Predictive Factors for Altered Quality of Life in Patients with Type 2 Diabetes Mellitus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Clinical and Paraclinical Assessments
2.3. Statistical Analysis
3. Results
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHOQOL Group. Study protocol for the World Health Organization project to develop a Quality of life assessment instrument (WHOQOL). Qual. Life Res. 1993, 2, 153–159. [Google Scholar] [CrossRef]
- Post, M. Definitions of quality of life: What has happened and how to move on. Top. Spinal Cord Inj. Rehabil. 2014, 20, 167–180. [Google Scholar] [CrossRef]
- Abott, P.; Wallace, C. Social Quality: A Way to Measure the Quality of Society. Soc. Indic. Res. 2012, 108, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Diener, E.D.; Eunkook, S. Measuring quality of life: Economic, social, and subjective indicators. Soc. Indic. Res. 1997, 40, 189–216. [Google Scholar] [CrossRef]
- Kaplan, R.M.; Ries, A.L. Quality of Life: Concept and Definition. COPD J. Chronic Obstr. Pulm. Dis. 2007, 4, 263–271. [Google Scholar] [CrossRef]
- GBD 2021 Diabetes Collaborators. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, E.; Lim, S.; Lamptey, R.; Webb, D.R.; Davies, M.J. Type 2 diabetes. Lancet 2022, 400, 1803–1820. [Google Scholar] [CrossRef]
- Hu, F.B. Globalization of diabetes: The role of diet, lifestyle, and genes. Diabetes Care. 2011, 34, 1249–1257. [Google Scholar] [CrossRef]
- Choi, H.K.; Willett, W.C.; Stampfer, M.J.; Rimm, E.; Hu, F.B. Dairy Consumption and Risk of Type 2 Diabetes Mellitus in Men. Arch. Intern. Med. 2005, 165, 997–1003. [Google Scholar] [CrossRef] [PubMed]
- Albai, O.; Braha, A.; Timar, B.; Golu, I.; Timar, R. Vitamin D—A New Therapeutic Target in the Management of Type 2 Diabetes Patients. J. Clin. Med. 2024, 13, 1390. [Google Scholar] [CrossRef]
- Zheng, Y.; Ley, S.H.; Hu, F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018, 14, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Agardh, E.; Allebeck, P.; Hallqvist, J.; Moradi, T.; Sidorchuk, A. Type 2 diabetes incidence and socio-economic position: A systematic review and meta-analysis. Int. J. Epidemiol. 2011, 40, 804–818. [Google Scholar] [CrossRef] [PubMed]
- Hill-Briggs, F.; Adler, N.E.; Berkowitz, S.A.; Chin, M.H.; Gary-Webb, T.L.; Navas-Acien, A.; Thornton, P.L.; Haire-Joshu, D. Social determinants of health and diabetes: A scientific review. Diabetes Care 2020, 44, 258–279. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Eur. Heart J. 2020, 41, 255–323. [Google Scholar] [CrossRef] [PubMed]
- Sima, A.; Sporea, I.; Timar, R.; Vlad, M.; Braha, A.; Popescu, A.; Nistorescu, S.; Mare, R.; Sirli, R.; Albai, A.; et al. Non-Invasive Assessment of Liver Steatosis and Fibrosis Using Transient Elastography and Controlled Attenuation Parameter in Type 2 Diabetes Patients. Acta Endocrinol. 2018, 14, 394–400. [Google Scholar] [CrossRef] [PubMed]
- Braha, A.; Simion, A.; Timar, R.; Timar, B. Factors Associated with Increased Intraocular Pressure in Type 2 Diabetes Patients. J. Clin. Med. 2024, 13, 676. [Google Scholar] [CrossRef] [PubMed]
- Fowler, M.J. Microvascular and macrovascular complications of diabetes. Clin. Diabetes 2008, 26, 77–82. [Google Scholar] [CrossRef]
- Shah, A.D.; Langenberg, C.; Rapsomaniki, E.; Denaxas, S.; Pujades-Rodriguez, M.; Gale, C.P.; Deanfield, J.; Smeeth, L.; Timmis, A.; Hemingway, H. Type 2 diabetes and incidence of cardiovascular diseases: A cohort study in 1·9 million people. Lancet Diabetes Endocrinol. 2015, 3, 105–113. [Google Scholar] [CrossRef]
- Bertoni, A.G.; Hundley, W.G.; Massing, M.W.; Bonds, D.E.; Burke, G.L.; Goff, D.C. Heart failure prevalence, incidence, and mortality in the elderly with diabetes. Diabetes Care 2004, 27, 699–703. [Google Scholar] [CrossRef]
- Gregg, E.W.; Sattar, N.; Ali, M.K. The changing face of diabetes complications. Lancet Diabetes Endocrinol. 2016, 4, 537–547. [Google Scholar] [CrossRef]
- Petropoulos, I.N.; Ponirakis, G.; Khan, A.; Almuhannadi, H.; Gad, H.; Malik, R.A. Diagnosing Diabetic Neuropathy: Something Old, Something New. Diabetes Metab. J. 2018, 42, 255–269. [Google Scholar] [CrossRef] [PubMed]
- Zafeiri, M.; Tsioutis, C.; Kleinaki, Z.; Manolopoulos, P.; Ioannidis, I.; Dimitriadis, G. Clinical Characteristics of Patients with co-Existent Diabetic Peripheral Neuropathy and Depression: A Systematic Review. Exp. Clin. Endocrinol Diabetes 2021, 129, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Feldman, E.L.; Nave, K.A.; Jensen, T.S.; Bennett, D.L.H. New horizons in diabetic neuropathy: Mechanisms, bioenergetics, and pain. Neuron 2017, 93, 1296–1313. [Google Scholar] [CrossRef] [PubMed]
- Sing, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced glycation end products and diabetic complications. Korean. J. Physiol. Pharmacol. 2014, 18, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Albai, O.; Frandes, M.; Timar, R.; Timar, B.; Anghel, T.; Avram, V.F.; Sima, A. The Mental Status in Patients with Diabetes Mellitus Admitted to a Diabetes Clinic after Presenting in the Emergency Room: The Application of the SCL-90 Scale. Diabetes Metab. Syndr. Obes. Targets Therapy. 2021, 14, 1833–1840. [Google Scholar] [CrossRef] [PubMed]
- Albai, O.; Timar, B.; Braha, A.; Timar, R. Predictive factors of Anxiety and Depression in patients with type 2 diabetes mellitus. J. Clin. Med. 2024, 13, 3006. [Google Scholar] [CrossRef]
- Rubin, R. Diabetes and quality of life. Diabetes Spectrum. 2000, 13, 21–23. [Google Scholar] [CrossRef]
- Atanasova, I.; Karashtranova, E. A novel approach for quality of life evaluation: Rule-based expert system. Soc. Indic. Research. 2016, 128, 709–722. [Google Scholar] [CrossRef]
- Barcaccia, B.; Esposito, G.; Matarese, M.; Bertolaso, M.; Elvira, M.; De Marinis, M.G. Defining quality of life: A wild-goose chase? Eur. J. Psychology. 2013, 9, 185–203. [Google Scholar] [CrossRef]
- Strine, T.W.; Chapman, D.P.; Balluz, L.S.; Moriarty, D.G.; Mokdad, A.H. The associations between life satisfaction and health-related quality of life, chronic Illness, and health behaviors among US community-dwelling adults. J. Commun. Health 2008, 33, 40–50. [Google Scholar] [CrossRef]
- Lam, C.; Lauder, I. The impact of chronic diseases on the health-related quality of life (HRQOL) of Chinese patients in primary care. Fam. Pr. 2000, 17, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Maser, R.E.; Nielsen, V.K.; Dorman, J.S.; Drash, A.L.; Becker, D.J.; Orchard, T.J. Measuring subclinical neuropathy: Does it relate to clinical neuropathy? Pittsburgh epidemiology of diabetes complications study-V. J. Diabet. Complicat. 1991, 5, 6–12, Erratum in J. Diabet. Complicat. 1991, 5, 205. [Google Scholar] [CrossRef] [PubMed]
- EuroQol Research Foundation. EQ-5D-3L User Guide. 2018. Available online: https://euroqol.org/publications/user-guides (accessed on 1 July 2024).
- Ribu, L.; Hanestad, B.R.; Moum, T.; Birkeland, K.; Rustoen, T. A comparison of the health-related quality of life in patients with diabetic foot ulcers, with a diabetes group and a non-diabetes group from the general population. Qual. Life Res. 2007, 16, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Akinci, F.; Yildirim, A.; Gözü, H.; Sargın, H.; Orbay, E.; Sargin, M. Assessment of health-related quality of life (HRQoL) of patients with type 2 diabetes in Turkey. Diabetes Res. Clin. Practice. 2008, 79, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Wexler, D.J.; Grant, R.; Wittenberg, E.; Bosch, J.L.; Cagliero, E.; Delahanty, L.; Blais, M.A.; Meigs, J.B. Correlates of health-related quality of life in type diabetes. Diabetologia 2006, 49, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- Skevington, S.M. Advancing cross-cultural research on quality of life. Observations are drawn from WHOQOL development. World Health Organisation Quality of Life Assessment. Qual. Life Research. 2002, 11, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Luscombe, F.A. Health-Related Quality of Life Measurement in Type 2 Diabetes. Value Health 2000, 3, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Mulhern, B.; Meadows, K. The construct validity and responsiveness of the EQ-5D, SF-6D and Diabetes Health Profile-18 in type 2 diabetes. Health Qual. Life Outcomes 2014, 12, 42. [Google Scholar] [CrossRef] [PubMed]
- Gebremedhin, T.; Workicho, A.; Angaw, D.A. Health-related quality of life and its associated factors among adult patients with type II diabetes attending Mizan Tepi University Teaching Hospital, Southwest Ethiopia. BMJ Open Diabetes Res. Care 2019, 7, e000577. [Google Scholar] [CrossRef]
- Dhillon, H.; Bin Nordin, R.; Ramadas, A. Quality of Life and Associated Factors among Primary Care Asian Patients with Type 2 Diabetes Mellitus. Int. J. Environ. Res. Public Health 2019, 16, 3561. [Google Scholar] [CrossRef]
- Donald, M.; Dower, J.; Coll, J.R.; Baker, P.; Mukandi, B.; Doi, S.A.R. Mental health issues decrease diabetes-specific quality of life independent of glycaemic control and complications: Findings from Australia’s living with diabetes cohort study. Health Qual. Life Outcomes 2013, 11, 170. [Google Scholar] [CrossRef] [PubMed]
- Kolotkin, R.L.; Andersen, J.R. A systematic review of reviews: Exploring the relationship between obesity, weight loss and health-related quality of life. Clin. Obes. 2017, 7, 273–289. [Google Scholar] [CrossRef] [PubMed]
- Jing, X.; Chen, J.; Dong, Y.; Han, D.; Zhao, H.; Wang, X.; Gao, F.; Li, C.; Cui, Z.; Liu, Y.; et al. Related factors of quality of life of type 2 diabetes patients: A systematic review and meta-analysis. Health Qual. Life Outcomes 2018, 16, 189. [Google Scholar] [CrossRef] [PubMed]
- Wermeling, P.R.; Gorter, K.J.; Van Stel, H.F.R.G. Both cardiovascular and non-cardiovascular comorbidity are related to health status in well-controlled type 2 diabetes patients: A cross-sectional analysis. Cardiovasc. Diabetol. 2012, 11, 121. [Google Scholar] [CrossRef] [PubMed]
- Fal, A.M.; Jankowska, B.; Uchmanowicz, I.; Sen, M.; Panaszek, B.; Polanski, J. Type 2 diabetes quality of life patients treated with insulin and oral hypoglycemic medication. Acta Diabetol. 2011, 48, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Chew, B.H.; Mohd-Sidik, S.; Shariff-Ghazali, S. Negative effects of diabetes-related distress on HRQOL: An evaluation among the adult T2DM in 3 primary healthcare clinics in Malaysia. Health Qual. Life Outcomes 2015, 13, 187. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, F. Physical and psychological health domains of QOL in relation to clinical factors of diabetes mellitus in Egypt. Int. Res. J. Med. Med. Sci. 2016, 4, 7–16. [Google Scholar]
- Al-Taie, N.; Maftei, D.; Kautzky-Willer, A.; Krebs, M.; Stingl, H. Assessing the quality of life among patients with diabetes in Austria and the correlation between glycemic control and the quality of life. Prim. Care Diabetes 2020, 14, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Pagliai, G.; Casini, A.; Sofi, F. Mediterranean diet and multiple health outcomes: An umbrella review of meta-analyses of observational studies and randomized trials. Eur. J. Clin. Nutr. 2018, 72, 30–43. [Google Scholar] [CrossRef]
- Critselis, E.; Panagiotakos, D. Adherence to the Mediterranean diet and healthy ageing: Current evidence, biological pathways, and future directions. Crit. Rev. Food Sci. Nutr. 2020, 60, 2148–2157. [Google Scholar] [CrossRef]
- Albai, O.; Frandes, M.; Sima, A.; Timar, B.; Vlad, A.; Timar, R. Practical applicability of the ISARIC-4C score on severity and mortality due to SARS-CoV-2 infection in patients with type 2 diabetes. Medicina 2022, 58, 848. [Google Scholar] [CrossRef] [PubMed]
- Albai, O.; Braha, A.; Timar, B.; Sima, A.; Deaconu, L.; Timar, R. Assessment of the Negative Factors for the Clinical Outcome in Patients with SARS-CoV-2 Infection and Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. Obesity 2024, 17, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Olickal, J.J.; Chinnakali, P.; Suryanarayana, B.S.; Ulaganeethi, R.; Kumar, S.S.; Saya, G.K. Effect of COVID19 pandemic and national lockdown on persons with diabetes from rural areas availing care in a tertiary care center, southern India. Diabetes Metab. Syndr. 2020, 14, 1967–1972. [Google Scholar] [CrossRef] [PubMed]
- Mariani, M.V.; Manzi, G.; Pierucci, N.; Laviola, D.; Piro, A.; D’Amato, A.; Filomena, D.; Matteucci, A.; Severino, P.; Miraldi, F.; et al. SGLT2i effect on atrial fibrillation: A network meta-analysis of randomized controlled trials. J. Cardiovasc. Electrophysiol. 2024. [Google Scholar] [CrossRef]
- Marx, N.; Husain, M.; Lehrke, M.; Verma, S.; Sattar, N. GLP-1 Receptor Agonists for the Reduction of Atherosclerotic Cardiovascular Risk in Patients with Type 2 Diabetes. Circulation 2022, 146, 1882–1894. [Google Scholar] [CrossRef]
Variable | Overall | Men (n = 111) | Women (n = 188) | |
---|---|---|---|---|
Median (25–75 Percentiles) | Median (Average Rank) | Median (Average Rank) | p a | |
Age (years) | 66 (57; 70) | 65 (142.5) | 66 (149.6) | 0.4 |
DM duration (years) | 10 (6; 15) | 10 (144.7) | 10 (148.3) | 0.7 |
Weight (kg) | 82 (72; 93) | 89 (184.9) | 79 (124.5) | <0.0001 |
BMI (kg/m2) | 29.1 (26; 33) | 30 (149.3) | 29 (145.6) | 0.7 |
FG (mg/dL) | 135 (122; 150) | 137 (148.3) | 135 (146.2) | 0.8 |
PPG (mg/dL) | 156 (140; 184.7) | 153 (145.5) | 158 (147.8) | 0.8 |
HbA1c (%) | 8 (7; 9.3) | 7.9 (142.4) | 8.1 (149.7) | 0.4 |
TC (mg/dL) | 180 (152; 205) | 182 (155.9) | 178 (141.7) | 0.1 |
LDLc (mg/dL) | 96 (77; 110) | 97 (153.8) | 95 (142.9) | 0.2 |
TG (mg/dL) | 147 (104; 187.7) | 143 (147.5) | 151.5 (146.6) | 0.9 |
HDLc (mg/dL) | 43 (37; 51) | 42.8 (150.6) | 43 (144.8) | 0.5 |
Serum creatinine (mg/dL) | 0.8 (0.7; 1) | 0.9 (160.5) | 0.8 (138.9) | 0.03 |
Uric acid (mg/dL) | 4.7 (3.7; 5.9) | 4.9 (160.7) | 4.6 (138.8) | 0.03 |
UACr (mg/g) | 32 (12; 81.2) | 31 (141.9) | 36.2 (150) | 0.4 |
eGFR (mL/min) | 82 (60; 100) | 95 (175.3) | 73 (130.2) | <0.0001 |
NCV (m/s) | 40.6 (38.6; 43.7) | 40.3 (141) | 41 (149.7) | 0.3 |
Independent Variables | Coefficient | Std. Error | 95% CI | t | p | rpartial | rsemipartial |
---|---|---|---|---|---|---|---|
Enter method, R2-adjusted = 0.48, Multiple correlation coefficient = 0.71, p < 0.0001 | |||||||
(Constant) | 57.5411 | 21.5172 | 15.1871 to 99.8951 | 2.6742 | 0.0079 | ||
Age | −0.3565 | 0.1147 | −0.5823 to −0.1307 | −3.1074 | 0.0021 | −0.1816 | 0.1292 |
Diabetes_duration | −0.3425 | 0.1643 | −0.6660 to −0.01898 | −2.0838 | 0.0381 | −0.1229 | 0.08663 |
HbA1c | −0.7113 | 0.9000 | −2.4829 to 1.0602 | −0.7904 | 0.4300 | −0.04693 | 0.03286 |
FG | 0.1621 | 0.06878 | 0.02668 to 0.2974 | 2.3563 | 0.0191 | 0.1387 | 0.09796 |
PPG | −0.1871 | 0.04648 | −0.2785 to −0.09557 | −4.0247 | 0.0001 | −0.2327 | 0.1673 |
BMI | 0.6662 | 0.3947 | −0.1107 to 1.4432 | 1.6878 | 0.0925 | 0.09983 | 0.07017 |
HDLc | 0.2546 | 0.1084 | 0.04119 to 0.4680 | 2.3484 | 0.0195 | 0.1383 | 0.09763 |
TC | −0.03567 | 0.02984 | −0.09441 to 0.02307 | −1.1953 | 0.2330 | −0.07088 | 0.04969 |
LDLc | −0.07466 | 0.04037 | −0.1541 to 0.004807 | −1.8493 | 0.0655 | −0.1093 | 0.07688 |
Serum_creatinine | −6.7512 | 5.0417 | −16.6752 to 3.1728 | −1.3391 | 0.1816 | −0.07935 | 0.05567 |
Uric_acid | 0.07755 | 0.2652 | −0.4445 to 0.5996 | 0.2924 | 0.7702 | 0.01738 | 0.01216 |
Weight | −0.07698 | 0.1210 | −0.3151 to 0.1612 | −0.6363 | 0.5251 | −0.03780 | 0.02645 |
UACr | 0.01088 | 0.007235 | −0.003358 to 0.02512 | 1.5042 | 0.1336 | 0.08906 | 0.06253 |
eGFR | 0.06192 | 0.05964 | −0.05548 to 0.1793 | 1.0382 | 0.3000 | 0.06160 | 0.04316 |
NCV | 0.6841 | 0.2844 | 0.1242 to 1.2439 | 2.4049 | 0.0168 | 0.1415 | 0.09998 |
Stepwise method, R2-adjusted = 0.47, Multiple correlation coefficient = 0.69, p < 0.0001 | |||||||
(Constant) | 96.5316 | 14.3615 | 68.2664 to 124.7968 | 6.7215 | <0.0001 | ||
Age | −0.5003 | 0.08287 | −0.6634 to −0.3372 | −6.0367 | <0.0001 | −0.3331 | 0.2539 |
PPG | −0.1621 | 0.03045 | −0.2220 to −0.1022 | −5.3233 | <0.0001 | −0.2974 | 0.2239 |
HDLc | 0.2040 | 0.09819 | 0.01070 to 0.3972 | 2.0771 | 0.0387 | 0.1207 | 0.08736 |
LDLc | −0.1209 | 0.03351 | −0.1869 to −0.05496 | −3.6081 | 0.0004 | −0.2066 | 0.1518 |
Serum_creatinine | −7.2795 | 2.8203 | −12.8302 to −1.7288 | −2.5811 | 0.0103 | −0.1494 | 0.1086 |
NCV | 0.6461 | 0.2827 | 0.08975 to 1.2024 | 2.2856 | 0.0230 | 0.1326 | 0.09613 |
Variable | z Statistic | Odds Ratio | 95% CI | p |
---|---|---|---|---|
DPN | 2.89 | 2.71 | 1.60–4.59 | 0.0002 |
HF | 5.37 | 2.79 | 1.64–4.72 | 0.0001 |
Cerebral stroke | 4.71 | 7.05 | 3.12–15.88 | <0.001 |
Insulin therapy | 4.12 | 3.70 | 2.00–7.04 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albai, O.; Braha, A.; Timar, B.; Timar, R. Predictive Factors for Altered Quality of Life in Patients with Type 2 Diabetes Mellitus. J. Clin. Med. 2024, 13, 4389. https://doi.org/10.3390/jcm13154389
Albai O, Braha A, Timar B, Timar R. Predictive Factors for Altered Quality of Life in Patients with Type 2 Diabetes Mellitus. Journal of Clinical Medicine. 2024; 13(15):4389. https://doi.org/10.3390/jcm13154389
Chicago/Turabian StyleAlbai, Oana, Adina Braha, Bogdan Timar, and Romulus Timar. 2024. "Predictive Factors for Altered Quality of Life in Patients with Type 2 Diabetes Mellitus" Journal of Clinical Medicine 13, no. 15: 4389. https://doi.org/10.3390/jcm13154389
APA StyleAlbai, O., Braha, A., Timar, B., & Timar, R. (2024). Predictive Factors for Altered Quality of Life in Patients with Type 2 Diabetes Mellitus. Journal of Clinical Medicine, 13(15), 4389. https://doi.org/10.3390/jcm13154389