The Polish Society of Gynecological Oncology Guidelines for the Diagnosis and Treatment of Cervical Cancer (v2024.0)
Abstract
:1. Background
- Nomination of multidisciplinary development group (gynecological oncologist/pathologist/geneticist/clinical oncologist/radiation oncologist).
- Identification of scientific evidence.
- Formulation of guidelines.
- Assessment of coherence with ESGO/NCCN guidelines.
- Evaluation of guidelines by external reviewers.
- Integration of external reviewers’ comments with original content of the guidelines.
1.1. Classification of Cervical Cancer
1.1.1. Histopathological
1.1.2. Molecular
2. Screening for Cervical Cancer
2.1. Protective Benefits of Screening
2.2. Conventional or Liquid-Based Cytology
2.3. HPV Testing or Cytology
2.4. High-Risk DNA HPV or mRNA HPV Tests
2.5. Co-Testing (Conventional Cytology)
2.6. Co-Testing (Liquid-Based Cytology)
2.7. Screening Intervals
2.8. Does Vaccination against CIN2+ Reduce the Need for Screening?
3. Diagnosis
3.1. Cervical Biopsy
- (1)
- Women with clinically visible tumors [best practice] [Strength of evidence V] (grade of recommendation 2B).
- (2)
- Women without evidence of cervical tumor but high-grade squamous intraepithelial lesion (HSIL) found during cytology screening [27] [strength of evidence IIIA] (grade of recommendation 2A).
- (3)
- (4)
- Postmenopausal women without evidence of cervical tumor but with low-grade squamous intraepithelial lesion (LSIL) found during cytology, having a positive test for oncogenic types (including HPV 53) of HPV [30] [strength of evidence IVA] (grade of recommendation 2B).
3.2. Clinical Significance of Pathological Features of the Biopsy Specimen
- (1)
- Core biopsy of the macroscopic tumor along with endocervical curettage followed by conization for tumors smaller than 2 cm.
- (2)
- Biopsy of the suspicious cervical lesions identified with or without colposcopy after abnormal cytology: HSIL, ASC-H, ASCUS HPV-positive, or menopausal LSIL HPV-positive.
- (3)
- Excisional biopsy of the cervix (cold knife conization) for histologically confirmed HSIL or T1A1 in cases lacking LVSI assessment after biopsy.
3.3. Clinical Significance of Pathological Features of the Post-Surgery Specimen
3.3.1. Uterus
3.3.2. Nodes-Lymph Node Dissection /LND/
Number
Lymph Node Status
Lymph Node Ratio (LNR)
Nodes–Sentinel Lymph Node Biopsy SLNB
3.4. HSIL Management
HSIL with Positive Margins after Conization
3.5. Management of T1A1, Negative LVSI, with Negative Margins Post-Conization
3.6. Imaging Prior to Treatment Decision
3.6.1. Prior to Surgery
3.6.2. Prior to Chemoradiation
4. Treatment
4.1. General Rules–Common Misunderstandings in Nomenclature
- Early and locally advanced cancer (early-cancer confined to the cervix, locally advanced cancer confined to parametrium and upper vagina rcFIGO IA/II);
- Advanced cancer (cancer extending to the pelvic side wall or adjacent organs rcFIGO IIIA-IVA);
- Disseminated cancer (rcFIGO IVB, any T any N, M+). Distant metastasis (including peritoneal spread; involvement of supraclavicular, mediastinal, or distant (inguino-femoral) lymph nodes; and lung, liver, or bone).
- Q:
- What is the preferred treatment modality for early and locally advanced cervical cancer: surgery or radiotherapy? (for clinic-radiological/cr/FIGO stage I/II)
- A:
- There are no significant differences in disease-dependent survival time (OS) between surgery and radiotherapy for the treatment of early stage and locally advanced cervical cancer [55,56,57] [strength of evidence IIA, IVA, IVA].
- Q:
- So, what factors should influence the decision-making regarding the choice of method in the case of cr FIGO I-II?
- A:
- The choice of method (surgery or radiotherapy) should be entirely individualized and depends on:
- Menopausal status (expected lifespan) [60] [strength of evidence IIa].
- Comorbidities (impact on operability) [60] [strength of evidence IIa].
- Parametrial involvement (cr FIGO IIB).
- Tumor size
4.2. Surgery—Evidence
4.2.1. Uterus
- Q:
- Which approach—open or minimally invasive surgery—is preferable for performing a hysterectomy in cases of operable cervical cancer?
- Q:
- Which type of hysterectomy is recommended for cervical cancer surgery: simple or radical?
4.2.2. Lymph Nodes (Staging)
- Q:
- Is SLNB a reliable method for detecting lymph node metastases?
- Studies using combined techniques showed a sensitivity of 0.88 (95% CI 0.84–0.91) and a detection rate of 0.97 (95% CI 0.96–0.98).
- Studies using metastable technetium-99 reported a sensitivity of 0.87 (95% CI 0.78–0.93) and a detection rate of 0.90 (95% CI 0.87–0.93).
- Studies using blue dye indicated a sensitivity of 0.87 (95% CI 0.79–0.93) and a detection rate of 0.87 (95% CI 0.84–0.90).
- Studies employing laparotomy showed a sensitivity of 0.86 (95% CI 0.80–0.90) and a detection rate of 0.87 (95% CI 0.83–0.91).
- Studies utilizing laparoscopy demonstrated a sensitivity of 0.90 (95% CI 0.86–0.94) and a detection rate of 0.93 (95% CI 0.90–0.96).
- Studies employing robot-assisted surgery reported a sensitivity of 0.84 (95% CI 0.72–0.92) and a detection rate of 0.92 (95% CI 0.88–0.95).
- Q:
- Is a sentinel lymph node biopsy an oncologically safe procedure?
- Q:
- What to choose: SLNB or LND?
Impact on Morbidity
Impact on Therapeutic Sequence
4.2.3. Ovaries
- Q:
- Is ovarian transposition (OT) safe and beneficial for young cervical cancer patients?
- Q:
- Is salvage surgery (hysterectomy/pelvic exenteration) beneficial in cases of failed radical concurrent chemoradiation advanced cervical cancer, particularly in cases of crFIGO III/IVA?
4.3. Radiotherapy—Evidence
4.3.1. Adjuvant Treatment after Surgery
- Q:
- Why do we use adjuvant treatment after surgery for early-stage cervical cancer?
- Presence of LVSI plus deep (outer third) cervical stromal invasion and tumor of any size;
- Presence of LVSI plus middle (one-third) stromal invasion and tumor size ≥ 2 cm;
- Presence of LVSI plus superficial (inner third) stromal invasion and tumor size ≥ 5 cm;
- No LVSI but deep or middle cervical stromal invasion and tumor size ≥ 4 cm
STARS Trial
4.3.2. Curative Radical Radiotherapy-cr FIGO IB2-IVA Cases with Preserved Uterus
4.4. Systemic Treatment–Evidence
4.4.1. First Line Treatment for Metastatic/cr FIGO IVB/Persistent* or Recurrent Disease
4.4.2. Second Line Treatment for Recurrent Disease
4.5. Particular Clinical Situations
4.5.1. Oligometastases
4.5.2. Fertility Sparing Management
5. Follow-Up
5.1. Assessment of Initial Treatment
5.2. Follow-Up for CR Patients—Evidence
- Across nine studies reporting data, a significant majority (62–89%) of cervical cancer recurrences were identified within the initial 2 years post-primary treatment. Furthermore, in six studies, at least 89% of recurrences were detected within a 5-year timeframe.
- Of the seventeen retrospective studies, fifteen provided insights into whether recurrences were symptomatic or asymptomatic. Approximately two-thirds of patients presented with symptoms, ranging from 46% to 87%, while roughly one-third were asymptomatic, with proportions ranging from 4% to 54%.
- Scheduled follow-up visits exhibited variability, ranging from a minimum of 9 to a potential maximum of 28 visits over a 5-year period. Most studies outlined similar intervals: follow-up appointments every 3–4 months during the initial 2 years, transitioning to semiannual visits for the subsequent 3 years, and then annual assessments extending to year 10 or discharge.
- Although not uniformly reported, physical examination and vaginal vault cytology emerged as the most commonly utilized follow-up tests across the seventeen studies. On average, physical examination detected recurrences in 52% of cases, while vaginal vault cytology identified recurrences in approximately 6%.
- Among the studies reporting on the routine use of additional diagnostic modalities such as chest radiography, abdominal and pelvic ultrasonography, PET, CT, magnetic resonance imaging, intravenous pyelography, or tumor markers, there was a lack of consistency in reporting. Moreover, the impact of asymptomatic recurrence detection on survival remained unclear [116] [strength of evidence IIIA].
5.3. Follow-Up Recommendations
5.3.1. Schedule
5.3.2. Symptoms
5.3.3. Follow-Up Tests
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Brouwers, M.C.; Kho, M.E.; Browman, G.P.; Burgers, J.S.; Cluzeau, F.; Feder, G.; Fervers, B.; Graham, I.D.; Grimshaw, J.; Hanna, S.E.; et al. AGREE II: Advancing Guideline Development, Reporting and Evaluation in Health Care. CMAJ Can. Med. Assoc. J. 2010, 182, E839–E842. [Google Scholar] [CrossRef] [PubMed]
- AGREE II. Available online: https://www.aotm.gov.pl/zalecenia-kliniczne/narzedzia/agree-ii/ (accessed on 21 April 2024).
- WHO Classification of Tumours Editorial Board. Female Genital Tumours WHO Classification of Tumours, 5th ed.; WHO Classification of Tumours Editorial Board: Geneva, Switzerland, 2020; Volume 4, ISBN 13-978-92-832-4504-9. [Google Scholar]
- Peirson, L.; Fitzpatrick-Lewis, D.; Ciliska, D.; Warren, R. Screening for Cervical Cancer: A Systematic Review and Meta-Analysis. Syst. Rev. 2013, 2, 35. [Google Scholar] [CrossRef]
- Jansen, E.E.L.; Zielonke, N.; Gini, A.; Anttila, A.; Segnan, N.; Vokó, Z.; Ivanuš, U.; McKee, M.; de Koning, H.J.; de Kok, I.M.C.M.; et al. Effect of Organised Cervical Cancer Screening on Cervical Cancer Mortality in Europe: A Systematic Review. Eur. J. Cancer 2020, 127, 207–223. [Google Scholar] [CrossRef] [PubMed]
- Arbyn, M.; Bergeron, C.; Klinkhamer, P.; Martin-Hirsch, P.; Siebers, A.G.; Bulten, J. Liquid Compared with Conventional Cervical Cytology: A Systematic Review and Meta-Analysis. Obstet. Gynecol. 2008, 111, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Siebers, A.G.; Klinkhamer, P.J.J.M.; Grefte, J.M.M.; Massuger, L.F.A.G.; Vedder, J.E.M.; Beijers-Broos, A.; Bulten, J.; Arbyn, M. Comparison of Liquid-Based Cytology with Conventional Cytology for Detection of Cervical Cancer Precursors: A Randomized Controlled Trial. JAMA 2009, 302, 1757–1764. [Google Scholar] [CrossRef] [PubMed]
- Koliopoulos, G.; Nyaga, V.N.; Santesso, N.; Bryant, A.; Martin-Hirsch, P.P.; Mustafa, R.A.; Schünemann, H.; Paraskevaidis, E.; Arbyn, M. Cytology versus HPV Testing for Cervical Cancer Screening in the General Population. Cochrane Database Syst. Rev. 2017, 8, CD008587. [Google Scholar] [CrossRef] [PubMed]
- Patanwala, I.Y.; Bauer, H.M.; Miyamoto, J.; Park, I.U.; Huchko, M.J.; Smith-McCune, K.K. A Systematic Review of Randomized Trials Assessing Human Papillomavirus Testing in Cervical Cancer Screening. Am. J. Obstet. Gynecol. 2013, 208, 343–353. [Google Scholar] [CrossRef] [PubMed]
- TOMBOLA Group Cytological Surveillance Compared with Immediate Referral for Colposcopy in Management of Women with Low Grade Cervical Abnormalities: Multicentre Randomised Controlled Trial. BMJ 2009, 339, b2546. [CrossRef] [PubMed]
- Ronco, G.; Dillner, J.; Elfström, K.M.; Tunesi, S.; Snijders, P.J.; Arbyn, M.; Kitchener, H.; Segnan, N.; Gilham, C.; Giorgi-Rossi, P.; et al. Efficacy of HPV-Based Screening for Prevention of Invasive Cervical Cancer: Follow-up of Four European Randomised Controlled Trials. Lancet 2014, 383, 524–532. [Google Scholar] [CrossRef]
- Arbyn, M.; Simon, M.; de Sanjosé, S.; Clarke, M.A.; Poljak, M.; Rezhake, R.; Berkhof, J.; Nyaga, V.; Gultekin, M.; Canfell, K.; et al. Accuracy and Effectiveness of HPV mRNA Testing in Cervical Cancer Screening: A Systematic Review and Meta-Analysis. Lancet Oncol. 2022, 23, 950–960. [Google Scholar] [CrossRef]
- Weston, G.; Dombrowski, C.; Harvey, M.J.; Iftner, T.; Kyrgiou, M.; Founta, C.; Adams, E.J. Use of the Aptima mRNA High-Risk Human Papillomavirus (HR-HPV) Assay Compared to a DNA HR-HPV Assay in the English Cervical Screening Programme: A Decision Tree Model Based Economic Evaluation. BMJ Open 2020, 10, e031303. [Google Scholar] [CrossRef]
- Melnikow, J.; Henderson, J.T.; Burda, B.U.; Senger, C.A.; Durbin, S.; Weyrich, M.S. Screening for Cervical Cancer With High-Risk Human Papillomavirus Testing: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2018, 320, 687–705. [Google Scholar] [CrossRef] [PubMed]
- Kitchener, H.C.; Canfell, K.; Gilham, C.; Sargent, A.; Roberts, C.; Desai, M.; Peto, J. The Clinical Effectiveness and Cost-Effectiveness of Primary Human Papillomavirus Cervical Screening in England: Extended Follow-up of the ARTISTIC Randomised Trial Cohort through Three Screening Rounds. Health Technol. Assess. 2014, 18, 1–196. [Google Scholar] [CrossRef] [PubMed]
- Gilham, C.; Sargent, A.; Kitchener, H.C.; Peto, J. HPV Testing Compared with Routine Cytology in Cervical Screening: Long-Term Follow-up of ARTISTIC RCT. Health Technol. Assess. 2019, 23, 1–44. [Google Scholar] [CrossRef]
- Rebolj, M.; Cuschieri, K.; Mathews, C.S.; Pesola, F.; Denton, K.; Kitchener, H. HPV pilot steering group Extension of Cervical Screening Intervals with Primary Human Papillomavirus Testing: Observational Study of English Screening Pilot Data. BMJ 2022, 377, e068776. [Google Scholar] [CrossRef] [PubMed]
- Kjaer, S.K.; Dehlendorff, C.; Belmonte, F.; Baandrup, L. Real-World Effectiveness of Human Papillomavirus Vaccination Against Cervical Cancer. J. Natl. Cancer Inst. 2021, 113, 1329–1335. [Google Scholar] [CrossRef]
- Lei, J.; Ploner, A.; Elfström, K.M.; Wang, J.; Roth, A.; Fang, F.; Sundström, K.; Dillner, J.; Sparén, P. HPV Vaccination and the Risk of Invasive Cervical Cancer. N. Engl. J. Med. 2020, 383, 1340–1348. [Google Scholar] [CrossRef]
- Teoh, D.; Nam, G.; Aase, D.A.; Russell, R.; Melton, G.B.; Kulasingam, S.; Vogel, R.I. Test Performance of Cervical Cytology Among Adults With vs Without Human Papillomavirus Vaccination. JAMA Netw. Open 2022, 5, e2214020. [Google Scholar] [CrossRef]
- Shing, J.Z.; Hu, S.; Herrero, R.; Hildesheim, A.; Porras, C.; Sampson, J.N.; Schussler, J.; Schiller, J.T.; Lowy, D.R.; Sierra, M.S.; et al. Precancerous Cervical Lesions Caused by Non-Vaccine-Preventable HPV Types after Vaccination with the Bivalent AS04-Adjuvanted HPV Vaccine: An Analysis of the Long-Term Follow-up Study from the Randomised Costa Rica HPV Vaccine Trial. Lancet Oncol. 2022, 23, 940–949. [Google Scholar] [CrossRef]
- Pirog, E.C. Cervical Adenocarcinoma: Diagnosis of Human Papillomavirus-Positive and Human Papillomavirus-Negative Tumors. Arch. Pathol. Lab. Med. 2017, 141, 1653–1667. [Google Scholar] [CrossRef]
- Holl, K.; Nowakowski, A.M.; Powell, N.; McCluggage, W.G.; Pirog, E.C.; Collas De Souza, S.; Tjalma, W.A.; Rosenlund, M.; Fiander, A.; Castro Sánchez, M.; et al. Human Papillomavirus Prevalence and Type-Distribution in Cervical Glandular Neoplasias: Results from a European Multinational Epidemiological Study. Int. J. Cancer 2015, 137, 2858–2868. [Google Scholar] [CrossRef] [PubMed]
- Lia, M.; Horn, L.-C.; Sodeikat, P.; Höckel, M.; Aktas, B.; Wolf, B. The Diagnostic Value of Core Needle Biopsy in Cervical Cancer: A Retrospective Analysis. PLoS ONE 2022, 17, e0262257. [Google Scholar] [CrossRef] [PubMed]
- Bidus, M.A.; Caffrey, A.S.; You, W.B.; Amezcua, C.A.; Chernofsky, M.R.; Barner, R.; Seidman, J.; Rose, G.S. Cervical Biopsy and Excision Procedure Specimens Lack Sufficient Predictive Value for Lymph-Vascular Space Invasion Seen at Hysterectomy for Cervical Cancer. Am. J. Obstet. Gynecol. 2008, 199, 151.e1–151.e4. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Cao, D.; Yuan, F.; Wang, H.; Xiao, M.; Chen, J.; Cui, Q.; Shen, K.; Zhang, Z. Accuracy of Conization Procedure for Predicting Pathological Parameters of Radical Hysterectomy in Stage Ia2-Ib1 (≤2 cm) Cervical Cancer. Sci. Rep. 2016, 6, 25992. [Google Scholar] [CrossRef] [PubMed]
- Qin, D.; Bai, A.; Xue, P.; Seery, S.; Wang, J.; Mendez, M.J.G.; Li, Q.; Jiang, Y.; Qiao, Y. Colposcopic Accuracy in Diagnosing Squamous Intraepithelial Lesions: A Systematic Review and Meta-Analysis of the International Federation of Cervical Pathology and Colposcopy 2011 Terminology. BMC Cancer 2023, 23, 187. [Google Scholar] [CrossRef]
- Moarcăs, M.; Georgescu, I.C.; Moarcăs, R.; Badea, M.; Cîrstoiu, M. HPV-DNA Testing for Patients with ASC-US Helps Identify the Women Who Have a High Risk for Precancerous Cervical Lesions. J. Med. Life 2014, 7, 78–80. [Google Scholar] [PubMed]
- Nishimura, M.; Miyatake, T.; Nakashima, A.; Miyoshi, A.; Mimura, M.; Nagamatsu, M.; Ogita, K.; Yokoi, T. Clinical Significance of Atypical Squamous Cells of Undetermined Significance among Patients Undergoing Cervical Conization. Asian Pac. J. Cancer Prev. APJCP 2015, 16, 8145–8147. [Google Scholar] [CrossRef] [PubMed]
- Bergengren, L.; Lillsunde-Larsson, G.; Helenius, G.; Karlsson, M.G. HPV-Based Screening for Cervical Cancer among Women 55-59 Years of Age. PLoS ONE 2019, 14, e0217108. [Google Scholar] [CrossRef]
- Gospodarowicz, M.; O’Sullivan, B. Prognostic Factors in Cancer. Semin. Surg. Oncol. 2003, 21, 13–18. [Google Scholar] [CrossRef]
- Fleming, N.D.; Frumovitz, M.; Schmeler, K.M.; dos Reis, R.; Munsell, M.F.; Eifel, P.J.; Soliman, P.T.; Nick, A.M.; Westin, S.N.; Ramirez, P.T. Significance of Lymph Node Ratio in Defining Risk Category in Node-Positive Early Stage Cervical Cancer. Gynecol. Oncol. 2015, 136, 48–53. [Google Scholar] [CrossRef]
- Li, C.; Liu, W.; Cheng, Y. Prognostic Significance of Metastatic Lymph Node Ratio in Squamous Cell Carcinoma of the Cervix. OncoTargets Ther. 2016, 9, 3791–3797. [Google Scholar] [CrossRef]
- Lécuru, F.; Mathevet, P.; Querleu, D.; Leblanc, E.; Morice, P.; Daraï, E.; Marret, H.; Magaud, L.; Gillaizeau, F.; Chatellier, G.; et al. Bilateral Negative Sentinel Nodes Accurately Predict Absence of Lymph Node Metastasis in Early Cervical Cancer: Results of the SENTICOL Study. J. Clin. Oncol. 2011, 29, 1686–1691. [Google Scholar] [CrossRef]
- Salvo, G.; Ramirez, P.T.; Levenback, C.F.; Munsell, M.F.; Euscher, E.D.; Soliman, P.T.; Frumovitz, M. Sensitivity and Negative Predictive Value for Sentinel Lymph Node Biopsy in Women with Early-Stage Cervical Cancer. Gynecol. Oncol. 2017, 145, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Viveros-Carreño, D.; Mora-Soto, N.; Rodríguez, J.; Rauh-Hain, J.A.; Ramírez, P.T.; López Varón, M.; Krause, K.J.; Grillo-Ardila, C.F.; Jeronimo, J.; Pareja, R. Recurrence After Biopsy-Confirmed Cervical High-Grade Intraepithelial Lesion Followed by Negative Conization: A Systematic Review and Meta-Analysis. J. Low. Genit. Tract Dis. 2024, 28, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Pieralli, A.; Bianchi, C.; Auzzi, N.; Fallani, M.G.; Bussani, C.; Fambrini, M.; Cariti, G.; Scarselli, G.; Petraglia, F.; Ghelardi, A. Indication of Prophylactic Vaccines as a Tool for Secondary Prevention in HPV-Linked Disease. Arch. Gynecol. Obstet. 2018, 298, 1205–1210. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Bi, Y.; Wu, H.; Wu, M.; Lang, J. The Effects of Different Instruments and Suture Methods of Conization for Cervical Lesions. Sci. Rep. 2019, 9, 19114. [Google Scholar] [CrossRef] [PubMed]
- Foggiatto, A.I.; de Carvalho, N.S.; Fonseca, F.V.; Maestri, C.A. Recurrence in Cervical High-Grade Squamous Intraepithelial Lesion: The Role of the Excised Endocervical Canal Length-Analysis of 2,427 Patients. J. Low. Genit. Tract Dis. 2023, 27, 1–6. [Google Scholar] [CrossRef]
- Chen, J.-Y.; Wang, Z.-L.; Wang, Z.-Y.; Yang, X.-S. The Risk Factors of Residual Lesions and Recurrence of the High-Grade Cervical Intraepithelial Lesions (HSIL) Patients with Positive-Margin after Conization. Medicine 2018, 97, e12792. [Google Scholar] [CrossRef]
- Margolis, B.; Cagle-Colon, K.; Chen, L.; Tergas, A.I.; Boyd, L.; Wright, J.D. Prognostic Significance of Lymphovascular Space Invasion for Stage IA1 and IA2 Cervical Cancer. Int. J. Gynecol. Cancer 2020, 30, 735–743. [Google Scholar] [CrossRef]
- Alberton, D.L.; Salcedo, M.P.; Zen, R.P.; Ferreira, C.F.; Schmeler, K.; Pessini, S.A. Conservative Treatment of Stage IA1 Cervical Carcinoma Without Lymphovascular Space Invasion: A 20-Year Retrospective Study in Brazil. Rev. Bras. Ginecol. E Obstet. Rev. Fed. Bras. Soc. Ginecol. E Obstet. 2023, 45, 201–206. [Google Scholar] [CrossRef]
- Qian, Q.; Yang, J.; Cao, D.; You, Y.; Chen, J.; Shen, K. Analysis of Treatment Modalities and Prognosis on Microinvasive Cervical Cancer: A 10-Year Cohort Study in China. J. Gynecol. Oncol. 2014, 25, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Atun, R.; Ward, Z.J.; Scott, A.M.; Hricak, H.; Vargas, H.A. Diagnostic Performance of Conventional and Advanced Imaging Modalities for Assessing Newly Diagnosed Cervical Cancer: Systematic Review and Meta-Analysis. Eur. Radiol. 2020, 30, 5560–5577. [Google Scholar] [CrossRef] [PubMed]
- Gouy, S.; Morice, P.; Narducci, F.; Uzan, C.; Martinez, A.; Rey, A.; Bentivegna, E.; Pautier, P.; Deandreis, D.; Querleu, D.; et al. Prospective Multicenter Study Evaluating the Survival of Patients with Locally Advanced Cervical Cancer Undergoing Laparoscopic Para-Aortic Lymphadenectomy before Chemoradiotherapy in the Era of Positron Emission Tomography Imaging. J. Clin. Oncol. 2013, 31, 3026–3033. [Google Scholar] [CrossRef] [PubMed]
- Woo, S.; Suh, C.H.; Kim, S.Y.; Cho, J.Y.; Kim, S.H. The Diagnostic Performance of MRI for Detection of Lymph Node Metastasis in Bladder and Prostate Cancer: An Updated Systematic Review and Diagnostic Meta-Analysis. AJR Am. J. Roentgenol. 2018, 210, W95–W109. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, N.; Murakami, K.; Hida, K.; Sakamoto, T.; Sakai, Y. Diagnostic Accuracy of Magnetic Resonance Imaging and Computed Tomography for Lateral Lymph Node Metastasis in Rectal Cancer: A Systematic Review and Meta-Analysis. Int. J. Clin. Oncol. 2019, 24, 46–52. [Google Scholar] [CrossRef]
- Kakhki, V.R.D.; Shahriari, S.; Treglia, G.; Hasanzadeh, M.; Zakavi, S.R.; Yousefi, Z.; Kadkhodayan, S.; Sadeghi, R. Diagnostic Performance of Fluorine 18 Fluorodeoxyglucose Positron Emission Tomography Imaging for Detection of Primary Lesion and Staging of Endometrial Cancer Patients: Systematic Review and Meta-Analysis of the Literature. Int. J. Gynecol. Cancer 2013, 23, 1536–1543. [Google Scholar] [CrossRef] [PubMed]
- Cibula, D.; Dostalek, L.; Hillemanns, P.; Scambia, G.; Jarkovsky, J.; Persson, J.; Raspagliesi, F.; Novak, Z.; Jaeger, A.; Capilna, M.E.; et al. Completion of Radical Hysterectomy Does Not Improve Survival of Patients with Cervical Cancer and Intraoperatively Detected Lymph Node Involvement: ABRAX International Retrospective Cohort Study. Eur. J. Cancer 2021, 143, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Rotman, M.; Pajak, T.F.; Choi, K.; Clery, M.; Marcial, V.; Grigsby, P.W.; Cooper, J.; John, M. Prophylactic Extended-Field Irradiation of Para-Aortic Lymph Nodes in Stages IIB and Bulky IB and IIA Cervical Carcinomas. Ten-Year Treatment Results of RTOG 79-20. JAMA 1995, 274, 387–393. [Google Scholar] [CrossRef]
- Haie, C.; Pejovic, M.H.; Gerbaulet, A.; Horiot, J.C.; Pourquier, H.; Delouche, J.; Heinz, J.F.; Brune, D.; Fenton, J.; Pizzi, G. Is Prophylactic Para-Aortic Irradiation Worthwhile in the Treatment of Advanced Cervical Carcinoma? Results of a Controlled Clinical Trial of the EORTC Radiotherapy Group. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 1988, 11, 101–112. [Google Scholar] [CrossRef]
- Thelissen, A.A.B.; Jürgenliemk-Schulz, I.M.; van der Leij, F.; Peters, M.; Gerestein, C.G.; Zweemer, R.P.; van Rossum, P.S.N. Upstaging by Para-Aortic Lymph Node Dissection in Patients with Locally Advanced Cervical Cancer: A Systematic Review and Meta-Analysis. Gynecol. Oncol. 2022, 164, 667–674. [Google Scholar] [CrossRef]
- Bhatla, N.; Aoki, D.; Sharma, D.N.; Sankaranarayanan, R. Cancer of the Cervix Uteri. Int. J. Gynaecol. Obstet. 2018, 143 (Suppl. S2), 22–36. [Google Scholar] [CrossRef] [PubMed]
- Santiago, I.A.; Gomes, A.P.; Heald, R.J. An Ontogenetic Approach to Gynecologic Malignancies. Insights Imaging 2016, 7, 329–339. [Google Scholar] [CrossRef] [PubMed]
- Landoni, F.; Maneo, A.; Colombo, A.; Placa, F.; Milani, R.; Perego, P.; Favini, G.; Ferri, L.; Mangioni, C. Randomised Study of Radical Surgery versus Radiotherapy for Stage Ib-IIa Cervical Cancer. Lancet 1997, 350, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Tomita, N.; Mizuno, M.; Makita, C.; Kondo, S.; Mori, M.; Sakata, J.; Tsubouchi, H.; Hirata, K.; Tachibana, H.; Kodaira, T. Propensity Score Analysis of Radical Hysterectomy Versus Definitive Chemoradiation for FIGO Stage IIB Cervical Cancer. Int. J. Gynecol. Cancer 2018, 28, 1576–1583. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Guo, J.; Zhang, X.; Chen, M.; Xu, C.; Yao, L. Feasibility of Radical Hysterectomy in Women with FIGO Stage IIB Cervical Cancer: An Observation Study of 10-Year Experience in a Tertiary Center. OncoTargets Ther. 2018, 11, 5527–5533. [Google Scholar] [CrossRef] [PubMed]
- Brewster, W.R.; Monk, B.J.; Ziogas, A.; Anton-Culver, H.; Yamada, S.D.; Berman, M.L. Intent-to-Treat Analysis of Stage Ib and IIa Cervical Cancer in the United States: Radiotherapy or Surgery 1988–1995. Obstet. Gynecol. 2001, 97, 248–254. [Google Scholar] [CrossRef]
- Bansal, N.; Herzog, T.J.; Shaw, R.E.; Burke, W.M.; Deutsch, I.; Wright, J.D. Primary Therapy for Early-Stage Cervical Cancer: Radical Hysterectomy vs Radiation. Am. J. Obstet. Gynecol. 2009, 201, 485.e1–485.e9. [Google Scholar] [CrossRef]
- Landoni, F.; Colombo, A.; Milani, R.; Placa, F.; Zanagnolo, V.; Mangioni, C. Randomized Study between Radical Surgery and Radiotherapy for the Treatment of Stage IB-IIA Cervical Cancer: 20-Year Update. J. Gynecol. Oncol. 2017, 28, e34. [Google Scholar] [CrossRef] [PubMed]
- Katanyoo, K.; Sanguanrungsirikul, S.; Manusirivithaya, S. Comparison of Treatment Outcomes between Squamous Cell Carcinoma and Adenocarcinoma in Locally Advanced Cervical Cancer. Gynecol. Oncol. 2012, 125, 292–296. [Google Scholar] [CrossRef]
- Hu, K.; Wang, W.; Liu, X.; Meng, Q.; Zhang, F. Comparison of Treatment Outcomes between Squamous Cell Carcinoma and Adenocarcinoma of Cervix after Definitive Radiotherapy or Concurrent Chemoradiotherapy. Radiat. Oncol. 2018, 13, 249. [Google Scholar] [CrossRef]
- Kamura, T.; Tsukamoto, N.; Tsuruchi, N.; Kaku, T.; Saito, T.; To, N.; Akazawa, K.; Nakano, H. Histopathologic Prognostic Factors in Stage IIb Cervical Carcinoma Treated with Radical Hysterectomy and Pelvic-Node Dissection—An Analysis with Mathematical Statistics. Int. J. Gynecol. Cancer 1993, 3, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Delgado, G.; Bundy, B.; Zaino, R.; Sevin, B.U.; Creasman, W.T.; Major, F. Prospective Surgical-Pathological Study of Disease-Free Interval in Patients with Stage IB Squamous Cell Carcinoma of the Cervix: A Gynecologic Oncology Group Study. Gynecol. Oncol. 1990, 38, 352–357. [Google Scholar] [CrossRef]
- Horn, L.-C.; Bilek, K.; Fischer, U.; Einenkel, J.; Hentschel, B. A Cut-off Value of 2 Cm in Tumor Size Is of Prognostic Value in Surgically Treated FIGO Stage IB Cervical Cancer. Gynecol. Oncol. 2014, 134, 42–46. [Google Scholar] [CrossRef]
- Sevin, B.U.; Nadji, M.; Lampe, B.; Lu, Y.; Hilsenbeck, S.; Koechli, O.R.; Averette, H.E. Prognostic Factors of Early Stage Cervical Cancer Treated by Radical Hysterectomy. Cancer 1995, 76, 1978–1986. [Google Scholar] [CrossRef]
- Kenter, G.G.; Greggi, S.; Vergote, I.; Katsaros, D.; Kobierski, J.; van Doorn, H.; Landoni, F.; van der Velden, J.; Reed, N.; Coens, C.; et al. Randomized Phase III Study Comparing Neoadjuvant Chemotherapy Followed by Surgery Versus Chemoradiation in Stage IB2-IIB Cervical Cancer: EORTC-55994. J. Clin. Oncol. 2023, 41, 5035–5043. [Google Scholar] [CrossRef]
- Ramirez, P.T.; Frumovitz, M.; Pareja, R.; Lopez, A.; Vieira, M.; Ribeiro, R.; Buda, A.; Yan, X.; Shuzhong, Y.; Chetty, N.; et al. Minimally Invasive versus Abdominal Radical Hysterectomy for Cervical Cancer. N. Engl. J. Med. 2018, 379, 1895–1904. [Google Scholar] [CrossRef] [PubMed]
- Melamed, A.; Margul, D.J.; Chen, L.; Keating, N.L.; Del Carmen, M.G.; Yang, J.; Seagle, B.-L.L.; Alexander, A.; Barber, E.L.; Rice, L.W.; et al. Survival after Minimally Invasive Radical Hysterectomy for Early-Stage Cervical Cancer. N. Engl. J. Med. 2018, 379, 1905–1914. [Google Scholar] [CrossRef] [PubMed]
- Nitecki, R.; Ramirez, P.T.; Frumovitz, M.; Krause, K.J.; Tergas, A.I.; Wright, J.D.; Rauh-Hain, J.A.; Melamed, A. Survival After Minimally Invasive vs Open Radical Hysterectomy for Early-Stage Cervical Cancer: A Systematic Review and Meta-Analysis. JAMA Oncol. 2020, 6, 1019–1027. [Google Scholar] [CrossRef]
- Nasioudis, D.; Albright, B.B.; Ko, E.M.; Haggerty, A.F.; Giuntoli Ii, R.L.; Kim, S.H.; Morgan, M.A.; Latif, N.A. Oncologic Outcomes of Minimally Invasive versus Open Radical Hysterectomy for Early Stage Cervical Carcinoma and Tumor Size <2 cm: A Systematic Review and Meta-Analysis. Int. J. Gynecol. Cancer 2021, 31, 983–990. [Google Scholar] [CrossRef]
- Nitecki, R.; Ramirez, P.T.; Dundr, P.; Nemejcova, K.; Ribeiro, R.; Vieira Gomes, M.T.; Schmidt, R.L.; Bedoya, L.; Isla, D.O.; Pareja, R.; et al. MILACC Study: Could Undetected Lymph Node Micrometastases Have Impacted Recurrence Rate in the LACC Trial? Int. J. Gynecol. Cancer 2023, 33, 1684–1689. [Google Scholar] [CrossRef]
- Chiva, L.; Zanagnolo, V.; Querleu, D.; Martin-Calvo, N.; Arévalo-Serrano, J.; Căpîlna, M.E.; Fagotti, A.; Kucukmetin, A.; Mom, C.; Chakalova, G.; et al. SUCCOR Study: An International European Cohort Observational Study Comparing Minimally Invasive Surgery versus Open Abdominal Radical Hysterectomy in Patients with Stage IB1 Cervical Cancer. Int. J. Gynecol. Cancer 2020, 30, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Frumovitz, M.; Obermair, A.; Coleman, R.L.; Pareja, R.; Lopez, A.; Ribero, R.; Isla, D.; Rendon, G.; Bernardini, M.Q.; Buda, A.; et al. Quality of Life in Patients with Cervical Cancer after Open versus Minimally Invasive Radical Hysterectomy (LACC): A Secondary Outcome of a Multicentre, Randomised, Open-Label, Phase 3, Non-Inferiority Trial. Lancet Oncol. 2020, 21, 851–860. [Google Scholar] [CrossRef] [PubMed]
- Obermair, A.; Asher, R.; Pareja, R.; Frumovitz, M.; Lopez, A.; Moretti-Marques, R.; Rendon, G.; Ribeiro, R.; Tsunoda, A.; Behan, V.; et al. Incidence of Adverse Events in Minimally Invasive vs Open Radical Hysterectomy in Early Cervical Cancer: Results of a Randomized Controlled Trial. Am. J. Obstet. Gynecol. 2020, 222, 249.e1–249.e10. [Google Scholar] [CrossRef] [PubMed]
- Plante, M.; Kwon, J.S.; Ferguson, S.; Samouëlian, V.; Ferron, G.; Maulard, A.; de Kroon, C.; Van Driel, W.; Tidy, J.; Williamson, K.; et al. Simple versus Radical Hysterectomy in Women with Low-Risk Cervical Cancer. N. Engl. J. Med. 2024, 390, 819–829. [Google Scholar] [CrossRef]
- Wang, X.-J.; Fang, F.; Li, Y.-F. Sentinel-Lymph-Node Procedures in Early Stage Cervical Cancer: A Systematic Review and Meta-Analysis. Med. Oncol. Northwood 2015, 32, 385. [Google Scholar] [CrossRef] [PubMed]
- Kadkhodayan, S.; Hasanzadeh, M.; Treglia, G.; Azad, A.; Yousefi, Z.; Zarifmahmoudi, L.; Sadeghi, R. Sentinel Node Biopsy for Lymph Nodal Staging of Uterine Cervix Cancer: A Systematic Review and Meta-Analysis of the Pertinent Literature. Eur. J. Surg. Oncol. J. Eur. Soc. Surg. Oncol. Br. Assoc. Surg. Oncol. 2015, 41, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Favre, G.; Guani, B.; Balaya, V.; Magaud, L.; Lecuru, F.; Mathevet, P. Sentinel Lymph-Node Biopsy in Early-Stage Cervical Cancer: The 4-Year Follow-Up Results of the Senticol 2 Trial. Front. Oncol. 2020, 10, 621518. [Google Scholar] [CrossRef]
- Cibula, D.; Marnitz, S.; Klát, J.; Jarkovsky, J.; Martino, G.D.; Lonkhuijzen, L.R.V.; Gutiérrez, I.Z.; Zikan, M.; Arencibia-Sánchez, O.; Raspagliesi, F.; et al. 444 Survival of Patients with Early Stages Cervical Cancer after SLN Biopsy without Systematic Pelvic Lymphadenectomy: Survival Outcomes of the SENTIX Prospective Single-Arm International Trial (CEEGOG CX-01; ENGOT-CX2). Int. J. Gynecol. Cancer 2024, 34. [Google Scholar] [CrossRef]
- Parpinel, G.; Laas-Faron, E.; Balaya, V.; Guani, B.; Zola, P.; Mathevet, P.; Paoletti, X.; Lecuru, F.R. Survival after Sentinel Lymph Node Biopsy for Early Cervical Cancers: A Systematic Review and Meta-Analysis. Int. J. Gynecol. Cancer 2023, 33, 1853–1860. [Google Scholar] [CrossRef]
- Mathevet, P.; Lécuru, F.; Uzan, C.; Boutitie, F.; Magaud, L.; Guyon, F.; Querleu, D.; Fourchotte, V.; Baron, M.; Bats, A.-S.; et al. Sentinel Lymph Node Biopsy and Morbidity Outcomes in Early Cervical Cancer: Results of a Multicentre Randomised Trial (SENTICOL-2). Eur. J. Cancer 2021, 148, 307–315. [Google Scholar] [CrossRef]
- Laios, A.; Otify, M.; Papadopoulou, A.; Gallos, I.D.; Ind, T. Outcomes of Ovarian Transposition in Cervical Cancer; an Updated Meta-Analysis. BMC Womens Health 2022, 22, 305. [Google Scholar] [CrossRef]
- van Kol, K.G.G.; Ebisch, R.M.F.; Piek, J.M.J.; Zusterzeel, P.L.M.; Vergeldt, T.F.M.; Bekkers, R.L.M. Salvage Surgery for Patients with Residual Disease after Chemoradiation Therapy for Locally Advanced Cervical Cancer: A Systematic Review on Indication, Complications, and Survival. Acta Obstet. Gynecol. Scand. 2021, 100, 1176–1185. [Google Scholar] [CrossRef] [PubMed]
- Conte, C.; Della Corte, L.; Pelligra, S.; Bifulco, G.; Abate, B.; Riemma, G.; Palumbo, M.; Cianci, S.; Ercoli, A. Assessment of Salvage Surgery in Persistent Cervical Cancer after Definitive Radiochemotherapy: A Systematic Review. Med. Kaunas Lith. 2023, 59, 192. [Google Scholar] [CrossRef]
- Peters, W.A.; Liu, P.Y.; Barrett, R.J.; Stock, R.J.; Monk, B.J.; Berek, J.S.; Souhami, L.; Grigsby, P.; Gordon, W.; Alberts, D.S. Concurrent Chemotherapy and Pelvic Radiation Therapy Compared with Pelvic Radiation Therapy Alone as Adjuvant Therapy after Radical Surgery in High-Risk Early-Stage Cancer of the Cervix. J. Clin. Oncol. 2000, 18, 1606–1613. [Google Scholar] [CrossRef]
- Sedlis, A.; Bundy, B.N.; Rotman, M.Z.; Lentz, S.S.; Muderspach, L.I.; Zaino, R.J. A Randomized Trial of Pelvic Radiation Therapy versus No Further Therapy in Selected Patients with Stage IB Carcinoma of the Cervix after Radical Hysterectomy and Pelvic Lymphadenectomy: A Gynecologic Oncology Group Study. Gynecol. Oncol. 1999, 73, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Rotman, M.; Sedlis, A.; Piedmonte, M.R.; Bundy, B.; Lentz, S.S.; Muderspach, L.I.; Zaino, R.J. A Phase III Randomized Trial of Postoperative Pelvic Irradiation in Stage IB Cervical Carcinoma with Poor Prognostic Features: Follow-up of a Gynecologic Oncology Group Study. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 169–176. [Google Scholar] [CrossRef]
- Huang, H.; Feng, Y.-L.; Wan, T.; Zhang, Y.-N.; Cao, X.-P.; Huang, Y.-W.; Xiong, Y.; Huang, X.; Zheng, M.; Li, Y.-F.; et al. Effectiveness of Sequential Chemoradiation vs Concurrent Chemoradiation or Radiation Alone in Adjuvant Treatment After Hysterectomy for Cervical Cancer: The STARS Phase 3 Randomized Clinical Trial. JAMA Oncol. 2021, 7, 361–369. [Google Scholar] [CrossRef]
- Rose, P.G.; Bundy, B.N.; Watkins, E.B.; Thigpen, J.T.; Deppe, G.; Maiman, M.A.; Clarke-Pearson, D.L.; Insalaco, S. Concurrent Cisplatin-Based Radiotherapy and Chemotherapy for Locally Advanced Cervical Cancer. N. Engl. J. Med. 1999, 340, 1144–1153. [Google Scholar] [CrossRef]
- Chemoradiotherapy for Cervical Cancer Meta-analysis Collaboration (CCCMAC) Reducing Uncertainties about the Effects of Chemoradiotherapy for Cervical Cancer: Individual Patient Data Meta-Analysis. Cochrane Database Syst. Rev. 2010, 2010, CD008285. [CrossRef]
- Whitney, C.W.; Sause, W.; Bundy, B.N.; Malfetano, J.H.; Hannigan, E.V.; Fowler, W.C.; Clarke-Pearson, D.L.; Liao, S.Y. Randomized Comparison of Fluorouracil plus Cisplatin versus Hydroxyurea as an Adjunct to Radiation Therapy in Stage IIB-IVA Carcinoma of the Cervix with Negative Para-Aortic Lymph Nodes: A Gynecologic Oncology Group and Southwest Oncology Group Study. J. Clin. Oncol. 1999, 17, 1339–1348. [Google Scholar] [CrossRef]
- McCormack, M.; Rincón, D.G.; Eminowicz, G.; Diez, P.; Farrelly, L.; Kent, C.; Hudson, E.; Panades, M.; Mathews, T.; Anand, A.; et al. LBA8 A Randomised Phase III Trial of Induction Chemotherapy Followed by Chemoradiation Compared with Chemoradiation Alone in Locally Advanced Cervical Cancer: The GCIG INTERLACE Trial. Ann. Oncol. 2023, 34, S1276. [Google Scholar] [CrossRef]
- Monk, B.J.; Toita, T.; Wu, X.; Vázquez Limón, J.C.; Tarnawski, R.; Mandai, M.; Shapira-Frommer, R.; Mahantshetty, U.; Del Pilar Estevez-Diz, M.; Zhou, Q.; et al. Durvalumab versus Placebo with Chemoradiotherapy for Locally Advanced Cervical Cancer (CALLA): A Randomised, Double-Blind, Phase 3 Trial. Lancet Oncol. 2023, 24, 1334–1348. [Google Scholar] [CrossRef]
- Lorusso, D.; Xiang, Y.; Hasegawa, K.; Scambia, G.; Leiva, M.; Ramos-Elias, P.; Acevedo, A.; Sukhin, V.; Cloven, N.; Pereira de Santana Gomes, A.J.; et al. Pembrolizumab or Placebo with Chemoradiotherapy Followed by Pembrolizumab or Placebo for Newly Diagnosed, High-Risk, Locally Advanced Cervical Cancer (ENGOT-Cx11/GOG-3047/KEYNOTE-A18): A Randomised, Double-Blind, Phase 3 Clinical Trial. Lancet 2024, 403, 1341–1350. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, D.; Xiang, Y.; Hasegawa, K.; Scambia, G.; Leiva, M.; Ramos-Elias, P.; Acevedo, A.; Vizkeleti, J.; Gomes, A.; Mejía, F.; et al. 161 Pembrolizumab plus Chemoradiotherapy for High-Risk Locally Advanced Cervical Cancer: The Randomized, Double-Blind, Phase 3 ENGOT-Cx11/GOG-3047/KEYNOTE-A18 Study. Int. J. Gynecol. Cancer. 2024, 34, A2. [Google Scholar]
- Tewari, K.S.; Sill, M.W.; Long, H.J.; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; Leitao, M.M.; et al. Improved Survival with Bevacizumab in Advanced Cervical Cancer. N. Engl. J. Med. 2014, 370, 734–743. [Google Scholar] [CrossRef] [PubMed]
- Tewari, K.S.; Sill, M.W.; Penson, R.T.; Huang, H.; Ramondetta, L.M.; Landrum, L.M.; Oaknin, A.; Reid, T.J.; Leitao, M.M.; Michael, H.E.; et al. Bevacizumab for Advanced Cervical Cancer: Final Overall Survival and Adverse Event Analysis of a Randomised, Controlled, Open-Label, Phase 3 Trial (Gynecologic Oncology Group 240). Lancet 2017, 390, 1654–1663. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, R.; Katsumata, N.; Shibata, T.; Kamura, T.; Kasamatsu, T.; Nakanishi, T.; Nishimura, S.; Ushijima, K.; Takano, M.; Satoh, T.; et al. Paclitaxel Plus Carboplatin Versus Paclitaxel Plus Cisplatin in Metastatic or Recurrent Cervical Cancer: The Open-Label Randomized Phase III Trial JCOG0505. J. Clin. Oncol. 2015, 33, 2129–2135. [Google Scholar] [CrossRef] [PubMed]
- Colombo, N.; Dubot, C.; Lorusso, D.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Tewari, K.S.; Salman, P.; Hoyos Usta, E.; Yañez, E.; et al. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer. N. Engl. J. Med. 2021, 385, 1856–1867. [Google Scholar] [CrossRef] [PubMed]
- Monk, B.J.; Colombo, N.; Tewari, K.S.; Dubot, C.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Salman, P.; Yañez, E.; Gümüş, M.; et al. First-Line Pembrolizumab + Chemotherapy Versus Placebo + Chemotherapy for Persistent, Recurrent, or Metastatic Cervical Cancer: Final Overall Survival Results of KEYNOTE-826. J. Clin. Oncol. 2023, 41, 5505–5511. [Google Scholar] [CrossRef]
- Monk, B.J.; Tewari, K.S.; Dubot, C.; Caceres, M.V.; Hasegawa, K.; Shapira-Frommer, R.; Salman, P.; Yañez, E.; Gümüş, M.; Hurtado de Mendoza, M.O.; et al. Health-Related Quality of Life with Pembrolizumab or Placebo plus Chemotherapy with or without Bevacizumab for Persistent, Recurrent, or Metastatic Cervical Cancer (KEYNOTE-826): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. Lancet Oncol. 2023, 24, 392–402. [Google Scholar] [CrossRef]
- Oaknin, A.; Gladieff, L.; Martínez-García, J.; Villacampa, G.; Takekuma, M.; Giorgi, U.D.; Lindemann, K.; Woelber, L.; Colombo, N.; Duska, L.; et al. Atezolizumab plus Bevacizumab and Chemotherapy for Metastatic, Persistent, or Recurrent Cervical Cancer (BEATcc): A Randomised, Open-Label, Phase 3 Trial. Lancet 2024, 403, 31–43. [Google Scholar] [CrossRef]
- Oaknin, A.; Gladieff, L.; Martínez, J.; Villacampa Javierre, G.; Takekuma, M.; Giorgi, U.; Lindemann, K.; Woelber, L.; Colombo, N.; Duska, L.; et al. 427 BEATcc (ENGOT-CX10/GEICO 68-C/JGOG1084/GOG-3030), a Randomised Phase 3 Trial of First-Line Atezolizumab with Bevacizumab and Platinum-Based Chemotherapy for Metastatic (Stage IVB), Persistent or Recurrent Cervical Cancer. Int. J. Gynecol. Cancer. 2024, 34, A7. [Google Scholar]
- Tewari, K.S.; Monk, B.J.; Vergote, I.; Miller, A.; de Melo, A.C.; Kim, H.-S.; Kim, Y.M.; Lisyanskaya, A.; Samouëlian, V.; Lorusso, D.; et al. Survival with Cemiplimab in Recurrent Cervical Cancer. N. Engl. J. Med. 2022, 386, 544–555. [Google Scholar] [CrossRef] [PubMed]
- Vergote, I.B.; Martin, A.G.; Fujiwara, K.; Kalbacher, E.; Bagameri, A.; Ghamande, S.; Lee, J.-Y.; Banerjee, S.; Maluf, F.C.; Lorusso, D.; et al. LBA9 innovaTV 301/ENGOT-Cx12/GOG-3057: A Global, Randomized, Open-Label, Phase III Study of Tisotumab Vedotin vs Investigator’s Choice of Chemotherapy in 2L or 3L Recurrent or Metastatic Cervical Cancer. Ann. Oncol. 2023, 34, S1276–S1277. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Huo, L.; Huang, X.; Shi, L.; Huang, L.; Chen, K.; Cao, X. Definitive Irradiation as a First Treatment Strategy for Primary and Metastatic Sites of Newly Diagnosed IVB Cervical Cancer That Presented with Synchronous Oligometastases. Radiat. Oncol. 2023, 18, 159. [Google Scholar] [CrossRef]
- Ning, M.S.; Ahobila, V.; Jhingran, A.; Stecklein, S.R.; Frumovitz, M.; Schmeler, K.M.; Eifel, P.J.; Klopp, A.H. Outcomes and Patterns of Relapse after Definitive Radiation Therapy for Oligometastatic Cervical Cancer. Gynecol. Oncol. 2018, 148, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Venigalla, S.; Guttmann, D.M.; Horne, Z.D.; Carmona, R.; Shabason, J.E.; Beriwal, S. Definitive Local Therapy Is Associated with Improved Overall Survival in Metastatic Cervical Cancer. Pract. Radiat. Oncol. 2018, 8, e377–e385. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, W.; Kanis, M.J.; Qi, G.; Li, M.; Yang, X.; Kong, B. Oncologic and Obstetrical Outcomes with Fertility-Sparing Treatment of Cervical Cancer: A Systematic Review and Meta-Analysis. Oncotarget 2017, 8, 46580–46592. [Google Scholar] [CrossRef]
- Shim, S.-H.; Lim, M.C.; Kim, H.J.; Lee, M.; Nam, E.J.; Lee, J.Y.; Lee, Y.-Y.; Lee, K.B.; Park, J.Y.; Kim, Y.H.; et al. Can Simple Trachelectomy or Conization Show Comparable Survival Rate Compared with Radical Trachelectomy in IA1 Cervical Cancer Patients with Lymphovascular Space Invasion Who Wish to Save Fertility? A Systematic Review and Guideline Recommendation. PLoS ONE 2018, 13, e0189847. [Google Scholar] [CrossRef]
- Schmeler, K.M.; Frumovitz, M.; Ramirez, P.T. Conservative Management of Early Stage Cervical Cancer: Is There a Role for Less Radical Surgery? Gynecol. Oncol. 2011, 120, 321–325. [Google Scholar] [CrossRef]
- Bentivegna, E.; Gouy, S.; Maulard, A.; Chargari, C.; Leary, A.; Morice, P. Oncological Outcomes after Fertility-Sparing Surgery for Cervical Cancer: A Systematic Review. Lancet Oncol. 2016, 17, e240–e253. [Google Scholar] [CrossRef] [PubMed]
- Plante, M.; van Trommel, N.; Lheureux, S.; Oza, A.M.; Wang, L.; Sikorska, K.; Ferguson, S.E.; Han, K.; Amant, F. FIGO 2018 Stage IB2 (2–4 cm) Cervical Cancer Treated with Neo-Adjuvant Chemotherapy Followed by Fertility Sparing Surgery (CONTESSA); Neo-Adjuvant Chemotherapy and Conservative Surgery in Cervical Cancer to Preserve Fertility (NEOCON-F). A PMHC, DGOG, GCIG/CCRN and Multicenter Study. Int. J. Gynecol. Cancer 2019, 29, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, R.; Yamashita, H.; Okuma, K.; Ohtomo, K.; Nakagawa, K. Details of Recurrence Sites after Definitive Radiation Therapy for Cervical Cancer. J. Gynecol. Oncol. 2016, 27, e16. [Google Scholar] [CrossRef] [PubMed]
- Elit, L.; Kennedy, E.B.; Fyles, A.; Metser, U. Follow-up for Cervical Cancer: A Program in Evidence-Based Care Systematic Review and Clinical Practice Guideline Update. Curr. Oncol. 2016, 23, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Salani, R.; Khanna, N.; Frimer, M.; Bristow, R.E.; Chen, L.-M. An Update on Post-Treatment Surveillance and Diagnosis of Recurrence in Women with Gynecologic Malignancies: Society of Gynecologic Oncology (SGO) Recommendations. Gynecol. Oncol. 2017, 146, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Zanagnolo, V.; Minig, L.A.; Gadducci, A.; Maggino, T.; Sartori, E.; Zola, P.; Landoni, F. Surveillance Procedures for Patients for Cervical Carcinoma: A Review of the Literature. Int. J. Gynecol. Cancer 2009, 19, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Charakorn, C.; Thadanipon, K.; Chaijindaratana, S.; Rattanasiri, S.; Numthavaj, P.; Thakkinstian, A. The Association between Serum Squamous Cell Carcinoma Antigen and Recurrence and Survival of Patients with Cervical Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Gynecol. Oncol. 2018, 150, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Hoogendam, J.P.; Zaal, A.; Rutten, E.G.G.M.; Heijnen, C.J.; Kenter, G.G.; Veldhuis, W.B.; Verheijen, R.H.M.; Zweemer, R.P. Detection of Cervical Cancer Recurrence during Follow-up: A Multivariable Comparison of 9 Frequently Investigated Serum Biomarkers. Gynecol. Oncol. 2013, 131, 655–660. [Google Scholar] [CrossRef]
- Kulangara, K.; Zhang, N.; Corigliano, E.; Guerrero, L.; Waldroup, S.; Jaiswal, D.; Ms, M.J.; Shah, S.; Hanks, D.; Wang, J.; et al. Clinical Utility of the Combined Positive Score for Programmed Death Ligand-1 Expression and the Approval of Pembrolizumab for Treatment of Gastric Cancer. Arch. Pathol. Lab. Med. 2019, 143, 330–337. [Google Scholar] [CrossRef]
- Piver, M.S.; Rutledge, F.; Smith, J.P. Five Classes of Extended Hysterectomy for Women with Cervical Cancer. Obstet. Gynecol. 1974, 44, 265–272. [Google Scholar] [CrossRef]
- Querleu, D.; Morrow, C.P. Classification of Radical Hysterectomy. Lancet Oncol. 2008, 9, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Abu-Rustum, N.R.; Khoury-Collado, F.; Gemignani, M.L. Techniques of Sentinel Lymph Node Identification for Early-Stage Cervical and Uterine Cancer. Gynecol. Oncol. 2008, 111, S44–S50. [Google Scholar] [CrossRef] [PubMed]
- Cormier, B.; Diaz, J.P.; Shih, K.; Sampson, R.M.; Sonoda, Y.; Park, K.J.; Alektiar, K.; Chi, D.S.; Barakat, R.R.; Abu-Rustum, N.R. Establishing a Sentinel Lymph Node Mapping Algorithm for the Treatment of Early Cervical Cancer. Gynecol. Oncol. 2011, 122, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Chiyoda, T.; Yoshihara, K.; Kagabu, M.; Nagase, S.; Katabuchi, H.; Mikami, M.; Tabata, T.; Hirashima, Y.; Kobayashi, Y.; Kaneuchi, M.; et al. Sentinel Node Navigation Surgery in Cervical Cancer: A Systematic Review and Metaanalysis. Int. J. Clin. Oncol. 2022, 27, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Kokka, F.; Bryant, A.; Olaitan, A.; Brockbank, E.; Powell, M.; Oram, D. Hysterectomy with Radiotherapy or Chemotherapy or Both for Women with Locally Advanced Cervical Cancer. Cochrane Database Syst. Rev. 2022, 8, CD010260. [Google Scholar] [CrossRef] [PubMed]
- Chemoradiotherapy for Cervical Cancer Meta-Analysis Collaboration Reducing Uncertainties about the Effects of Chemoradiotherapy for Cervical Cancer: A Systematic Review and Meta-Analysis of Individual Patient Data from 18 Randomized Trials. J. Clin. Oncol. 2008, 26, 5802–5812. [CrossRef] [PubMed]
- Rose, P.G.; Ali, S.; Watkins, E.; Thigpen, J.T.; Deppe, G.; Clarke-Pearson, D.L.; Insalaco, S. Gynecologic Oncology Group Long-Term Follow-up of a Randomized Trial Comparing Concurrent Single Agent Cisplatin, Cisplatin-Based Combination Chemotherapy, or Hydroxyurea during Pelvic Irradiation for Locally Advanced Cervical Cancer: A Gynecologic Oncology Group Study. J. Clin. Oncol. 2007, 25, 2804–2810. [Google Scholar] [CrossRef]
- Katanyoo, K.; Tangjitgamol, S.; Chongthanakorn, M.; Tantivatana, T.; Manusirivithaya, S.; Rongsriyam, K.; Cholpaisal, A. Treatment Outcomes of Concurrent Weekly Carboplatin with Radiation Therapy in Locally Advanced Cervical Cancer Patients. Gynecol. Oncol. 2011, 123, 571–576. [Google Scholar] [CrossRef]
Study Type | Grade | Subtype Description |
---|---|---|
RTC systematic review | IA | Meta-analysis based on RTC systematic review results |
IB | RCT systematic review without meta-analysis | |
Experimental study | IIA | Well-conducted randomized-controlled trial, including pragmatic randomized-controlled trial |
IIB | Well-conducted clinical-controlled trial with pseudorandomization | |
IIC | Well-conducted clinical-controlled trial withoutrandomization | |
IID | One-arm study | |
Observational study with control group | IIIA | Systematic review of observational studies |
IIIB | Well-conducted prospective-cohort studies with simultaneous control group | |
IIIC | Well-conducted prospective-cohort studies with historic control group | |
IIID | Well-conducted retrospective-cohort studies with simultaneous control group | |
IIIE | Well-conducted case–control study (retrospective) | |
Descriptive study | IVA | Case series—pretest/post-test * |
IVB | Case series—post-test ** | |
IVC | Other study of a group of patients | |
IVD | Case report | |
Expert opinion | V | Expert opinions based on clinical experience and reports from expert panels |
Grade of Recommendation | Grading Criteria (Strength of Evidence) |
---|---|
Grade 1 | Strength of evidence I or II (unanimity of experts) * |
Grade 2A | Strength of evidence III (unanimity of experts) * |
Grade 2B | Strength of evidence IV or V (unanimity of experts) * or strength of evidence III (no unanimity of experts) * |
Grade 3 | Every strength of evidence, when PSGO development group believes that the procedure can be used under certain conditions, but is not appropriate (unanimity) * |
Cancer Type | ICD-O | Frequency | Definition | Prognosis |
---|---|---|---|---|
Squamous cell tumors (SCCs) | ||||
Squamous cell carcinoma, HPV-associated | 8053/3 | 90–95% of cervical SCCs | HPV-associated squamous tumor with stromal or exophytic-type invasion. It is caused by high-risk HPV infections, with HPV 16 and 18 contributing to 70% of all SCCs. Very rarely, low-risk HPV genotypes, such as 6 and 11, may be the sole cause of cervical SCC. It develops from high-grade squamous intraepithelial lesions due to high viral oncogenes E6 and E7 expression. Over 70% of HPV-associated SCCs present genomic alterations in PI3K/MAPK or TGF-β signaling pathways. Mutations occur also in HER3, CASP8, and TGFBR2 genes. Almost all HPV-associated SCC cells show solid and diffuse p16 overexpression in nuclei and the cytoplasm. | Favorable prognosis. Histological patterns, HPV type, and grading do not seem to have prognostic implications. |
Squamous cell carcinoma, HPV-independent | 8086/3 | 5–7% of cervical SCCs | HPV-independent SCCs harbor a higher rate of abnormal p53 staining suggestive of mutation and are frequently of the keratinizing type. This type of SCC is often associated with KRAS, ARID1A, and PTEN mutations. Its macroscopic appearance does not differ from that of HPV-associated cancers. HPV-independent cancers are morphologically undistinguishable from their HPV-associated counterparts, and the lack of HPV infection is necessary for diagnosis. The lack of p16 immunostaining is an acceptable surrogate biomarker. | Unfavorable prognosis due to late diagnosis and frequent lymph node metastasis. |
Squamous cell carcinoma, NOS | 8070/3 | - | As there is no difference in the treatment of HPV-associated and HPV-independent cervical SCC, a morphological diagnosis of squamous cell carcinoma NOS is acceptable if p16 immunostaining or HPV testing is not available. | - |
Glandular tumors | ||||
Adenocarcinoma in situ (AIS), HPV-associated | 8140/2 8483/2 | - | Neoplasm associated with high-risk HPV infections, predominantly HPV16, HPV18, or HPV45. AIS replaces epithelium and is confined to the pre-existing glandular architecture. Histological findings include columnar cells, pseudostratified and hyperchromatic nuclei, apical mitotic figures (floating mitoses), and basal karyorrhexis. AIS shows strong and diffuse p16 staining and increased Ki-67 proliferation index. Typically, AIS lacks PR and ER expression. | Favorable prognosis (T0N0M0). |
Adenocarcinoma, HPV-associated | 8140/3 8483/3 | 5% of cervical cancers | Glandular tumor with stromal invasion or exophytic expansile-type invasion, associated with high-risk HPV. The relative frequency of cervical adenocarcinomas increased to 10–25% as a result of the treatment of squamous precancers. Coinfection of multiple HPV genotypes occurs in 10% of adenocarcinomas. Gross lesions present as an exophytic mass or ulceration in the distal cervix. HPV-associated endocervical adenocarcinoma often presents apical mitoses and karyorrhexis, as well as enlarged, elongated, and hyperchromatic nuclei. In total, 95% of HPV-associated carcinomas show diffuse p16 staining. P16 negativity may derive from methylation-induced inactivation. KRAS and PIK3CA mutations are frequent and associated with destructive growth. | The prognosis depends on the stage; the median 5-year overall survival is 77%. |
Adenocarcinoma in situ, HPV-independent (also gastric-type adenocarcinoma in situ) | 8140/2 8484/2 | - | A non-invasive glandular neoplasm unrelated to HPV, characterized by gastric type. The lesion of unknown etiology is localized typically proximally to the transformation zone. The tumor is characterized by cuboidal to columnar cells with distinct cell borders, vacuolated cytoplasm, and nuclear atypia. PAX8 and CDX2 are often positive; ER and PR are usually harmful—no or patchy p16 expression. Abnormal p53 staining suggests the diagnosis. | Unknown behavior. Complete excision is advised. |
Adenocarcinoma, HPV-independent, gastric type | 8482/3 | 10–15% of cervical adenocarcinomas | Invasive adenocarcinoma showing gastric differentiation unrelated to HPV infection. They can occur in Peutz–Jeghers syndrome (germline STK11 mutation); TP53 mutation is frequent. It lacks estrogen/progesterone receptors. It seems to derive from lobular endocervical glandular hyperplasia. Tumors are usually large, can be polypoid or ulcerated, and impart a barrel shape to the cervix. They are characterized by glandular cells with abundant clear or pale eosinophilic cytoplasm and distinct cell borders. They show abnormal p53 staining and a lack of p16 overexpression. | Aggressive behavior and poor prognosis. |
Adenocarcinoma, HPV-independent, clear cell type | 8310/3 | 3–4% of cervical adenocarcinomas | Malignant glandular neoplasm comprises uniform, precise, eosinophilic, flat, or cuboidal cells arranged in one or more patterns: tubulocystic, papillary, or solid. Sporadic tumors occur in the endocervix, while tumors associated with in utero diethylstilbestrol (DES) exposure occur in the ectocervix (rare POLE mutation). They are not related to high-risk HPV inventions. Tubulocystic, papillary, or solid growth patterns. Negative for ER or HPV. | Favorable prognosis and low recurrence rates. |
Adenocarcinoma, HPV-independent, mesonephric type | 9110/3 | <1% of cervical adenocarcinomas | Rare, nonhuman papillomavirus-associated cervical neoplasm likely deriving from mesonephric (Wolffian) remnants. The tumor is usually deeply located and shows varied growth patterns, including solid, cystic, spindle cell, and mesonephric hyperplasia-like growth. Most harbor frequent KRAS mutations and 1q chromosome gain, as well as sporadic TP53 or CTNNB1 mutations. Most tumors have a low mutation burden and lack microsatellite instability. | Aggressive behavior and frequent recurrence. |
Other adenocarcinomas of the uterine cervix | 8140/3 | <1% cervical adenocarcinomas | This term includes endometrioid adenocarcinoma of endocervix, endometrioid adenocarcinoma and serous carcinoma secondarily involving the cervix, and adenocarcinoma NOS, which were included in the previous WHO classification. Endometrioid adenocarcinoma of the endocervix is thought to arise in endometriosis. Adenocarcinoma NOS is a heterogenous category. Those types of cancer are typically HPV-independent. A p16, ER, and GATA3 panel may be used to narrow differential diagnosis. If performing the additional tests is impossible, the terms “HPV-associated (or HPV-independent) adenocarcinoma NOS” are acceptable. | Uncertain prognosis due to lack of uniform criteria. |
Adenocarcinoma in situ, NOS | 8140/2 | 1% of cervical non-invasive lesions | Presents variable histologic features based on histological type. Usually associated with HPV infections. Negative p16 staining indicates the lack of association with HPV. Mostly in young patients. In 50%, it coexists with high-grade squamous intraepithelial lesions. | Excellent prognosis in most cases. |
Other epithelial tumors | ||||
Carcinosarcoma | 8980/3 | Carcinosarcoma is a biphasic malignant neoplasm composed of epithelial and mesenchymal cells. It occurs after menopause and presents as a large polypoid mass, often with necrosis and hemorrhage. Carcinosarcomas are usually associated with high-risk HPV infection, predominantly 16 and 18 subtypes. Carcinosarcomas are stages of cervical cancer. | Carcinosarcomas present at an earlier stage than cervical cancers and may have a better prognosis. | |
Adenosquamous and mucoepidermoid carcinomas | 8560/3 8430/3 | 5–6% of cervical cancers | Malignant epithelial tumors exhibiting squamous and glandular differentiation. The squamous cells may exhibit abundant clear, glycogen-rich cytoplasm. Both tumor components are usually admixed and should be recognizable without additional stains. Their pathogenesis is associated with HPV 16 and 18 infections. Both cancers show lower ARID1A, f EGFR, and PDGFRA levels than squamous carcinomas. Both tumor components exhibit diffuse p16 staining. The epithelial component is typically positive for CK7, CEA, and PAX8, while the squamous component is p63- and p40-positive. | Traditionally, aggressive behavior. Newer studies indicate a prognosis similar to SCCs. |
Adenoid basal carcinoma | 8098/3 | <1% of all cervical cancers | An epithelial tumor comprises morphologically bland, small, and rounded nests of basaloid cells and is usually associated with high-risk HPV infections. Most adenoid basal carcinomas are associated with a high-grade squamous intraepithelial lesion or an invasive carcinoma of another type. Diagnosis of a pure adenoid basal carcinoma must include examining the whole tumor. If another invasive carcinoma is present, a mixed tumor should be reported. Tumor cells are positive for cytokeratins, p16, and p63. | No known metastatic potential. The prognosis of mixed tumors depends on the features of the other components. |
Carcinoma of the uterine cervix, unclassifiable | 8020/3 | <1% of all cervical cancers | Malignant epithelial tumor of the cervix that cannot be further subclassified. Diagnosis requires the exclusion of other primary and metastatic tumors. <Mt cases are HPV-associated or block-type p16-positive. | Similar to most cervical SCCs. |
Mixed epithelial and mesenchymal tumors | ||||
Adenosarcoma | 8933/3 | 0.16% of all cervical cancers; 10% adenosarcomas of female genital tract | A rare, mixed lesion with malignant mesenchymal and benign glandular components that occurs mainly in younger patients. It has an unknown etiology and usually low malignant potential. Characterized by leaf-like glands composed of bland epithelium and condensed periglandular stroma with atypia and mitotic activity. Stromal cells may lack CD10 and PR expression when sarcomatous overgrowth is present. Recurrence may consist solely of sarcomatous components. | Favorable prognosis. |
Germ cell tumors | ||||
Germ cell tumors of the uterine cervix | 9064/3 | Rare | It is characterized by a polypoid, friable tumor deriving from primordial germ cells. It may present in various histological subtypes, including mature teratoma NOS, dermoid cyst NOS, endodermal sinus tumor, yolk sac tumor NOS, and choriocarcinoma NOS. Metastasis from the ovary must be excluded. | Mature teratomas and yolk sac tumors have a good prognosis. Choriocarcinomas may follow an aggressive course. |
Clinical and/or Radiological Features | TNM | FIGO |
---|---|---|
Cervical carcinoma confined to the cervix (without extension to uterine corpus) | T1/N0/M0 | I |
Invasive carcinoma diagnosed only by microscopy, stromal invasion with a maximum depth of 5.0 mm measured from the base of the epithelium, vascular space involvement, venous or lymphatic, does not affect classification | T1A | IA |
Measured stromal invasion no greater than 3.0 mm | T1A1 | IA1 |
Measured stromal invasion greater than 3.0 mm and no greater than 5.0 mm | T1A2 | IA2 |
Clinically visible lesion confined to the cervix or microscopic lesion greater than T1a or IA2 | T1B | IB |
Clinically visible lesion no greater than 2.0 cm in greatest dimension | T1B1 | IB1 |
Clinically visible lesion no greater than 4.0 cm in greatest dimension | T1B2 | IB2 |
Clinically visible lesion greater than 4.0 cm in greatest dimension | T1B3 | IB3 |
Cervical carcinoma invades beyond the uterus but not the pelvic wall or lower third of vagina | T2/N0/M0 | II |
Tumor without parametrial invasion | T2A | IIA |
Clinically visible lesion no greater than 4.0 cm in greatest dimension | T2A1 | IIA1 |
Clinically visible lesion greater than 4.0 cm in greatest dimension | T2A2 | IIA2 |
Tumor with parametrial invasion | T2B | IIB |
Tumor extends to pelvic wall, involves lower third of vagina, causes hydronephrosis, or a combination of all symptoms, or non-functioning kidney or involvement of pelvic and/or para-aortic lymph nodes, irrespective of tumor size and extent (with r and p notations) * | T3, N0 or any T, N (+) | III |
Tumor involves lower third of vagina, without extending to the pelvic wall | T3A | IIIA |
Tumor extends to pelvic wall, causes hydronephrosis or non-functioning kidney, or both | T3B | IIIB |
Pelvic lymph node metastasis only | Any T/N1 | IIIC1 |
Para-aortic lymph node metastasis | Any T/N2 | IIIC2 |
Tumor invades mucosa of bladder or rectum, extends beyond the true pelvis, or both (bullous oedema is not sufficient to classify a tumor as T4 or IV) | T4 | IV |
Spread to adjacent pelvic organs: tumor invades mucosa of bladder or rectum (bullous oedema is not sufficient to classify a tumor as T4A or IVA) | T4A | IVA |
Spread to distant organs | Any T/any N/M1 | IVB |
GOG 240 | Keynote-826 | BEAtcc | |
---|---|---|---|
Treatment | CT + Bevacizumab | CT + Pembrolizumab with or without Bevacizumab vs. CT + Bev | CT + Atezo + Bev vs. CT + Bev |
Median OS | 17.0 mo, HR 0.71 | 24.4 mo, HR 0.64 | 32.2 mo, HR 0.62 HR 0.68 [95% CI 0.52–0.88]; p = 0.0046 |
ORR | 48.0% | 68.1% in PD-L1 + ≥1% | 84% independently of PD-L1 |
Citation | [97,98] | [100,101] | [103,104]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sznurkowski, J.J.; Bodnar, L.; Szylberg, Ł.; Zołciak-Siwinska, A.; Dańska-Bidzińska, A.; Klasa-Mazurkiewicz, D.; Rychlik, A.; Kowalik, A.; Streb, J.; Bidziński, M.; et al. The Polish Society of Gynecological Oncology Guidelines for the Diagnosis and Treatment of Cervical Cancer (v2024.0). J. Clin. Med. 2024, 13, 4351. https://doi.org/10.3390/jcm13154351
Sznurkowski JJ, Bodnar L, Szylberg Ł, Zołciak-Siwinska A, Dańska-Bidzińska A, Klasa-Mazurkiewicz D, Rychlik A, Kowalik A, Streb J, Bidziński M, et al. The Polish Society of Gynecological Oncology Guidelines for the Diagnosis and Treatment of Cervical Cancer (v2024.0). Journal of Clinical Medicine. 2024; 13(15):4351. https://doi.org/10.3390/jcm13154351
Chicago/Turabian StyleSznurkowski, Jacek J., Lubomir Bodnar, Łukasz Szylberg, Agnieszka Zołciak-Siwinska, Anna Dańska-Bidzińska, Dagmara Klasa-Mazurkiewicz, Agnieszka Rychlik, Artur Kowalik, Joanna Streb, Mariusz Bidziński, and et al. 2024. "The Polish Society of Gynecological Oncology Guidelines for the Diagnosis and Treatment of Cervical Cancer (v2024.0)" Journal of Clinical Medicine 13, no. 15: 4351. https://doi.org/10.3390/jcm13154351
APA StyleSznurkowski, J. J., Bodnar, L., Szylberg, Ł., Zołciak-Siwinska, A., Dańska-Bidzińska, A., Klasa-Mazurkiewicz, D., Rychlik, A., Kowalik, A., Streb, J., Bidziński, M., & Sawicki, W. (2024). The Polish Society of Gynecological Oncology Guidelines for the Diagnosis and Treatment of Cervical Cancer (v2024.0). Journal of Clinical Medicine, 13(15), 4351. https://doi.org/10.3390/jcm13154351