. [Google Scholar] [CrossRef] [PubMed]
- Beigel, J.H.; Tomashek, K.M.; Dodd, L.E.; Mehta, A.K.; Zingman, B.S.; Kalil, A.C.; Hohmann, E.; Chu, H.Y.; Luetkemeyer, A.; Kline, S.; et al. Remdesivir for the Treatment of COVID-19—Final Report. N. Engl. J. Med. 2020, 383, 1813–1826. [Google Scholar] [CrossRef] [PubMed]
- Spinner, C.D.; Gottlieb, R.L.; Criner, G.J.; Arribas López, J.R.; Cattelan, A.M.; Soriano Viladomiu, A.; Ogbuagu, O.; Malhotra, P.; Mullane, K.M.; Castagna, A.; et al. Effect of Remdesivir vs Standard Care on Clinical Status at 11 Days in Patients with Moderate COVID-19: A Randomized Clinical Trial. JAMA 2020, 324, 1048–1057. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.D.; Lye, D.C.B.; Hui, D.S.; Marks, K.M.; Bruno, R.; Montejano, R.; Spinner, C.D.; Galli, M.; Ahn, M.-Y.; Nahass, R.G.; et al. Remdesivir for 5 or 10 Days in Patients with Severe COVID-19. N. Engl. J. Med. 2020, 383, 1827–1837. [Google Scholar] [CrossRef] [PubMed]
- WHO Solidarity Trial Consortium; Pan, H.; Peto, R.; Henao-Restrepo, A.M.; Preziosi, M.P.; Sathiyamoorthy, V.; Abdool Karim, Q.; Alejandria, M.M.; Hernández García, C.; Kieny, M.-P.; et al. Repurposed Antiviral Drugs for COVID-19—Interim WHO Solidarity Trial Results. N. Engl. J. Med. 2021, 384, 497–511. [Google Scholar] [CrossRef] [PubMed]
- WHO Solidarity Trial Consortium. Remdesivir and three other drugs for hospitalised patients with COVID-19: Final results of the WHO Solidarity randomised trial and updated meta-analyses. Lancet 2022, 399, 1941–1953. [Google Scholar] [CrossRef]
- Vollmer, S.; Mateen, B.A.; Bohner, G.; Király, F.J.; Ghani, R.; Jonsson, P.; Cumbo, E.; Jonas, A.; Liwicki, S.; Yousef, A.; et al. Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness. BMJ 2020, 368, l6927, Correction in BMJ 2020, 368, 1312. [Google Scholar] [CrossRef]
- Syeda, H.B.; Syed, M.; Sexton, K.W.; Syed, M.A.; Walley, K.R.; Mavroudis, C.D.; Szolovits, P.; Castro, J.F.; Ghassemi, M.M.; Feng, M. Role of Machine Learning Techniques to Tackle the COVID-19 Crisis: Systematic Review. JMIR Med. Inform. 2021, 9, e23811. [Google Scholar] [CrossRef]
- Rasheed, J.; Jamil, A.; Hameed, A.A.; Al-Turjman, F.; Rasheed, A. COVID-19 in the Age of Artificial Intelligence: A Comprehensive Review. Interdiscip. Sci. 2021, 13, 153–175. [Google Scholar] [CrossRef]
- Chen, C.; Dong, D.; Qi, B.; Petersen, I.R.; Rabitz, H. Quantum Ensemble Classification: A Sampling-Based Learning Control Approach. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 1345–1359. [Google Scholar] [CrossRef]
- Chang, W.; Liu, Y.; Wu, X.; Xiao, Y.; Zhou, S.; Cao, W. A New Hybrid XGBSVM Model: Application for Hypertensive Heart Disease. IEEE Access 2019, 7, 175248–175258. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13 August 2016; pp. 785–794. [Google Scholar]
- Gil-Rojas, S.; Suárez, M.; Martínez-Blanco, P.; Villanueva-Llamas, H.; González-Borja, I.; Rodríguez-Arrastia, M.; Valle, L.; Páez, L.; Bernal, L.; Baños-Lara, M.D.R. Application of Machine Learning Techniques to Assess Alpha-Fetoprotein at Diagnosis of Hepatocellular Carcinoma. Int. J. Mol. Sci. 2024, 25, 1996. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Lopez, R.; Canul-Reich, J. Construction of Near-Optimal Axis-Parallel Decision Trees Using a Differential-Evolution-Based Approach. IEEE Access 2018, 6, 5548–5563. [Google Scholar] [CrossRef]
- Das, B.K.; Dutta, H.S. GFNB: Gini index-based Fuzzy Naive Bayes and blast cell segmentation for leukemia detection using multi-cell blood smear images. Med. Biol. Eng. Comput. 2020, 58, 2789–2803. [Google Scholar] [CrossRef] [PubMed]
- Ma, D.; Yuan, S.; Shang, J.; Zhang, Y.; Zhou, S.; Wang, J.; Li, C.; Chen, S.; Liu, X.; Gao, X. The Automatic Detection of Seizure Based on Tensor Distance And Bayesian Linear Discriminant Analysis. Int. J. Neural Syst. 2021, 31, 2150006. [Google Scholar] [CrossRef] [PubMed]
- Xing, W.; Bei, Y. Medical Health Big Data Classification Based on KNN Classification Algorithm. IEEE Access 2020, 8, 28808–28819. [Google Scholar] [CrossRef]
- Yu, S.; Li, X.; Zhang, X.; Wang, H. The OCS-SVM: An Objective-Cost-Sensitive SVM with Sample-Based Misclassification Cost Invariance. IEEE Access 2019, 7, 118931–118942. [Google Scholar] [CrossRef]
- Pei, J.; Han, J.; Tong, H. Data Mining: Concepts and Techniques; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Zhou, X.H.; McClish, D.K.; Obuchowski, N.A. Statistical Methods in Diagnostic Medicine; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Marko, M.; Pawliczak, R.; Kleczka, T.; Nowak, M.; Król, W.; Kowalski, M.L.; Szczeklik, A.; Musiał, J. Assessment of the available therapeutic approaches for severe COVID-19: A meta-analysis of randomized controlled trials. Sci. Rep. 2023, 13, 17114. [Google Scholar] [CrossRef]
- Kuno, T.; Miyamoto, Y.; Iwagami, M.; Ishimaru, M.; Takahashi, M.; Egorova, N.N.; Takahashi, T.; Saito, A.; Yamada, K.; Tanaka, Y. The association of remdesivir and in-hospital outcomes for COVID-19 patients treated with steroids. J. Antimicrob. Chemother. 2021, 76, 2690–2696. [Google Scholar] [CrossRef]
- European Medicines Agency. Veklury: European Public Assessment Report (EPAR). Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/veklury (accessed on 10 February 2024).
- Abubaker Bagabir, S.; Ibrahim, N.K.; Abubaker Bagabir, H.; Hashem Ateeq, R.; Ibrahim, A.M.; Waly, M.I.; Alotaibi, A.; Saquib, N.; Rehan, M. COVID-19 and Artificial Intelligence: Genome sequencing, drug development and vaccine discovery. J. Infect. Public Health 2022, 15, 289–296. [Google Scholar] [CrossRef]
- Jin, W.; Stokes, J.M.; Eastman, R.T.; Alwosaibai, K.; Rajpal, D.K.; Abdelnabi, R.; Griggs, D.A.; Ostrem, J.M.; Aertker, J.A.; Van Praagh, A.D.; et al. Deep learning identifies synergistic drug combinations for treating COVID-19. Proc. Natl. Acad. Sci. USA 2021, 118, e2105070118. [Google Scholar] [CrossRef] [PubMed]
- Augustin, Y.; Staines, H.M.; Velavan, T.P.; Kamarulzaman, A.; Kremsner, P.G.; Krishna, S.; De Motes, C.M.; Klumpp, K.; Renzoni, A.; Vinolo, E.; et al. Drug repurposing for COVID-19: Current evidence from randomized controlled adaptive platform trials and living systematic reviews. Br. Med. Bull. 2023, 147, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Basit, S.A.; Qureshi, R.; Musleh, S.; Haq, F.; Hussain, A.; Khan, S.A.; Zubair, H.; Afzal, M.S.; Sarwar, M.T.; Abubaker, S. COVID-19Base v3: Update of the knowledgebase for drugs and biomedical entities linked to COVID-19. Front. Public Health 2023, 11, 1125917. [Google Scholar] [CrossRef] [PubMed]
- Imtiaz, F.; Pasha, M.K.; Hassan, M.M.; Mirza, W.M.; Amin, M.T.; Hassan, M.U.; Rehman, A. A systematic review of RdRp of SARS-CoV-2 through artificial intelligence and machine learning utilizing structure-based drug design strategy. Turk. J. Chem. 2021, 46, 583–594. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elshafy, D.N.; Nadeem, R.; Nasraa, M.H.; Bahgat, M.M.; Abdel-Tawab, H.S.; Aljofan, M.; Bakr, E.M.; Elbendary, A.; Elberry, M.A.; Morsy, M.A.; et al. Analysis of the SARS-CoV-2 nsp12 P323L/A529V mutations: Coeffect in the transiently peaking lineage C.36.3 on protein structure and response to treatment in Egyptian records. Z. Naturforsch. C J. Biosci. 2024. [Google Scholar] [CrossRef] [PubMed]
- Grundeis, F.; Ansems, K.; Dahms, K.; van Dorn, J.; Gantier, M.; Jäger, H.; Larsson, L.; Roediger, R.; Smukowska-Gorynia, A.; de Waele, J.J.; et al. Remdesivir for the treatment of COVID-19. Cochrane Database Syst. Rev. 2023, 1, CD014962. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, B.R.; Dudhrejia, P.J.; Gambhir, R.M.; Rathod, M.M.; Nemade, A.; Manvar, K.; Balar, N.; Thakkar, M.; Dholariya, H.; Patel, H.; et al. Study of Efficacy of Injection Remdesivir in Patients of COVID-19. J. Assoc. Physicians India 2023, 71, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Libra, A.; Ciancio, N.; Sambataro, G.; Amaradio, M.D.; Germanà, A.; Gullo, M.; Trapani, G.; Sciacca, A.; Cacopardo, B.; Colomba, C.; et al. Use of Remdesivir in Patients Hospitalized for COVID-19 Pneumonia: Effect on the Hypoxic and Inflammatory State. Viruses 2023, 15, 2101. [Google Scholar] [CrossRef] [PubMed]
- Lavrentieva, A.; Kaimakamis, E.; Voutsas, V.; Bitzani, M.; Kostomitsopoulos, N.G.; Lavrentieva, E.; Poulas, K.; Malinovschi, A.; Sideri, A.; Papalois, A.; et al. An observational study on factors associated with ICU mortality in COVID-19 patients and critical review of the literature. Sci. Rep. 2023, 13, 7804. [Google Scholar] [CrossRef]
- Chen, C.; Fang, J.; Chen, S.; Sheng, X.; Wang, Y.; Wang, J.; Chen, S.; Pan, R.; Song, J.; Lin, X.; et al. The efficacy and safety of remdesivir alone and in combination with other drugs for the treatment of COVID-19: A systematic review and meta-analysis. BMC Infect. Dis. 2023, 23, 672. [Google Scholar] [CrossRef]
- Mozaffari, E.; Chandak, A.; Zhang, Z.; Islam, S.; Salciccioli, J.D.; Saraya, A.; For the Harvard COVID-19 Collaborative. Remdesivir Treatment in Hospitalized Patients with Coronavirus Disease 2019 (COVID-19): A Comparative Analysis of In-hospital All-cause Mortality in a Large Multicenter Observational Cohort. Clin. Infect. Dis. 2022, 75, e450–e458. [Google Scholar] [CrossRef] [PubMed]
- Paules, C.I.; Gallagher, S.K.; Rapaka, R.R.; Davey, R.T.; Doernberg, S.B.; Grossberg, R.; Hynes, N.A.; Ponce, P.O.; Short, W.R.; Voell, J.; et al. Remdesivir for the Prevention of Invasive Mechanical Ventilation or Death in Coronavirus Disease 2019 (COVID-19): A Post Hoc Analysis of the Adaptive COVID-19 Treatment Trial-1 Cohort Data. Clin. Infect. Dis. 2022, 74, 1260–1264. [Google Scholar] [CrossRef] [PubMed]
- Amstutz, A.; Speich, B.; Mentré, F.; Geist, F.; Smith, J.; Stevens, K.; Albertson, T.; Wang, L.; Russo, M.; Wang, M.; et al. Effects of remdesivir in patients hospitalised with COVID-19: A systematic review and individual patient data meta-analysis of randomised controlled trials. Lancet Respir. Med. 2023, 11, 453–464, Correction in Lancet Respir. Med. 2023, 11, e77. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Lu, T.L.; Lin, L.; Chen, S.; Yang, Y.; Lee, C.; Lin, C.; Wang, W.; Huang, Y.; Wang, H.; et al. Remdesivir Treatment Lacks the Effect on Mortality Reduction in Hospitalized Adult COVID-19 Patients Who Required High-Flow Supplemental Oxygen or Invasive Mechanical Ventilation. Medicina 2023, 59, 1027. [Google Scholar] [CrossRef] [PubMed]
- Kaka, A.S.; MacDonald, R.; Linskens, E.J.; Salzman, S.M.; Bass, S.N.; Winthrop, C.; Kwong, L.; Liu, G.; Wang, A.; Johnson, C.; et al. Major Update 2: Remdesivir for Adults with COVID-19: A Living Systematic Review and Meta-analysis for the American College of Physicians Practice Points. Ann. Intern. Med. 2022, 175, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Zhang, R.; Zeng, H.; Wu, X.; Chen, T.; Zhang, Y.; Zhang, L.; Wang, Q.; Wang, S.; Chen, J.; et al. Impact of some antiviral drugs on health care utilization for patients with COVID-19: A systematic review and meta-analysis. Expert Rev. Anti-Infect. Ther. 2023, 21, 993–1009. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C.; Patterson, T.F.; Mehta, A.K.; Tomashek, K.M.; Wolfe, C.R.; Ghazaryan, V.; Marconi, V.C.; Kwon, J.H.; Zhao, Y.; Lu, P.; et al. Baricitinib plus Remdesivir for Hospitalized Adults with COVID-19. N. Engl. J. Med. 2021, 384, 795–807. [Google Scholar] [CrossRef]
- Hariharan, A.; Hakeem, A.R.; Radhakrishnan, S.; Reddy, M.S.; Rela, M.; Reddy, N.; Anitha, P.; Antony, S.; Krishna, V.; Abraham, A.; et al. The Role and Therapeutic Potential of NF-kappa-B Pathway in Severe COVID-19 Patients. Inflammopharmacology 2021, 29, 91–100. [Google Scholar] [CrossRef]
- Osuchowski, M.F.; Winkler, M.S.; Skirecki, T.; Pathak, V.; Stahn, R.; Sharma, H.S.; Orhun, G.; De Almeida, D.V.; Gonçalves, G.M.; Smyth, S.S.; et al. The COVID-19 puzzle: Deciphering pathophysiology and phenotypes of a new disease entity. Lancet Respir. Med. 2021, 9, 622–642. [Google Scholar] [CrossRef]
- Ali, K.; Azher, T.; Baqi, M.; Ahmed, S.; Zain, M.; Mubeen, M.; Hassan, A.; Siddique, M.S.; Hussain, M.; Shah, S.H.; et al. Remdesivir for the treatment of patients in hospital with COVID-19 in Canada: A randomized controlled trial. CMAJ 2022, 194, E242–E251. [Google Scholar] [CrossRef]
- Khosrow-Pour, M. Advanced Methodologies and Technologies in Network Architecture, Mobile Computing, and Data Analytics; IGI Global: Hershey, PA, USA, 2018. [Google Scholar]
- Bottino, F.; Tagliente, E.; Pasquini, L.; Mauri, G.; Zorzetto, L.; Grassi, A.; Fusco, F.; Gramegna, A.; Blasi, F.; Aliberti, S.; et al. COVID Mortality Prediction with Machine Learning Methods: A Systematic Review and Critical Appraisal. J. Pers. Med. 2021, 11, 893. [Google Scholar] [CrossRef] [PubMed]
- Adamidi, E.S.; Mitsis, K.; Nikita, K.S. Artificial intelligence in clinical care amidst COVID-19 pandemic: A systematic review. Comput. Struct. Biotechnol. J. 2021, 19, 2833–2850. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Meng, F.; Yan, G.; Yan, H.; Chai, B.; Song, F. Diagnostic classification of cancers using extreme gradient boosting algorithm and multi-omics data. Comput. Biol. Med. 2020, 121, 103761. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.J.; Song, J.Y.; Hyun, H.; Kim, M.J.; Kim, S.J.; Lee, S.W.; Kim, E.J.; Choi, J.; Lee, S.O.; Kim, Y.S.; et al. Prognostic factors of 30-day mortality in patients with COVID-19 pneumonia under standard remdesivir and dexamethasone treatment. Medicine 2022, 101, e30474. [Google Scholar] [CrossRef] [PubMed]
- Amiri, P.; Montazeri, M.; Ghasemian, F.; Faraji, M.R.; Derakhshan, F.; Tasharrofi, B.; Ahmadi, M.; Dehghanian, A.; Farahani, M.S.; Khorrami, R.; et al. Prediction of mortality risk and duration of hospitalization of COVID-19 patients with chronic comorbidities based on machine learning algorithms. Digit. Health 2023, 9, 20552076231170493. [Google Scholar] [CrossRef] [PubMed]
- Georgakopoulou, V.E.; Gkoufa, A.; Makrodimitri, S.; Koutsikou, A.; Vassilopoulos, D.; Fasoulakis, Z.; Serafeim, K.; Chantzichristos, V.; Kosmidis, C.; Tzouvelekis, A.; et al. Early 3 day course of remdesivir for the prevention of the progression to severe COVID 19 in the elderly: A single centre, real life cohort study. Exp. Ther. Med. 2023, 26, 462. [Google Scholar] [CrossRef]
- Vaid, A.; Somani, S.; Russak, A.J.; Matthews, D.T.; Patel, M.; Jones, A.R.; Albano, J.; Venturelli, L.; Pawlowski, C.; Smith, C.M.; et al. Machine Learning to Predict Mortality and Critical Events in a Cohort of Patients with COVID-19 in New York City: Model Development and Validation. J. Med. Internet Res. 2020, 22, e24018. [Google Scholar] [CrossRef]
- Aktar, S.; Talukder, A.; Ahamad, M.M.; Islam, M.A.; Hasan, M.M.; Ashraf, S. Machine Learning Approaches to Identify Patient Comorbidities and Symptoms That Increased Risk of Mortality in COVID-19. Diagnostics 2021, 11, 1383. [Google Scholar] [CrossRef]
- Casillas, N.; Ramón, A.; Torres, A.M.; Blasco, P.; Mateo, J. Predictive Model for Mortality in Severe COVID-19 Patients across the Six Pandemic Waves. Viruses 2023, 15, 2184. [Google Scholar] [CrossRef]
- Wei, S.; Xiong, D.; Wang, J.; Liang, X.; Wang, J.; Chen, Y. The accuracy of the National Early Warning Score 2 in predicting early death in prehospital and emergency department settings: A systematic review and meta-analysis. Ann. Transl. Med. 2023, 11, 95. [Google Scholar] [CrossRef]
- Richardson, D.; Faisal, M.; Fiori, M.; Beatson, K.; Mohammed, M.; Thangaratinam, S. Use of the first National Early Warning Score recorded within 24 hours of admission to estimate the risk of in-hospital mortality in unplanned COVID-19 patients: A retrospective cohort study. BMJ Open 2021, 11, e043721. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W. Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 2020, 71, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Terkes, V.; Lisica, K.; Marusic, M.; Verunica, N.; Tolic, A.; Morovic, M. Remdesivir Treatment in Moderately Ill COVID-19 Patients: A Retrospective Single Center Study. J. Clin. Med. 2022, 11, 5066. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gao, W.; Guo, W.; Liu, J.; Zhang, Z.; Feng, L.; Li, Y.; Gao, J.; Guo, X.; Yu, M. Prominent coagulation disorder is closely related to inflammatory response and could be as a prognostic indicator for ICU patients with COVID-19. J. Thromb. Thrombolysis 2020, 50, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Comoglu, S.; Kant, A. Does the Charlson comorbidity index help predict the risk of death in COVID-19 patients? North Clin. Istanb. 2022, 9, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Kurien, S.S.; David, R.; Varma, R.P.; Dev, A.S.; Chellappan, A.; Yadev, I.P. Correlation Between Biomarkers and Age-Adjusted Charlson Comorbidity Index in Patients with COVID-19: A Cross-Sectional Study in a Tertiary Care Center in South India. Cureus 2023, 15, e36000. [Google Scholar] [CrossRef] [PubMed]
- Carannante, M.; D’Amato, V.; Iaccarino, G.; Del Buono, M.G.; Di Lieto, A.; Porta, G.; Nazzaro, M.S.; Cecchetti, M.; Muscogiuri, G.; Ciccarelli, M. The Future Evolution of the Mortality Acceleration Due to the COVID-19: The Charlson Comorbidity Index in Stochastic Setting. Front. Cardiovasc. Med. 2022, 9, 938086. [Google Scholar] [CrossRef] [PubMed]
- Raad, I.I.; Hachem, R.; Masayuki, N.; Datoguia, T.; Dagher, H.; Jiang, Y.; Subbiah, V.; Siddiqui, B.; Bayle, A.; Somer, R.; et al. International multicenter study comparing COVID-19 in patients with cancer to patients without cancer: Impact of risk factors and treatment modalities on survivorship. Elife 2023, 12, e81127. [Google Scholar] [CrossRef]
- Mikulska, M.; Testi, D.; Russo, C.; Balletto, E.; Sepulcri, C.; Bussini, L.; Dentone, C.; Magne, F.; Policarpo, S.; Campoli, C.; et al. Outcome of early treatment of SARS-CoV-2 infection in patients with haematological dis-orders. Br. J. Haematol. 2023, 201, 628–639. [Google Scholar] [CrossRef]
- Alharbi, A.H.M.; Rabbani, S.I.; Asdaq, S.M.B.; Alamri, A.S.; Alhomrani, M. Analysis of potential risk factors associated with COVID-19 and hospital-ization. Front. Public Health 2022, 10, 921953. [Google Scholar] [CrossRef]
- Matthay, M.A.; Arabi, Y.; Arroliga, A.C.; Bernard, G.; Bersten, A.D.; Brochard, L.J.; Calfee, C.S.; Combes, A.; Daniel, B.M.; Ferguson, N.D.; et al. A New Global Definition of Acute Respiratory Distress Syndrome. Am. J. Respir. Crit. Care Med. 2024, 209, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Georgakopoulou, V.E.; Vlachogiannis, N.I.; Basoulis, D.; Gavrielatos, G.; Kokkoris, S.; Kottoros, D.; Malisiovas, N.; Georgakopoulou, P.; Papaioannou, E.; Kastrinakis, S. A Simple Prognostic Score for Critical COVID-19 Derived from Patients without Comorbidities Performs Well in Unselected Patients. J. Clin. Med. 2022, 11, 1810. [Google Scholar] [CrossRef] [PubMed]
- Brosh-Nissimov, T.; Hussein, K.; Wiener-Well, Y.; Smetana, Z.; Paz, A.; Rahav, G.; Rosenfeld, R.; Haviv, Y.S.; Amit, S.; Lustig, Y. Hospitalized Patients with Severe Coronavirus Disease 2019 During the Omicron Wave in Israel: Benefits of a Fourth Vaccine Dose. Clin. Infect. Dis. 2023, 76, e234–e239. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, H.; Kawase, J.; Hayashi, M.; Imaizumi, K.; Ito, Y.; Okazawa, M. COVID-19 symptom-onset to diagnosis and diagnosis to treatment intervals are significant predictors of disease progression and hospitalization in high-risk patients: A real world analysis. Respir. Investig. 2023, 61, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Kuno, T.; Sahashi, Y.; Kawahito, S.; Takahashi, M.; Iwagami, M.; Egorova, N.N.; Agius, R. Prediction of in-hospital mortality with machine learning for COVID-19 patients treated with steroid and remdesivir. J. Med. Virol. 2022, 94, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Banoei, M.M.; Rafiepoor, H.; Zendehdel, K.; Razavi, A.N.; Bagheri, N.; Aghamohammadi, M.; Afshari, M.; Aryan, R.S.; Ghazisaeedi, M.; Zolala, F. Unraveling complex relationships between COVID-19 risk factors using machine learning based models for predicting mortality of hospitalized patients and identification of high-risk group: A large retrospective study. Front. Med. 2023, 10, 1170331. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Gutiérrez, B.; Del Toro, M.D.; Borobia, A.M.; Carcas, A.J.; Jarrín, I.; Yllescas, M.; Abella, A.; Abad, A.M.; El Bouzidi, K.; de Benito, N. Identification and validation of clinical phenotypes with prognostic implications in patients admitted to hospital with COVID-19: A multicentre cohort study. Lancet Infect. Dis. 2021, 21, 783–792. [Google Scholar] [CrossRef]
- Chen, H.; Xie, J.; Su, N.; Wang, L.; Wang, J.; Yu, J.; Chen, Z.; Qin, Q.; Fang, H.; Liu, X. Corticosteroid Therapy Is Associated with Improved Outcome in Critically Ill Patients with COVID-19 with Hyperinflammatory Phenotype. Chest 2021, 159, 1793–1802. [Google Scholar] [CrossRef]
- Ramón, A.; Zaragozá, M.; Torres, A.M.; Blasco, P.; Mateo, J.; Díaz, R.; Gómez, A.; Galiana, R.; Pradana, F.; Nadal, F. Application of Machine Learning in Hospitalized Patients with Severe COVID-19 Treated with Tocilizumab. J. Clin. Med. 2022, 11, 4729. [Google Scholar] [CrossRef]
Methods | Balanced Accuracy | Recall | Precision | F1 Score |
---|---|---|---|---|
SVM | 84.80 ± 0.75 | 84.90 ± 0.73 | 84.20 ± 0.74 | 84.55 ± 0.73 |
BLDA | 81.61 ± 0.84 | 81.70 ± 0.81 | 81.03 ± 0.82 | 81.36 ± 0.81 |
DT | 86.25 ± 0.71 | 86.35 ± 0.70 | 85.63 ± 0.71 | 85.99 ± 0.70 |
GNB | 76.80 ± 0.94 | 76.89 ± 0.93 | 76.25 ± 0.95 | 76.57 ± 0.94 |
KNN | 89.43 ± 0.60 | 89.54 ± 0.58 | 88.79 ± 0.59 | 89.16 ± 0.58 |
XGB | 95.45 ± 0.46 | 95.56 ± 0.45 | 94.77 ± 0.47 | 95.17 ± 0.44 |
Methods | AUC | MCC | DYI | Kappa |
SVM | 0.84 ± 0.02 | 75.25 ± 0.75 | 84.80 ± 0.73 | 75.49 ± 0.74 |
BLDA | 0.81 ± 0.03 | 72.41 ± 0.82 | 81.61 ± 0.81 | 72.65 ± 0.81 |
DT | 0.86 ± 0.02 | 76.53 ± 0.71 | 86.25 ± 0.71 | 76.78 ± 0.72 |
GNB | 0.76 ± 0.03 | 68.15 ± 0.95 | 76.80 ± 0.94 | 68.37 ± 0.94 |
KNN | 0.89 ± 0.02 | 79.35 ± 0.57 | 89.43 ± 0.58 | 79.62 ± 0.58 |
XGB | 0.95 ± 0.02 | 84.70 ± 0.42 | 95.45 ± 0.46 | 84.98 ± 0.43 |
Methods | Balanced Accuracy | Recall | Precision | F1 Score |
---|---|---|---|---|
SVM | 83.80 ± 0.77 | 83.89 ± 0.76 | 83.20 ± 0.78 | 83.54 ± 0.76 |
BLDA | 80.54 ± 0.85 | 80.64 ± 0.84 | 79.94 ± 0.86 | 80.30 ± 0.85 |
DT | 85.67 ± 0.73 | 85.61 ± 0.72 | 84.90 ± 0.75 | 85.25 ± 0.74 |
GNB | 75.41 ± 0.98 | 75.50 ± 0.95 | 74.86 ± 0.96 | 75.18 ± 0.97 |
KNN | 88.53 ± 0.66 | 88.61 ± 0.64 | 87.85 ± 0.67 | 88.24 ± 0.68 |
XGB | 94.24 ± 0.48 | 94.35 ± 0.44 | 93.57 ± 0.46 | 93.96 ± 0.47 |
Methods | AUC | MCC | DYI | Kappa |
SVM | 0.83 ± 0.02 | 74.35 ± 0.74 | 83.80 ± 0.77 | 74.60 ± 0.73 |
BLDA | 0.80 ± 0.03 | 71.47 ± 0.83 | 80.54 ± 0.85 | 71.71 ± 0.84 |
DT | 0.85 ± 0.03 | 75.89 ± 0.71 | 85.51 ± 0.73 | 76.13 ± 0.71 |
GNB | 0.75 ± 0.03 | 66.91 ± 0.92 | 75.43 ± 0.95 | 67.15 ± 0.93 |
KNN | 0.88 ± 0.02 | 78.53 ± 0.63 | 88.51 ± 0.66 | 78.79 ± 0.64 |
XGB | 0.94 ± 0.02 | 83.62 ± 0.41 | 94.24 ± 0.45 | 83.90 ± 0.42 |
Variable | Cohort |
---|---|
Number of patients | 252 |
Age (years) (IQR) | 77 (66.7–85.2) |
Male, n (yes %) | 147 (58.3) |
Hospital admission (days) after remdesivir administration (IQR) | 8 (5–12) |
Exitus, n (yes %) | 34 (13.5) |
Patients with duration of remdesivir treatment for 4–5 days, n (yes %) | 194 (76.9) |
Patients with duration of remdesivir treatment > 5 days, n (yes %) | 14 (5.6) |
Duration (days) from onset of symptoms to microbiological confirmation (IQR) | 2 (1–4) |
Oxygen therapy, n (yes %) | 188 (74.6) |
Patients who need admission to the ICU, n (yes %) | 14 (5.6) |
Limitation of life support treatment, n (yes %) | 47 (18.6) |
IMV, n (yes %) | 10 (3.9) |
Baseline situation at the start of remdesivir:
| |
96 (38.1) | |
156 (61.9) | |
Hypertension, n (yes %) | 158 (62.7) |
Diabetes, n (yes %) | 89 (35.3) |
Dyslipemia, n (yes %) | 112 (44.4) |
Smoker, n (yes %) | 55 (21.8) |
Obesity, n (yes %) | 45 (17.8) |
COPD, n (yes %) | 35 (13.9) |
Heart failure, n (yes %) | 51 (20.2) |
Ischemic heart disease, n (yes %) | 46 (18.2) |
Chronic kidney disease, n (yes %) | 26 (10.3) |
Chronic neurological or neurodegenerative disease, n (yes %) | 62 (24.6) |
Mental health disorder, n (yes %) | 60 (23.8) |
Active hematological or oncological neoplasia, n (yes %) | 63 (25.0) |
Patients with ≥3 comorbidities, n (yes %) | 193 (76.6) |
Fever, n (yes %) | 148 (58.7) |
Cough, n (yes %) | 156 (61.9) |
Dyspnea, n (yes %) | 158 (62.7) |
Asthenia, n (yes %) | 106 (42.1) |
Presence of flu and/or coinfection, n (yes %) | 29 (11.5) |
Angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, n (yes %) | 109 (43.2) |
Antibiotics, n (yes %) | 234 (92.8) |
Immunosuppressants and/or immunomodulators, n (yes %)
| 197 (78.2) |
124 (49.2) | |
33 (13.1) | |
32 (12.7) | |
Albumin (g/dL) (IQR) | 3.4 (2.9–3.6) |
Hemoglobin (g/dL) (IQR) | 12.4 (10.9–13.7) |
Troponin (ng/mL) (IQR) | 12 (7–27) |
CRP (mg/dL) (IQR) | 6.9 (2.4–14.1) |
LDH (U/L) (IQR) | 463 (359.5–609.5) |
Ferritin (µg/L) (IQR) | 413 (193–782) |
D-dimer (ng/mL) (IQR) | 878 (499.7–1534.2) |
Creatinina (mg/dL) (IQR) | 0.8 (0.6–1.1) |
CK (U/L) (IQR) | 98.5 (51.0–192.0) |
PAFI (IQR) | 323.8 (257.0–368.0) |
Lymphocytes (109/L) (IQR) | 0.8 (0.6–1.2) |
Bilateral lung radiological status, n (yes %) | 98 (38.9) |
Ground-glass opacity lung injury, n (yes %) | 69 (27.4) |
Patchy lung density, n (yes %) | 64 (25.4) |
Patients with ≥3 doses of COVID-19 vaccine, n (yes %) | 199 (78.9) |
Acute Respiratory Distress Syndrome, n (yes %) | 56 (22.2) |
Clinical status on day 14 after the first administration of remdesivir
| |
23 (9.1) | |
5 (1.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramón, A.; Bas, A.; Herrero, S.; Blasco, P.; Suárez, M.; Mateo, J. Personalized Assessment of Mortality Risk and Hospital Stay Duration in Hospitalized Patients with COVID-19 Treated with Remdesivir: A Machine Learning Approach. J. Clin. Med. 2024, 13, 1837. https://doi.org/10.3390/jcm13071837
Ramón A, Bas A, Herrero S, Blasco P, Suárez M, Mateo J. Personalized Assessment of Mortality Risk and Hospital Stay Duration in Hospitalized Patients with COVID-19 Treated with Remdesivir: A Machine Learning Approach. Journal of Clinical Medicine. 2024; 13(7):1837. https://doi.org/10.3390/jcm13071837
Chicago/Turabian StyleRamón, Antonio, Andrés Bas, Santiago Herrero, Pilar Blasco, Miguel Suárez, and Jorge Mateo. 2024. "Personalized Assessment of Mortality Risk and Hospital Stay Duration in Hospitalized Patients with COVID-19 Treated with Remdesivir: A Machine Learning Approach" Journal of Clinical Medicine 13, no. 7: 1837. https://doi.org/10.3390/jcm13071837
APA StyleRamón, A., Bas, A., Herrero, S., Blasco, P., Suárez, M., & Mateo, J. (2024). Personalized Assessment of Mortality Risk and Hospital Stay Duration in Hospitalized Patients with COVID-19 Treated with Remdesivir: A Machine Learning Approach. Journal of Clinical Medicine, 13(7), 1837. https://doi.org/10.3390/jcm13071837