Defining Age-Adjusted PI–LL Targets for Surgical Realignment in Adult Degenerative Scoliosis: A Retrospective Cohort Study
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Data Collection
2.3. Clinical Outcomes
2.4. Statistical Analysis
3. Results
3.1. Demographics
3.2. PI–LL and SRS-22 Score
3.3. PI–LL and ODI Score
3.4. PI–LL Targets Account for Age
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glassman, S.D.; Berven, S.; Bridwell, K.; Horton, W.; Dimar, J.R. Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine 2005, 30, 682–688. [Google Scholar] [CrossRef] [PubMed]
- Glassman, S.D.; Bridwell, K.; Dimar, J.R.; Horton, W.; Berven, S.; Schwab, F. The impact of positive sagittal balance in adult spinal deformity. Spine 2005, 30, 2024–2029. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Bridwell, K.H.; Lenke, L.G.; Rhim, S.; Cheh, G. An analysis of sagittal spinal alignment following long adult lumbar instrumentation and fusion to L5 or S1: Can we predict ideal lumbar lordosis? Spine 2006, 31, 2343–2352. [Google Scholar] [CrossRef] [PubMed]
- Pellisé, F.; Vila-Casademunt, A.; Ferrer, M.; Domingo-Sàbat, M.; Bagó, J.; Pérez-Grueso, F.J.; Alanay, A.; Mannion, A.F.; Acaroglu, E.; European Spine Study Group. Impact on health related quality of life of adult spinal deformity (ASD) compared with other chronic conditions. Eur. Spine J. 2015, 24, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Schwab, F.; Ungar, B.; Blondel, B.; Buchowski, J.; Coe, J.; Deinlein, D.; DeWald, C.; Mehdian, H.; Shaffrey, C.; Tribus, C.; et al. Scoliosis Research Society-Schwab adult spinal deformity classification: A validation study. Spine 2012, 37, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Faldini, C.; Di Martino, A.; De Fine, M.; Miscione, M.T.; Calamelli, C.; Mazzotti, A.; Perna, F. Current classification systems for adult degenerative scoliosis. Musculoskelet. Surg. 2013, 97, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tsuboi, H.; Nishimura, Y.; Sakata, T.; Ohko, H.; Tanina, H.; Kouda, K.; Nakamura, T.; Umezu, Y.; Tajima, F. Age-related sex differences in erector spinae muscle endurance using surface electromyographic power spectral analysis in healthy humans. Spine J. 2013, 13, 1928–1933. [Google Scholar] [CrossRef]
- Larsson, L.; Li, X.; Frontera, W.R. Effects of aging on shortening velocity and myosin isoform composition in single human skeletal muscle cells. Am. J. Physiol. 1997, 272 Pt 1, C638–C649. [Google Scholar] [CrossRef]
- Lexell, J. Human aging, muscle mass, and fiber type composition. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 1995, 50, 11–16. [Google Scholar]
- Larsson, L.; Grimby, G.; Karlsson, J. Muscle strength and speed of movement in relation to age and muscle morphology. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1979, 46, 451–456. [Google Scholar] [CrossRef]
- Lane, L.B.; Bullough, P.G. Age-related changes in the thickness of the calcified zone and the number of tidemarks in adult human articular cartilage. J. Bone Jt. Surg. 1980, 62, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Lord, S.R.; Clark, R.D.; Webster, I.W. Postural stability and associated physiological factors in a population of aged persons. J. Gerontol. 1991, 46, M69–M76. [Google Scholar] [CrossRef]
- Mac-Thiong, J.M.; Transfeldt, E.E.; Mehbod, A.A.; Perra, J.H.; Denis, F.; Garvey, T.A.; Lonstein, J.E.; Wu, C.; Dorman, C.W.; Winter, R.B. Can c7 plumbline and gravity line predict health related quality of life in adult scoliosis? Spine 2009, 34, E519–E527. [Google Scholar] [CrossRef] [PubMed]
- Baldus, C.; Bridwell, K.; Harrast, J.; Shaffrey, C.; Ondra, S.; Lenke, L.; Schwab, F.; Mardjetko, S.; Glassman, S.; Edwards, C., 2nd; et al. The Scoliosis Research Society Health-Related Quality of Life (SRS-30) age-gender normative data: An analysis of 1346 adult subjects unaffected by scoliosis. Spine 2011, 36, 1154–1162. [Google Scholar] [CrossRef] [PubMed]
- Lafage, R.; Schwab, F.; Challier, V.; Henry, J.K.; Gum, J.; Smith, J.; Hostin, R.; Shaffrey, C.; Kim, H.J.; Ames, C.; et al. Defining Spino-Pelvic Alignment Thresholds: Should Operative Goals in Adult Spinal Deformity Surgery Account for Age? Spine 2016, 41, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, K.; Okamoto, M.; Hatsushikano, S.; Shimoda, H.; Ono, M.; Watanabe, K. Normative values of spino-pelvic sagittal alignment, balance, age, and health-related quality of life in a cohort of healthy adult subjects. Eur. Spine J. 2016, 25, 3675–3686. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Qin, X.; Zhang, W.; Qiao, J.; Liu, Z.; Zhu, Z.; Qiu, Y.; Qian, B.P. Estimation of the Ideal Lumbar Lordosis to Be Restored From Spinal Fusion Surgery: A Predictive Formula for Chinese Population. Spine 2015, 40, 1001–1005. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tseng, C.; Yuan, Y.; Jiang, D.; Qian, Z.; Hu, Z.; Zhu, Z.; Qiu, Y.; Liu, Z. Determining the association between the radiographic parameters and the SRS-22 scores in Chinese female patients with adolescent idiopathic scoliosis: Does curve pattern matter? Br. J. Neurosurg. 2021, 38, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.P.; Fu, T.S.; Liu, C.Y.; Hung, C.I. Psychometric evaluation of the Oswestry Disability Index in patients with chronic low back pain: Factor and Mokken analyses. Health Qual. Life Outcomes 2017, 15, 192. [Google Scholar] [CrossRef]
- Huang, J.C.; Qian, B.P.; Qiu, Y.; Wang, B.; Yu, Y.; Qiao, M. What is the optimal postoperative sagittal alignment in ankylosing spondylitis patients with thoracolumbar kyphosis following one-level pedicle subtraction osteotomy? Spine 2020, 20, 765–775. [Google Scholar] [CrossRef]
- Luo, J.; Yang, K.; Yang, Z.; Feng, C.; Li, X.; Luo, Z.; Tao, H.; Duan, C.; Wu, T. Optimal immediate sagittal alignment for kyphosis in ankylosing spondylitis following corrective osteotomy. Front. Surg. 2022, 9, 975026. [Google Scholar] [CrossRef] [PubMed]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gøtzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.J.; Egger, M.; STROBE Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. Int. J. Surg. 2014, 12, 1500–1524. [Google Scholar] [CrossRef] [PubMed]
- Budtz-Jørgensen, E.; Keiding, N.; Grandjean, P.; Weihe, P. Confounder selection in environmental epidemiology: Assessment of health effects of prenatal mercury exposure. Ann. Epidemiol. 2007, 17, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, X.; Lu, Y.; Li, T.; Gong, Z.; Sheng, T.; Hu, B.; Peng, Z.; Sun, X. The effects of intraoperative cryoprecipitate transfusion on acute renal failure following orthotropic liver transplantation. Hepatol. Int. 2013, 7, 901–909. [Google Scholar] [CrossRef] [PubMed]
- Schwab, F.; Patel, A.; Ungar, B.; Farcy, J.P.; Lafage, V. Adult spinal deformity-postoperative standing imbalance: How much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine 2010, 35, 2224–2231. [Google Scholar] [CrossRef] [PubMed]
- Papadakis, M.; Sapkas, G.; Papadopoulos, E.C.; Katonis, P. Pathophysiology and biomechanics of the aging spine. Open Orthop. J. 2011, 5, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Schwab, F.; Dubey, A.; Gamez, L.; El Fegoun, A.B.; Hwang, K.; Pagala, M.; Farcy, J.P. Adult scoliosis: Prevalence, SF-36, and nutritional parameters in an elderly volunteer population. Spine 2005, 30, 1082–1085. [Google Scholar] [CrossRef]
- Schwab, F.; Lafage, V.; Boyce, R.; Skalli, W.; Farcy, J.P. Gravity line analysis in adult volunteers: Age-related correlation with spinal parameters, pelvic parameters, and foot position. Spine 2006, 31, E959–E967. [Google Scholar] [CrossRef] [PubMed]
- Gelb, D.E.; Lenke, L.G.; Bridwell, K.H.; Blanke, K.; McEnery, K.W. An analysis of sagittal spinal alignment in 100 asymptomatic middle and older aged volunteers. Spine 1995, 20, 1351–1358. [Google Scholar] [CrossRef]
- Hammerberg, E.M.; Wood, K.B. Sagittal profile of the elderly. J. Spinal Disord. Tech. 2003, 16, 44–50. [Google Scholar] [CrossRef]
- Asai, Y.; Tsutsui, S.; Oka, H.; Yoshimura, N.; Hashizume, H.; Yamada, H.; Akune, T.; Muraki, S.; Matsudaira, K.; Kawaguchi, H.; et al. Sagittal spino-pelvic alignment in adults: The Wakayama Spine Study. PLoS ONE 2017, 12, e0178697. [Google Scholar] [CrossRef] [PubMed]
- Park, P.; Fu, K.M.; Mummaneni, P.V.; Uribe, J.S.; Wang, M.Y.; Tran, S.; Kanter, A.S.; Nunley, P.D.; Okonkwo, D.O.; Shaffrey, C.I.; et al. The impact of age on surgical goals for spinopelvic alignment in minimally invasive surgery for adult spinal deformity. J. Neurosurg. Spine 2018, 29, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Xu, L.; Zhu, F.; Jiang, L.; Wang, Z.; Liu, Z.; Qian, B.P.; Qiu, Y. Sagittal alignment of spine and pelvis in asymptomatic adults: Norms in Chinese populations. Spine 2014, 39, E1–E6. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.J.; Kim, K.T.; Kim, W.J.; Lee, S.H.; Jung, J.H.; Kim, Y.T.; Park, H.B. Pedicle subtraction osteotomy in elderly patients with degenerative sagittal imbalance. Spine 2013, 38, E1561–E1566. [Google Scholar] [CrossRef] [PubMed]
- Lafage, R.; Schwab, F.; Glassman, S.; Bess, S.; Harris, B.; Sheer, J.; Hart, R.; Line, B.; Henry, J.; Burton, D.; et al. Age-Adjusted Alignment Goals Have the Potential to Reduce PJK. Spine 2017, 42, 1275–1282. [Google Scholar] [CrossRef]
- Byun, C.W.; Cho, J.H.; Lee, C.S.; Lee, D.H.; Hwang, C.J. Effect of overcorrection on proximal junctional kyphosis in adult spinal deformity: Analysis by age-adjusted ideal sagittal alignment. Spine J. 2022, 22, 635–645. [Google Scholar] [CrossRef]
Variables | Overall (N = 280) |
---|---|
Age, years | 64.7 ± 11.7 |
Sex | |
Female | 184 (65.7%) |
Male | 96 (34.3%) |
BMI, kg/m2 | 27.1 ± 5.7 |
aCCI | 4.5 ± 1.7 |
Osteopenia | |
Yes | 112 (40.0%) |
No | 112 (40.0%) |
Missing | 56 (20.0%) |
Length of stay, days | 10.9 ± 4.1 |
Estimated blood loss, ml | 649.7 ± 447.4 |
Operative duration, min | 281.7 ± 67.6 |
ASA score | 2.2 ± 0.8 |
Number of fusion levels | 4.9 ± 2.2 |
PI (°) | 44.1 ± 10.7 |
Preoperative PI–LL (°) | 34.5 ± 12.3 |
Postoperative PI–LL (°) | 15.3 ± 8.3 |
PI–LL at follow-up (°) | 20.7 ± 8.6 |
Preoperative LL (°) | 9.6 ± 5.7 |
Postoperative LL (°) | 28.7 ± 14.0 |
LL at follow-up (°) | 23.4 ± 14.1 |
Preoperative SVA (cm) | 5.5 ± 3.6 |
Postoperative SVA (cm) | 3.3 ± 2.6 |
SVA at follow-up (cm) | 4.0 ± 2.2 |
Preoperative SRS-22 score | 2.3 ± 1.1 |
SRS-22 score at follow-up | 3.7 ± 0.8 |
Preoperative ODI | 31.1 ± 6.0 |
ODI at follow-up | 18.3 ± 5.5 |
Variable | Crude Model a | Minimally Adjusted Model b | Fully Adjusted Model c |
---|---|---|---|
Group A (between 45 and 54 years old) | |||
0 grade PI–LL | 2.5 (0.5–11.0), p = 0.204 | 2.2 (0.4–9.8), p = 0.320 | 2.0 (0.4–9.5), p = 0.383 |
+ grade PI–LL | 1.0 (0.3–3.5), p = 0.965 | 1.1 (0.3–3.7), p = 0.917 | 1.3 (0.3–5.3), p = 0.656 |
++ grade PI–LL | Reference | Reference | Reference |
Group B (between 55 and 64 years old) | |||
0 grade PI–LL | 1.4 (0.4–4.5), p = 0.509 | 1.4 (0.4–4.7), p = 0.501 | 1.5 (0.5–4.7), p = 0.469 |
+ grade PI–LL | 2.2 (0.7–7.0), p = 0.154 | 1.6 (0.4–5.2), p = 0.437 | 3.5 (1.1–11.6), p = 0.035 |
++ grade PI–LL | Reference | Reference | Reference |
Group C (between 65 and 74 years old) | |||
0 grade PI–LL | 1.9 (0.5–7.4), p = 0.320 | 2.2 (0.4–11.0), p = 0.322 | 1.4 (0.2–7.6), p = 0.657 |
+ grade PI–LL | 2.1 (0.4–9.1), p = 0.323 | 2.8 (0.6–12.3), p = 0.155 | 2.3 (0.1–34.8), p = 0.525 |
++ grade PI–LL | Reference | Reference | Reference |
Group D (age greater than 75 years) | |||
0 grade PI–LL | 0.2 (0.1–0.9), p = 0.050 | 0.3 (0.1–1.1), p = 0.071 | 0.3 (0.1–1.0), p = 0.050 |
+ grade PI–LL | 0.4 (0.1–1.2), p = 0.116 | 0.4 (0.1–1.1), p = 0.085 | 0.6 (0.2–1.2), p = 0.189 |
++ grade PI–LL | Reference | Reference | Reference |
Variable | Crude Model a | Minimally Adjusted Model b | Fully Adjusted Model c |
---|---|---|---|
Group A (between 45 and 54 years old) | |||
0 grade PI–LL | 3.3 (0.7–14.5), p = 0.110 | 3.4 (0.7–15.0), p = 0.105 | 3.1 (0.6–14.8), p = 0.142 |
+ grade PI–LL | 1.7 (0.5–6.3), p = 0.364 | 1.7 (0.4–6.1), p = 0.404 | 1.6 (0.4–5.9), p = 0.443 |
++ grade PI–LL | Reference | Reference | Reference |
Group B (between 55 and 64 years old) | |||
0 grade PI–LL | 1.1 (0.3–3.6), p = 0.855 | 1.2 (0.3–3.8), p = 0.779 | 1.8 (0.7–4.0), p = 0.158 |
+ grade PI–LL | 1.2 (0.4–4.0), p = 0.686 | 1.6 (0.5–5.3), p = 0.429 | 2.4 (1.1–5.5), p = 0.032 |
++ grade PI–LL | Reference | Reference | Reference |
Group C (between 65 and 74 years old) | |||
0 grade PI–LL | 1.3 (1.0–1.7), p = 0.043 | 1.1 (0.9–1.4), p = 0.095 | 1.6 (0.6–4.0), p = 0.289 |
+ grade PI–LL | 2.3 (0.3–14.5), p = 0.372 | 2.5 (0.6–10.6), p = 0.210 | 2.8 (1.0–7.8), p = 0.050 |
++ grade PI–LL | Reference | Reference | Reference |
Group D (age greater than 75 years) | |||
0 grade PI–LL | 0.7 (0.2–2.9), p = 0.711 | 0.7 (0.2–3.0), p = 0.740 | 0.4 (0.1–1.5), p = 0.183 |
+ grade PI–LL | 1.0 (0.3–2.8), p = 0.944 | 0.9 (0.3–2.6), p = 0.878 | 0.7 (0.3–2.1), p = 0.629 |
++ grade PI–LL | Reference | Reference | Reference |
Age Group | SRS-22 Scores | ODI Scores | ||||
---|---|---|---|---|---|---|
Inflection Point | OR (95% CI) | p-Value | Inflection Point | OR (95% CI) | p-Value | |
Group A (between 45 and 54 years old) | ≤6° | 1.0 (0.8–1.1), | p = 0.889 | ≤9° | 1.1 (0.6–2.1), | p = 0.623 |
>6° | 0.9 (0.9–1.0), | p = 0.102 | >9° | 0.9 (0.8–1.0), | p = 0.200 | |
Group B (between 55 and 64 years old) | ≤14° | 1.2 (1.0–1.4), | p = 0.034 | ≤13° | 1.3 (1.0–1.6), | p = 0.025 |
>14° | 0.8 (0.7–0.9), | p = 0.041 | >13° | 0.9 (0.8–1.0), | p = 0.107 | |
Group C (between 65 and 74 years old) | ≤19° | 1.1 (0.9–1.2), | p = 0.262 | ≤17° | 1.2 (1.0–1.3), | p = 0.008 |
>19° | 0.9 (0.6–1.3), | p = 0.769 | >17° | 0.8 (0.5–1.2), | p = 0.342 | |
Group D (age greater than 75 years) | ≤25° | 1.1 (0.9–1.2), | p = 0.067 | ≤23° | 1.0 (0.9–1.1), | p = 0.847 |
>25° | 1.0 (0.5–1.7), | p = 0.925 | >23° | 0.9 (0.4–1.6), | p = 0.642 |
Operative Realignment Targets | Age Group, Years | |||
---|---|---|---|---|
45–54 | 55–64 | 65–74 | ≥75 | |
Lower threshold | 6° | 13° | 17° | 23° |
Higher threshold | 9° | 14° | 19° | 25° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhu, Y.; Yin, X.; Sun, D.; Wang, S.; Zhang, J. Defining Age-Adjusted PI–LL Targets for Surgical Realignment in Adult Degenerative Scoliosis: A Retrospective Cohort Study. J. Clin. Med. 2024, 13, 3643. https://doi.org/10.3390/jcm13133643
Zhang H, Zhu Y, Yin X, Sun D, Wang S, Zhang J. Defining Age-Adjusted PI–LL Targets for Surgical Realignment in Adult Degenerative Scoliosis: A Retrospective Cohort Study. Journal of Clinical Medicine. 2024; 13(13):3643. https://doi.org/10.3390/jcm13133643
Chicago/Turabian StyleZhang, Haoran, Yuanpeng Zhu, Xiangjie Yin, Dihan Sun, Shengru Wang, and Jianguo Zhang. 2024. "Defining Age-Adjusted PI–LL Targets for Surgical Realignment in Adult Degenerative Scoliosis: A Retrospective Cohort Study" Journal of Clinical Medicine 13, no. 13: 3643. https://doi.org/10.3390/jcm13133643
APA StyleZhang, H., Zhu, Y., Yin, X., Sun, D., Wang, S., & Zhang, J. (2024). Defining Age-Adjusted PI–LL Targets for Surgical Realignment in Adult Degenerative Scoliosis: A Retrospective Cohort Study. Journal of Clinical Medicine, 13(13), 3643. https://doi.org/10.3390/jcm13133643