The Migration Pattern of a Short-Tapered Femoral Stem Correlates with the Occurrence of Cortical Hypertrophies: A 10-Year Longitudinal Study Using Ein Bild Röntgen Analyse–Femoral Component Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patients and Demographics
2.3. Surgeries and Implant Characteristics
2.4. Clinical and Radiographic Evaluation
2.5. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pabinger, C.; Lothaller, H.; Portner, N.; Geissler, A. Projections of hip arthroplasty in OECD countries up to 2050. Hip. Int. 2018, 28, 498–506. [Google Scholar] [CrossRef]
- Moldovan, F.; Moldovan, L.; Bataga, T. A Comprehensive Research on the Prevalence and Evolution Trend of Orthopedic Surgeries in Romania. Healthcare 2023, 11, 1866. [Google Scholar] [CrossRef]
- Matharu, G.S.; Culliford, D.J.; Blom, A.W.; Judge, A. Projections for primary hip and knee replacement surgery up to the year 2060: An analysis based on data from The National Joint Registry for England, Wales, Northern Ireland and the Isle of Man. Ann. R Coll. Surg. Engl. 2022, 104, 443–448. [Google Scholar] [CrossRef]
- Sloan, M.; Premkumar, A.; Sheth, N.P. Projected Volume of Primary Total Joint Arthroplasty in the U.S., 2014 to 2030. J. Bone Jt. Surg. Am. 2018, 100, 1455–1460. [Google Scholar] [CrossRef]
- Grimberg, A.W.; Jörg, L.; Melsheimer, O.; Morlock, M.; Steinbrück, A. Jahresbericht/Endoprothesenregister Deutschland EPRD. Patienteninformation; EPRD Deutsche Endoprothesenregister gGmbH: Berlin, Germany, 2023. [Google Scholar]
- Van Veghel, M.H.W.; Hannink, G.; Lewis, P.L.; Holder, C.; Van Steenbergen, L.N.; Schreurs, B.W. Short-stem hip arthroplasty in Australia and the Netherlands: A comparison of 12,680 cases between the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) and the Dutch Arthroplasty Register (LROI). Acta Orthop. 2023, 94, 453–459. [Google Scholar] [CrossRef]
- Rilby, K.; Mohaddes, M.; Karrholm, J. Similar results after five years with the use of the Fitmore or the CLS femoral components. Bone Jt. Open 2023, 4, 306–314. [Google Scholar] [CrossRef]
- Dhillon, M.S.; Jindal, K.; Kumar, P.; Rajnish, R.K.; Neradi, D. Long-term survival of CLS Spotorno femoral stem: A systematic review of literature. Arch. Orthop. Trauma Surg. 2022, 142, 1239–1251. [Google Scholar] [CrossRef]
- Schader, J.F.; Thalmann, C.; Maier, K.S.; Schiener, T.; Stoffel, K.; Frigg, A. Prospective evaluation of clinical and radiographic 10-year results of Fitmore short-stem total hip arthroplasty. J. Orthop. Surg. Res. 2023, 18, 893. [Google Scholar] [CrossRef]
- Bieger, R.; Ignatius, A.; Reichel, H.; Durselen, L. Biomechanics of a short stem: In vitro primary stability and stress shielding of a conservative cementless hip stem. J. Orthop. Res. 2013, 31, 1180–1186. [Google Scholar] [CrossRef]
- Freitag, T.; Hein, M.A.; Wernerus, D.; Reichel, H.; Bieger, R. Bone remodelling after femoral short stem implantation in total hip arthroplasty: 1-year results from a randomized DEXA study. Arch. Orthop. Trauma Surg. 2016, 136, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Innmann, M.M.; Weishorn, J.; Bruckner, T.; Streit, M.R.; Walker, T.; Gotterbarm, T.; Merle, C.; Maier, M.W. Fifty-six percent of proximal femoral cortical hypertrophies 6 to 10 years after Total hip arthroplasty with a short Cementless curved hip stem—A cause for concern? BMC Musculoskelet. Disord. 2019, 20, 261. [Google Scholar] [CrossRef]
- Fujii, H.; Hayama, T.; Abe, T.; Takahashi, M.; Amagami, A.; Matsushita, Y.; Otani, T.; Saito, M. Do radiological findings around the Fitmore stem change over time?: Radiolucency around the short hip stem disappears within a few years: A retrospective study. Bone Jt. Open 2022, 3, 20–28. [Google Scholar] [CrossRef]
- Thalmann, C.; Kempter, P.; Stoffel, K.; Ziswiler, T.; Frigg, A. Prospective 5-year study with 96 short curved Fitmore hip stems shows a high incidence of cortical hypertrophy with no clinical relevance. J. Orthop. Surg. Res. 2019, 14, 156. [Google Scholar] [CrossRef]
- Merle, C.; Streit, M.R.; Volz, C.; Pritsch, M.; Gotterbarm, T.; Aldinger, P.R. Bone remodeling around stable uncemented titanium stems during the second decade after total hip arthroplasty: A DXA study at 12 and 17 years. Osteoporos. Int. 2011, 22, 2879–2886. [Google Scholar] [CrossRef]
- Hayashi, S.; Hashimoto, S.; Matsumoto, T.; Takayama, K.; Niikura, T.; Kuroda, R. Risk factors of thigh pain following total hip arthroplasty with short, tapered-wedge stem. Int. Orthop. 2020, 44, 2553–2558. [Google Scholar] [CrossRef]
- Crawford, D.A.; Adams, J.B.; Morris, M.J.; Berend, K.R.; Lombardi, A.V., Jr. Distal femoral cortical hypertrophy not associated with thigh pain using a short stem femoral implant. Hip. Int. 2021, 31, 722–728. [Google Scholar] [CrossRef]
- Hamilton, W.G. CORR Insights(R): No Clinically Important Differences in Thigh Pain or Bone Loss between Short Stems and Conventional-length Stems in THA: A Randomized Clinical Trial. Clin. Orthop. Relat. Res. 2021, 479, 778–780. [Google Scholar] [CrossRef]
- Ishii, S.; Homma, Y.; Baba, T.; Shirogane, Y.; Kaneko, K.; Ishijima, M. Does increased diameter of metal femoral head associated with highly cross-linked polyethylene augment stress on the femoral stem and cortical hypertrophy? Int. Orthop. 2021, 45, 1169–1177. [Google Scholar] [CrossRef]
- Nguyen, B.N.; Hoshino, H.; Togawa, D.; Matsuyama, Y. Cortical Thickness Index of the Proximal Femur: A Radiographic Parameter for Preliminary Assessment of Bone Mineral Density and Osteoporosis Status in the Age 50 Years and Over Population. Clin. Orthop. Surg. 2018, 10, 149–156. [Google Scholar] [CrossRef]
- Thalmann, C.; Horn Lang, T.; Bereiter, H.; Clauss, M.; Acklin, Y.P.; Stoffel, K. An excellent 5-year survival rate despite a high incidence of distal femoral cortical hypertrophy in a short hip stem. Hip. Int. 2020, 30, 152–159. [Google Scholar] [CrossRef]
- Krismer, M.; Biedermann, R.; Stockl, B.; Fischer, M.; Bauer, R.; Haid, C. The prediction of failure of the stem in THR by measurement of early migration using EBRA-FCA. Einzel-Bild-Roentgen-Analyse-femoral component analysis. J. Bone Jt. Surg. Br. 1999, 81, 273–280. [Google Scholar] [CrossRef]
- Streit, M.R.; Haeussler, D.; Bruckner, T.; Proctor, T.; Innmann, M.M.; Merle, C.; Gotterbarm, T.; Weiss, S. Early Migration Predicts Aseptic Loosening of Cementless Femoral Stems: A Long-term Study. Clin. Orthop. Relat. Res. 2016, 474, 1697–1706. [Google Scholar] [CrossRef]
- Freitag, T.; Kappe, T.; Fuchs, M.; Jung, S.; Reichel, H.; Bieger, R. Migration pattern of a femoral short-stem prosthesis: A 2-year EBRA-FCA-study. Arch. Orthop. Trauma Surg. 2014, 134, 1003–1008. [Google Scholar] [CrossRef]
- Dammerer, D.; Blum, P.; Putzer, D.; Krappinger, D.; Liebensteiner, M.C.; Nogler, M.; Thaler, M. Subsidence of a metaphyseal-anchored press-fit stem after 4-year follow-up: An EBRA-FCA analysis. Arch. Orthop. Trauma Surg. 2022, 142, 2075–2082. [Google Scholar] [CrossRef]
- Leiss, F.; Goetz, J.S.; Schindler, M.; Reinhard, J.; Muller, K.; Grifka, J.; Greimel, F.; Meyer, M. Influence of bone mineral density on femoral stem subsidence after cementless THA. Arch. Orthop. Trauma Surg. 2024, 144, 451–458. [Google Scholar] [CrossRef]
- Freitag, T.; Fuchs, M.; Woelfle-Roos, J.V.; Reichel, H.; Bieger, R. Mid-term migration analysis of a femoral short-stem prosthesis: A five-year EBRA-FCA-study. Hip. Int. 2019, 29, 128–133. [Google Scholar] [CrossRef]
- Khanuja, H.S.; Banerjee, S.; Jain, D.; Pivec, R.; Mont, M.A. Short bone-conserving stems in cementless hip arthroplasty. J. Bone Jt. Surg. Am. 2014, 96, 1742–1752. [Google Scholar] [CrossRef]
- Engh, C.A.; Bobyn, J.D.; Glassman, A.H. Porous-coated hip replacement. The factors governing bone ingrowth, stress shielding, and clinical results. J. Bone Jt. Surg. Br. 1987, 69, 45–55. [Google Scholar] [CrossRef]
- Gruen, T.A.; McNeice, G.M.; Amstutz, H.C. “Modes of failure” of cemented stem-type femoral components: A radiographic analysis of loosening. Clin. Orthop. Relat. Res. 1979, 141, 17–27. [Google Scholar] [CrossRef]
- Dorr, L.D.; Faugere, M.C.; Mackel, A.M.; Gruen, T.A.; Bognar, B.; Malluche, H.H. Structural and cellular assessment of bone quality of proximal femur. Bone 1993, 14, 231–242. [Google Scholar] [CrossRef]
- Ishii, S.; Homma, Y.; Baba, T.; Ozaki, Y.; Matsumoto, M.; Kaneko, K. Does the Canal Fill Ratio and Femoral Morphology of Asian Females Influence Early Radiographic Outcomes of Total Hip Arthroplasty with an Uncemented Proximally Coated, Tapered-Wedge Stem? J. Arthroplast. 2016, 31, 1524–1528. [Google Scholar] [CrossRef] [PubMed]
- Flecher, X.; Ollivier, M.; Argenson, J.N. Lower limb length and offset in total hip arthroplasty. Orthop. Traumatol. Surg. Res. 2016, 102 (Suppl. S1), S9–S20. [Google Scholar] [CrossRef]
- Kobayashi, S.; Saito, N.; Horiuchi, H.; Iorio, R.; Takaoka, K. Poor bone quality or hip structure as risk factors affecting survival of total-hip arthroplasty. Lancet 2000, 355, 1499–1504. [Google Scholar] [CrossRef]
- Streit, M.R.; Schroder, K.; Korber, M.; Merle, C.; Gotterbarm, T.; Ewerbeck, V.; Aldinger, P.R. High survival in young patients using a second generation uncemented total hip replacement. Int. Orthop. 2012, 36, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Pasqualini, I.; Rullan, P.J.; Huffman, N.; Klika, A.K.; Shen, J.; Bhowmik-Stoker, M.; Hampp, E.; Piuzzi, N.S. Challenging the Status Quo: Debunking the Necessity of 5-Year to 10-Year Patient-Reported Outcome Measures in Total Hip and Knee Arthroplasties. J. Arthroplast. 2023. [Google Scholar] [CrossRef] [PubMed]
- Phillips, N.J.; Stockley, I.; Wilkinson, J.M. Direct plain radiographic methods versus EBRA-Digital for measuring implant migration after total hip arthroplasty. J. Arthroplast. 2002, 17, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Biedermann, R.; Krismer, M.; Stockl, B.; Mayrhofer, P.; Ornstein, E.; Franzen, H. Accuracy of EBRA-FCA in the measurement of migration of femoral components of total hip replacement. Einzel-Bild-Rontgen-Analyse-femoral component analysis. J. Bone Jt. Surg. Br. 1999, 81, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Saito, J.; Aslam, N.; Tokunaga, K.; Schemitsch, E.H.; Waddell, J.P. Bone remodeling is different in metaphyseal and diaphyseal-fit uncemented hip stems. Clin. Orthop. Relat. Res. 2006, 451, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Pepke, W.; Nadorf, J.; Ewerbeck, V.; Streit, M.R.; Kinkel, S.; Gotterbarm, T.; Maier, M.W.; Kretzer, J.P. Primary stability of the Fitmore stem: Biomechanical comparison. Int. Orthop. 2014, 38, 483–488. [Google Scholar] [CrossRef]
- Wang, K.; Kenanidis, E.; Suleman, K.; Miodownik, M.; Avadi, M.; Horne, D.; Thompson, J.; Tsiridis, E.; Moazen, M. Differences between two sequential uncemented stem sizes in total hip arthroplasty: A comparative biomechanical study and potential clinical implications. SICOT J. 2022, 8, 43. [Google Scholar] [CrossRef]
without CH | with CH | p-Value | |
---|---|---|---|
Demographics | |||
Number of hips | 57 | 20 | |
Gender (m:f) | 29:28 | 11:9 | 0.33 |
Age at surgery in years | 56 (37–75) | 52 (23–69) | 0.71 |
BMI (kg/m2) | 27 (21–32) | 26 (19–30) | 0.37 |
HHS preoperatively | 58 (42–68) | 60 (52–66) | 0.58 |
HHS postoperatively (2 y FU) | 89 (87–97) | 91 (77–98) | 0.38 |
HHS postoperatively (5 y FU) | 90 (89–98) | 90 (78–99) | 0.67 |
HHS postoperatively (min. 10 y FU) | 89 (88–98) | 91 (76–98) | 0.42 |
Diagnosis | |||
Primary osteoarthritis | 28 | 9 | 0.69 |
Avascular necrosis | 6 | 3 | 0.21 |
Developmental dysplasia | 19 | 6 | 0.19 |
Perthes disease | 1 | 0 | 0.11 |
Posttraumatic | 1 | 1 | 0.26 |
Protrusio acetabuli | 2 | 1 | 0.88 |
Model (n = 77) | Odds Ratio (95%-CI) | p-Value |
---|---|---|
CFI | 3.11 (0.12–80.7) | 0.64 |
CI | 0.33 (0.03–4.28) | 0.12 |
Stem size | 1.80 (1.13–1.92) | 0.004 * |
∇ Hip offset | 1.01 (0.96–1.07) | 0.702 |
Stem Subsidence | 1.47 (1.04–2.08) | 0.028 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freitag, T.; Fuchs, M.; Friedrich, D.; Bieger, R.; Reichel, H.; Oltmanns, M. The Migration Pattern of a Short-Tapered Femoral Stem Correlates with the Occurrence of Cortical Hypertrophies: A 10-Year Longitudinal Study Using Ein Bild Röntgen Analyse–Femoral Component Analysis. J. Clin. Med. 2024, 13, 3616. https://doi.org/10.3390/jcm13123616
Freitag T, Fuchs M, Friedrich D, Bieger R, Reichel H, Oltmanns M. The Migration Pattern of a Short-Tapered Femoral Stem Correlates with the Occurrence of Cortical Hypertrophies: A 10-Year Longitudinal Study Using Ein Bild Röntgen Analyse–Femoral Component Analysis. Journal of Clinical Medicine. 2024; 13(12):3616. https://doi.org/10.3390/jcm13123616
Chicago/Turabian StyleFreitag, Tobias, Michael Fuchs, David Friedrich, Ralf Bieger, Heiko Reichel, and Moritz Oltmanns. 2024. "The Migration Pattern of a Short-Tapered Femoral Stem Correlates with the Occurrence of Cortical Hypertrophies: A 10-Year Longitudinal Study Using Ein Bild Röntgen Analyse–Femoral Component Analysis" Journal of Clinical Medicine 13, no. 12: 3616. https://doi.org/10.3390/jcm13123616
APA StyleFreitag, T., Fuchs, M., Friedrich, D., Bieger, R., Reichel, H., & Oltmanns, M. (2024). The Migration Pattern of a Short-Tapered Femoral Stem Correlates with the Occurrence of Cortical Hypertrophies: A 10-Year Longitudinal Study Using Ein Bild Röntgen Analyse–Femoral Component Analysis. Journal of Clinical Medicine, 13(12), 3616. https://doi.org/10.3390/jcm13123616