New Axially Expandable Oblique Cage Designed for Anterior to Psoas (ATP) Approach: Indications-Surgical Technique and Clinical-Radiological Outcomes in Patients with Symptomatic Degenerative Disc Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patients’ Population
2.3. Surgical Technique
2.4. Clinical and Radiological Outcomes
2.5. Statistical Analysis
3. Results
3.1. Patients and Operative Results
3.2. Clinical and Radiological Outcomes
3.3. Complications and Reoperation Rate
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ricciardi, L.; Piazza, A.; Capobianco, M.; Della Pepa, G.M.; Miscusi, M.; Raco, A.; Scerrati, A.; Somma, T.; Lofrese, G.; Sturiale, C.L. Lumbar interbody fusion using oblique (OLIF) and lateral (LLIF) approaches for degenerative spine disorders: A meta-analysis of the comparative studies. Eur. J. Orthop. Surg. Traumatol. 2021, 33, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Allain, J.; Dufour, T. Anterior lumbar fusion techniques: ALIF, OLIF, DLIF, LLIF, IXLIF. Orthop. Traumatol. Surg. Res. 2020, 106, S149–S157. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Li, X.; Zhou, H.; Jiang, W. Development and Application of Oblique Lumbar Interbody Fusion. Orthop. Surg. 2020, 12, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, L.; Xu, X.-H.; Cao, M.-D.; Lu, H.; Zhang, K.-B. The OLIF working corridor based on magnetic resonance imaging: A retrospective research. J. Orthop. Surg. Res. 2020, 15, 141. [Google Scholar] [CrossRef]
- Mobbs, R.J.; Phan, K.; Malham, G.; Seex, K.; Rao, P.J. Lumbar interbody fusion: Techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF. J. Spine Surg. 2015, 1, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Hadjipavlou, A.G.; Tzermiadianos, M.N.; Bogduk, N.; Zindrick, M.R. The pathophysiology of disc degeneration: A critical review. J. Bone Jt. Surgery. Br. Vol. 2008, 90, 1261–1270. [Google Scholar] [CrossRef] [PubMed]
- Glowinski, S.; Łosiński, K.; Kowiański, P.; Waśkow, M.; Bryndal, A.; Grochulska, A. Inertial Sensors as a Tool for Diagnosing Discopathy Lumbosacral Pathologic Gait: A Preliminary Research. Diagnostics 2020, 10, 342. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Easley, K.; Lee, J.-S.; Hong, J.-Y.; Virk, M.; Hsieh, P.C.; Yoon, S.T. Comparison of Minimally Invasive Versus Open Transforaminal Interbody Lumbar Fusion. Glob. Spine J. 2020, 10, 143S–150S. [Google Scholar] [CrossRef] [PubMed]
- Lak, A.M.; Lamba, N.; Pompilus, F.; Yunusa, I.; King, A.; Sultan, I.; Amamoo, J.; Al-Otaibi, N.M.; Alasmari, M.; Zaghloul, I.; et al. Minimally invasive versus open surgery for the correction of adult degenerative scoliosis: A systematic review. Neurosurg. Rev. 2020, 44, 659–668. [Google Scholar] [CrossRef]
- Trungu, S.; Forcato, S.; Bruzzaniti, P.; Fraschetti, F.; Miscusi, M.; Cimatti, M.; Raco, A. Minimally Invasive Surgery for the Treatment of Traumatic Monosegmental Thoracolumbar Burst Fractures: Clinical and Radiologic Outcomes of 144 Patients with a 6-year Follow-Up Comparing Two Groups with or without Intermediate Screw. Clin. Spine Surg. 2019, 32, E171–E176. [Google Scholar] [CrossRef]
- Aghayev, K.; Vrionis, F.D. Mini-open lateral retroperitoneal lumbar spine approach using psoas muscle retraction technique. Technical report and initial results on six patients. Eur. Spine J. 2013, 22, 2113–2119. [Google Scholar] [CrossRef] [PubMed]
- Brancadoro, M.; Tognarelli, S.; Ciuti, G.; Menciassi, A. A novel magnetic-driven tissue retraction device for minimally invasive surgery. Minim. Invasive Ther. Allied Technol. 2017, 26, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Lofrese, G.; Mongardi, L.; Cultrera, F.; Trapella, G.; De Bonis, P. Surgical treatment of intraforaminal/extraforaminal lumbar disc herniations: Many approaches for few surgical routes. Acta Neurochir. 2017, 159, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.R.; Wiechert, K.; Wang, J.C. Beyond Dogma: The Three E Test for New Technologies. Glob. Spine J. 2024, 14, 1107–1109. [Google Scholar] [CrossRef] [PubMed]
- Gragnaniello, C.; Seex, K.A. Anterior to psoas fusion of the lumbar spine. Neurosurg. Focus 2013, 35, Video13. [Google Scholar] [CrossRef] [PubMed]
- Miscusi, M.; Trungu, S.; Ricciardi, L.; Forcato, S.; Ramieri, A.; Raco, A. The anterior-to-psoas approach for interbody fusion at the L5-S1 segment: Clinical and radiological outcomes. Neurosurg. Focus 2020, 49, E14. [Google Scholar] [CrossRef] [PubMed]
- Gragnaniello, C.; Seex, K. Anterior to psoas (ATP) fusion of the lumbar spine: Evolution of a technique facilitated by changes in equipment. J. Spine Surg. 2016, 2, 256–265. [Google Scholar] [CrossRef]
- Meyerding, H.W. Spondylolisthesis; surgical fusion of lumbosacral portion of spinal column and interarticular facets; use of autogenous bone grafts for relief of disabling backache. J. Int. Coll. Surg. 1956, 26, 566–591. [Google Scholar]
- Schizas, C.; Theumann, N.; Burn, A.; Tansey, R.; Wardlaw, D.; Smith, F.W.; Kulik, G. Qualitative grading of severity of lumbar spinal stenosis based on the morphology of the dural sac on magnetic resonance images. Spine 2010, 35, 1919–1924. [Google Scholar] [CrossRef]
- Proietti, L.; Perna, A.; Ricciardi, L.; Fumo, C.; Santagada, D.A.; Giannelli, I.; Tamburrelli, F.C.; Leone, A. Radiological evaluation of fusion patterns after lateral lumbar interbody fusion: Institutional case series. Radiol. Med. 2021, 126, 250–257. [Google Scholar] [CrossRef]
- Gandhi, S.V.; Dugan, R.; Farber, S.H.; Godzik, J.; Alhilali, L.; Uribe, J.S. Anatomical positional changes in the lateral lumbar interbody fusion. Eur. Spine J. 2022, 31, 2220–2226. [Google Scholar] [CrossRef] [PubMed]
- DenHaese, R.; Hill, C.; Weinreb, J.H. Lateral Lumbar Interbody Fusion L1–2, L2–3. In The Resident’s Guide to Spine Surgery; O’Brien, J.R., Kalantar, S.B., Drazin, D., Sandhu, F.A., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 171–176. [Google Scholar] [CrossRef]
- Miscusi, M.; Ramieri, A.; Forcato, S.; Giuffrè, M.; Trungu, S.; Cimatti, M.; Pesce, A.; Familiari, P.; Piazza, A.; Carnevali, C.; et al. Comparison of pure lateral and oblique lateral inter-body fusion for treatment of lumbar degenerative disk disease: A multicentric cohort study. Eur. Spine J. 2018, 27, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Inoue, G.; Saito, W.; Miyagi, M.; Imura, T.; Shirasawa, E.; Ikeda, S.; Mimura, Y.; Kuroda, A.; Yokozeki, Y.; Inoue, S.; et al. Prevalence and location of endplate fracture and subsidence after oblique lumbar interbody fusion for adult spinal deformity. BMC Musculoskelet. Disord. 2021, 22, 880. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhang, C.; Cheng, C.; Jian, F.; Wu, H. Radiographic and Clinical Outcomes following Combined Oblique Lumbar Interbody Fusion and Lateral Instrumentation for the Treatment of Degenerative Spine Deformity: A Preliminary Retrospective Study. BioMed Res. Int. 2019, 2019, 5672162. [Google Scholar] [CrossRef] [PubMed]
- Dar, G.; Masharawi, Y.; Peleg, S.; Steinberg, N.; May, H.; Medlej, B.; Peled, N.; Hershkovitz, I. The Epiphyseal Ring: A Long Forgotten Anatomical Structure with Significant Physiological Function. Spine 2011, 36, 850–856. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, H.; Chen, Y.; Liu, J.; Chen, J.; Zhang, T.; Zhou, Z.; Fan, S.; Dolan, P.; Adams, M.A.; et al. Importance of the epiphyseal ring in OLIF stand-alone surgery: A biomechanical study on cadaveric spines. Eur. Spine J. 2021, 30, 79–87. [Google Scholar] [CrossRef]
Expandable Cage Group | Control Group | p-Value | |
---|---|---|---|
Total No. of Patients | 28 | 28 | |
Mean (SD) age, years (range) | 64.2 ± 7.2 (42–81) | 63.3 ± 7.2 (48–74) | 0.64 |
Mean (SD) follow-up, months (range) | 31.2 ± 10.8 (13–37) | 34.2 ± (14–48) | 0.08 |
Sex | |||
Female | 12 (42.9%) | 13 (46.4%) | 0.79 |
Male | 16 (57.1%) | 15 (53.6%) | 0.79 |
ASA Classification | |||
I | 3 (10.7%) | 4 (14.3%) | 0.69 |
II | 9 (32.2%) | 10 (35.7%) | 0.78 |
III | 14 (50%) | 11 (39.3%) | 0.42 |
IV | 2 (7.1%) | 3 (10.7%) | 0.64 |
V | 0 | 0 | 1 |
Clinical presentation * | |||
Lower back pain | 28 (100%) | 28 (100%) | 1 |
Radiculopathy | 11 (39.3%) | 12 (42.9%) | 0.79 |
Neurogenic claudication | 6 (21.4%) | 8 (28.6%) | 0.54 |
Comorbidity * | |||
Cardiovascular diseases | 17 (60.7%) | 19 (67.9%) | 0.58 |
Diabetes mellitus | 10 (35.7%) | 7 (25%) | 0.39 |
Obesity | 8 (28.6%) | 6 (21.4%) | 0.54 |
Respiratory disease | 6 (21.4%) | 5 (17.9%) | 0.74 |
Smokers | 13 (46.4%) | 15 (53.6%) | 0.559 |
Expandable Cage Group | Control Group | p Value (Exp vs. Control) | |
---|---|---|---|
Level | |||
L2-L3 | 6 (15%) | 5 (13.2%) | |
L3-L4 | 9 (22.5%) | 7 (18.4%) | |
L4-L5 | 21 (52.5%) | 23 (60.5%) | |
L5-S1 | 4 (10%) | 3 (7.9%) | |
Total levels treated | 40 | 38 | |
Levels treated | |||
One level | 19 (67.9%) | 21 (75%) | |
Two levels | 6 (21.4%) | 4 (14.3%) | |
Three levels | 3 (10.7%) | 3 (10.7%) | |
Radiological presentation * | |||
DDD | 19 (67.8%) | 18 (64.3%) | |
Spondylolisthesis | 12 (42.8%) | 10 (43.7%) | |
ASD | 10 (35.7%) | 9 (32.1%) | |
Type of surgery | |||
Stand-alone | 12 (42.9%) | 9 (32.1%) | 0.4 |
With posterior instrumentation | 16 (57.1%) | 19 (67.9%) | 0.41 |
Mean length of surgery (range) | 89 ± 14.8 min (60–210) | 86 ± 15.1 min (50–190) | 0.46 |
Mean length of hospital stay (range) | 2 days (1–6) | 2 days (1–4) | 1 |
Mean time of postoperative mobilization (range) | 1 day (1–4) | 1 day (1–3) | 1 |
Intraoperative blood loss (range) | 100 ± 16.2 mL (40–200) | 94 ± 14.8 mL (60–180) | 0.15 |
Complications | |||
Superficial wound infection | 1 (3.6%) | 1 (3.6%) | 1 |
Peritoneum perforation | 1 (3.6%) | 0 | 0.32 |
Subsidence ° | 2 (5%) | 8 (21.1%) | 0.035 |
Reoperation Rate | 1 (3.6%) | 3 (10.7%) | 0.3 |
Expandable Cage Group | Control Group | p Value (Exp vs. Control) | |
---|---|---|---|
MEAN ± SD | |||
Visual Analog Scale (VAS) | |||
Preoperative | 8.3 ± 1.1 | 7.9 ± 1.0 | 0.16 |
Postoperative (6 weeks) | 3.3 ± 1.2 | 3.1 ± 1.3 | 0.55 |
Follow-up | 2.7 ± 0.8 | 2.4 ± 0.9 | 0.19 |
p value (pre vs. follow-up) | <0.05 | <0.05 | |
Oswestry Disability Index (ODI) | |||
Preoperative | 53.2 ± 13.1 | 54.2 ± 12.8 | 0.77 |
Postoperative (6 weeks) | 25.1 ± 8.1 | 26.5 ± 7.5 | 0.51 |
Follow-up | 19.1 ± 6.1 | 22.5 ± 6.3 | 0.045 |
p value (pre vs. follow-up) | <0.05 | <0.05 | |
SF-36 (Physical and Mental) | |||
Preoperative | 40.1 ± 6.0 | 39.1 ± 5.7 | 0.53 |
Postoperative (6 weeks) | 63.8 ± 7.7 | 63.6 ± 7.1 | 0.92 |
Follow-up | 72.9 ± 6.4 | 70.4 ± 6.7 | 0.16 |
p value (pre vs. follow-up) | <0.05 | <0.05 |
Expandable Cage Group | Control Group | p Value (Exp vs. Control) | |
---|---|---|---|
MEAN ± SD | |||
Lumbar lordosis (LL) ° | |||
Preoperative | −36.9 ± 7.2 | −36.4 ± 6.8 | 0.79 |
Postoperative (6 weeks) | −44.7 ± 8.0 | −45.6 ± 8.2 | 0.68 |
Follow-up | −46.4 ± 8.1 | −45.9 ± 7.9 | 0.82 |
p value (pre vs. follow-up) | <0.05 | <0.05 | |
Segmental lordosis (SL) ° | |||
Preoperative | −5.6 ± 4.3 | −5.9 ± 4.2 | 0.79 |
Postoperative (6 weeks) | −10.1 ± 2.2 | −10.6 ± 2.4 | 0.42 |
Follow-up | −9.8 ± 2.1 | −9.4 ± 2.0 | 0.47 |
p value (pre vs. follow-up) | <0.05 | <0.05 | |
PI-LL mismatch ° | |||
Preoperative | 16.9 ± 6.4 | 17.4 ± 6.9 | 0.78 |
Postoperative (6 weeks) | 9.1 ± 3.0 | 9.3 ± 3.3 | 0.81 |
Follow-up | 9.6 ± 2.8 | 9.8 ± 3.1 | 0.80 |
p value (pre vs. follow-up) | <0.05 | <0.05 | |
Coronal Cobb angle ° | |||
Preoperative | 12.4 ± 1.1 | 11.9 ± 1.2 | 0.11 |
Postoperative (6 weeks) | 16.2 ± 1.4 | 15.4 ± 1.3 | 0.03 |
Follow-up | 15.4 ± 1.2 | 14.7 ± 1.0 | 0.02 |
p value (pre vs. follow-up) | <0.05 | <0.05 | |
Foraminal height (FH), mm | |||
Preoperative | 12.9 ± 1.2 | 12.5 ± 1.3 | 0.24 |
Postoperative (6 weeks) | 16.0 ± 1.3 | 15.8 ± 1.5 | 0.60 |
Follow-up | 15.1 ± 1.1 | 14.6 ± 1.2 | 0.11 |
p value (pre vs. follow-up) | <0.05 | <0.05 | |
Disc height (DH), mm | |||
Preoperative | 5.3 ± 1.2 | 5.7 ± 1.3 | 0.24 |
Postoperative (6 weeks) | 9.6 ± 0.8 | 9.4 ± 0.9 | 0.38 |
Follow-up | 9.1 ± 1.0 | 9.0 ± 0.8 | 0.68 |
p value (pre vs. follow-up) | <0.05 | <0.05 | |
Fusion rate * (n, %) | 38 (95%) | 30 (78.9%) | 0.035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miscusi, M.; Trungu, S.; Ricciardi, L.; Forcato, S.; Mangraviti, A.; Raco, A. New Axially Expandable Oblique Cage Designed for Anterior to Psoas (ATP) Approach: Indications-Surgical Technique and Clinical-Radiological Outcomes in Patients with Symptomatic Degenerative Disc Disease. J. Clin. Med. 2024, 13, 3444. https://doi.org/10.3390/jcm13123444
Miscusi M, Trungu S, Ricciardi L, Forcato S, Mangraviti A, Raco A. New Axially Expandable Oblique Cage Designed for Anterior to Psoas (ATP) Approach: Indications-Surgical Technique and Clinical-Radiological Outcomes in Patients with Symptomatic Degenerative Disc Disease. Journal of Clinical Medicine. 2024; 13(12):3444. https://doi.org/10.3390/jcm13123444
Chicago/Turabian StyleMiscusi, Massimo, Sokol Trungu, Luca Ricciardi, Stefano Forcato, Antonella Mangraviti, and Antonino Raco. 2024. "New Axially Expandable Oblique Cage Designed for Anterior to Psoas (ATP) Approach: Indications-Surgical Technique and Clinical-Radiological Outcomes in Patients with Symptomatic Degenerative Disc Disease" Journal of Clinical Medicine 13, no. 12: 3444. https://doi.org/10.3390/jcm13123444
APA StyleMiscusi, M., Trungu, S., Ricciardi, L., Forcato, S., Mangraviti, A., & Raco, A. (2024). New Axially Expandable Oblique Cage Designed for Anterior to Psoas (ATP) Approach: Indications-Surgical Technique and Clinical-Radiological Outcomes in Patients with Symptomatic Degenerative Disc Disease. Journal of Clinical Medicine, 13(12), 3444. https://doi.org/10.3390/jcm13123444