Isokinetic Knee Strengthening Impact on Physical and Functional Performance, Pain Tolerance, and Quality of Life in Overweight/Obese Women with Patellofemoral Pain Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedures
2.2.1. Anthropometric Measurements
2.2.2. Isokinetic Testing
2.2.3. Physical Fitness Testing
2.2.4. Functional Tests
2.2.5. Evaluation of Knee-Related Quality of Life and Pain
2.3. Statistical Analysis
3. Results
3.1. Muscle Strength
3.2. Physical Performance
- SCT: There were no statistically significant group-by-training interactions found in the test before and after the program. Nonetheless, a significant interaction between Test and Re-Test was discovered in both groups (F = 280.562; p < 0.001; ηp2 = 0.927; Δ% = 3.98). As a result, the Bonferroni post hoc test reveals a significant reduction in the time required to climb 11 stairs (p < 0.05). Furthermore, when comparing Test and Re-Test values, there is a significant improvement in the ISO.G and PCM.G (p < 0.001) (Table 4).
- 10 m Walk test: There was no discernible difference between groups after using the ANOVA test to compare pre- and post-training gait speed. However, both groups demonstrated a significant training effect (F = 193.897; p < 0.001; ηp2 = 0.898; Δ% = 2.96). Furthermore, the Bonferroni post hoc test revealed a significant (p < 0.05) decrease in the time required to walk 10 m before and after training. As a result, the Test and Re-Test comparison of walking performance reveals a significant improvement in the ISO.G (p < 0.001) and PCM.G (p < 0.001) scores (Table 4).
- Chair stand test: When comparing the number of sit-ups performed before and after training for both groups, the ANOVA test shows a significant difference in training (F = 1331.365; p < 0.001; ηp2 = 0.983; Δ% = 22.35) and no significant difference for group training (p < 0.05). Following that, the Bonferroni post hoc test reveals that the number of gesture repetitions requested during 30s is significantly higher after the protocol than before (p < 0.001) (Table 4).
- Monopodal stance test: When comparing the monopodal balance of both knees before and after the protocol, the ANOVA test revealed no discernible group training impact. The left knee (F = 167.150; p < 0.001; ηp2 = 0.883; Δ% = 95.36) and the right knee (F = 396.068; p < 0.001; ηp2 = 0.947; Δ% = 14.92) did, however, show a substantial training effect. When comparing the amount of time spent in the monopodal stance before and after the protocol, the Bonferroni post hoc test revealed a regression. The ISO.G and PCM.G of the right (p < 0.001) and left (p < 0.001) knees are thus confirmed to have improved significantly within the group (Table 4).
3.3. Clinical Examination
- Popliteal angle: The ANOVA test revealed a significant training effect not only in the right knee (F = 80.48; p < 0.001; ηp2 = 0.785; Δ% = 30.56) but also in the left knee (F = 107.32; p < 0.001; ηp2 = 0.829; Δ% = 37.22). However, the statistical test revealed no significant group training interaction in either knee (p < 0.05). Bonferroni’s post hoc test revealed a significant decrease in popliteal angle measured after the protocol compared to preintervention for both the right (p < 0.001) and left (p < 0.001) knees of both groups (Table 5).
- Knee ROM: in terms of flexion, Following the statistical ANOVA test, there was a significant effect of training for either the right (F = 80.45; p < 0.001; ηp2 = 0.785; Δ% = 15.12) or left (F = 110.61; p < 0.001; ηp2 = 0.834; Δ% = 12.35) knee. In contrast, no significant group training interaction (p < 0.05) was discovered. A Bonferroni post hoc test revealed that the flexion angle was greater post-protocol compared to the front for both knees at the group level (p < 0.001). In terms of extension, the ANOVA test shows that training has a significant effect on the right (F = 16.16; p < 0.001; ηp2 = 0.423; Δ% = 20.83) and left (F = 16.08; p < 0.001; ηp2 = 0.422; Δ% = 20.83) knees. However, group training had no significant effect (p < 0.05). Bonferroni’s post hoc test indicated that the angle of the extension was greater after training compared with the front for both knees of the CPM.G (p < 0.001) (Table 5).
- The heel-to-buttock measurement: The ANOVA test revealed that the comparison of heel-to-buttock distance in both groups before and after the protocol had no significant effect in the group training interaction (p < 0.05). However, there was a significant training effect for the right leg (F = 153.935; p < 0.001; ηp2 = 0.874; Δ% = 18.61) and left leg (F = 252.485; p < 0.001; ηp2 = 0.919; Δ% = 18.61). The Bonferroni post hoc test asserted that the heel-buttock distance is lower post-protocol compared to before and for both groups at both the right and left legs (p < 0.001) (Table 5).
3.4. Life Satisfaction and Pain
- QoL: The statistical analysis of variance (ANOVA) shows that there is no significant effect of group training interaction on quality of life (p < 0.05) but only a significant effect of the training protocol (F = 955.582; p < 0.001; ηp2 = 0.977; Δ% = 86.86). According to the Bonferroni post hoc test, there was a significant decrease in the quality-of-life score after the protocol compared to before in the ISO.G (p < 0.001) and PCM.G (p < 0.001) (Table 6).
- Pain: According to the ANOVA study of variance, there was no significant difference for the group training effect. Nonetheless, a significant difference for the training effect was confirmed (F = 1109.40; p < 0.001; ηp2 = 0.980; Δ% = 79.74). The Bonferroni post hoc test allows us to investigate this significance, and we discovered a significant pain decrease score after the protocol compared to before for the ISO.G (p < 0.001) and the PCM.G (p < 0.001) (Table 6).
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burckhardt, C.S.; Anderson, K.L. The Quality of Life Scale (QOLS): Reliability, Validity, and Utilization. Health Qual. Life Outcomes 2003, 1, 60. [Google Scholar] [CrossRef] [PubMed]
- WHOQOL Group. The World Health Organization Quality of Life Assessment (WHOQOL): Position Paper from the World Health Organization. Soc. Sci. Med. 1995, 41, 1403–1409. [Google Scholar] [CrossRef]
- Haraldstad, K.; Wahl, A.; Andenæs, R.; Andersen, J.R.; Andersen, M.H.; Beisland, E.; Borge, C.R.; Engebretsen, E.; Eisemann, M.; Halvorsrud, L.; et al. A Systematic Review of Quality of Life Research in Medicine and Health Sciences. Qual. Life Res. 2019, 28, 2641–2650. [Google Scholar] [CrossRef]
- Ferreira, A.S.; Mentiplay, B.F.; Taborda, B.; Pazzinatto, M.F.; de Azevedo, F.M.; de Oliveira Silva, D. Overweight and Obesity in Young Adults with Patellofemoral Pain: Impact on Functional Capacity and Strength. J. Sport. Health Sci. 2023, 12, 202–211. [Google Scholar] [CrossRef]
- Halabchi, F.; Mazaheri, R.; Seif-Barghi, T. Patellofemoral pain syndr. modif. intrinsic risk factors; How assess address? Asian J. Sports Med. 2013, 4, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Tchang, B.G.; Saunders, K.H.; Igel, L.I. Best Practices in the Management of Overweight and Obesity. Med. Clin. N. Am. 2021, 105, 149–174. [Google Scholar] [CrossRef]
- Abarca-Gómez, L.; Abdeen, Z.A.; Hamid, Z.A.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Acuin, C.; Adams, R.J.; Aekplakorn, W.; Afsana, K.; Aguilar-Salinas, C.A.; et al. Worldwide Trends in Body-Mass Index, Underweight, Overweight, and Obesity from 1975 to 2016: A Pooled Analysis of 2416 Population-Based Measurement Studies in 128.9 Million Children, Adolescents, and Adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef]
- Gadde, K.M.; Martin, C.K.; Berthoud, H.-R.; Heymsfield, S.B. Obesity: Pathophysiology and Management. J. Am. Coll. Cardiol. 2018, 71, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Li, H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front. Endocrinol. 2021, 12, 706978. [Google Scholar] [CrossRef]
- Safaei, M.; Sundararajan, E.A.; Driss, M.; Boulila, W.; Shapi’i, A. A Systematic Literature Review on Obesity: Understanding the Causes & Consequences of Obesity and Reviewing Various Machine Learning Approaches Used to Predict Obesity. Comput. Biol. Med. 2021, 136, 104754. [Google Scholar] [CrossRef]
- Kopp, W. How Western Diet And Lifestyle Drive The Pandemic Of Obesity And Civilization Diseases. Diabetes Metab. Syndr. Obes. 2019, 12, 2221–2236. [Google Scholar] [CrossRef]
- Cercato, C.; Fonseca, F.A. Cardiovascular Risk and Obesity. Diabetol. Metab. Syndr. 2019, 11, 74. [Google Scholar] [CrossRef] [PubMed]
- De Lorenzo, A.; Gratteri, S.; Gualtieri, P.; Cammarano, A.; Bertucci, P.; Di Renzo, L. Why primary obesity is a disease? J. Transl. Med. 2019, 17, 169. [Google Scholar] [CrossRef] [PubMed]
- Berriche, O.; Romdhane, W.; Arfa, S.; Hlel, H.; Fredj, A.; Sfar, H. Obésité et complications articulaires: Étude de 180 cas. Ann. D’endocrinologie 2021, 82, 547. [Google Scholar] [CrossRef]
- Collins, A.T.; Kulvaranon, M.L.; Cutcliffe, H.C.; Utturkar, G.M.; Smith, W.A.R.; Spritzer, C.E.; Guilak, F.; DeFrate, L.E. Obesity Alters the in Vivo Mechanical Response and Biochemical Properties of Cartilage as Measured by MRI. Arthritis Res. Ther. 2018, 20, 232. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.S.; Mentiplay, B.F.; Taborda, B.; Pazzinatto, M.F.; de Azevedo, F.M.; De Oliveira Silva, D. Exploring Overweight and Obesity beyond Body Mass Index: A Body Composition Analysis in People with and without Patellofemoral Pain. J. Sport Health Sci. 2021, 13, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Witvrouw, E.; Werner, S.; Mikkelsen, C.; Tiggelen, D.V.; Berghe, L.V.; Cerulli, G. Clinical Classification of Patellofemoral Pain Syndrome: Guidelines for Non-Operative Treatment. Knee Surg. Sports Traumatol. Arthrosc. 2005, 2, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Collins, N.; Crossley, K.; Beller, E.; Darnell, R.; McPoil, T.; Vicenzino, B. Foot Orthoses and Physiotherapy in the Treatment of Patellofemoral Pain Syndrome: Randomised Clinical Trial. BMJ 2008, 337, a1735. [Google Scholar] [CrossRef] [PubMed]
- Loudon, J.K.; Wiesner, D.; Goist-Foley, H.L.; Asjes, C.; Loudon, K.L. Intrarater Reliability of Functional Performance Tests for Subjects With Patellofemoral Pain Syndrome. J. Athl. Train. 2002, 37, 256–261. [Google Scholar]
- Tamalet, B.; Rochcongar, P.; Rochcongar, G. La fémoro-patellaire: Une articulation oubliée? Rev. Rhum. Monogr. 2016, 83, 71–77. [Google Scholar] [CrossRef]
- Huberti, H.H.; Hayes, W.C. Patellofemoral Contact Pressures. The Influence of q-Angle and Tendofemoral Contact. J. Bone Jt. Surg. Am. 1984, 66, 715–724. [Google Scholar] [CrossRef]
- Piva, S.R.; Goodnite, E.A.; Childs, J.D. Strength around the Hip and Flexibility of Soft Tissues in Individuals with and without Patellofemoral Pain Syndrome. J. Orthop. Sports Phys. Ther. 2005, 35, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Cowan, S.M.; Bennell, K.L.; Crossley, K.M.; Hodges, P.W.; McConnell, J. Physical Therapy Alters Recruitment of the Vasti in Patellofemoral Pain Syndrome. Med. Sci. Sports Exerc. 2002, 34, 1879–1885. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Chung, J.-S.; Kong, Y.-S.; Ko, Y.-M.; Park, J.-W. Differences in Onset Time between the Vastus Medialis and Lateralis during Stair Stepping in Individuals with Genu Varum or Valgum. J. Phys. Ther. Sci. 2015, 27, 2727–2730. [Google Scholar] [CrossRef] [PubMed]
- Saubade, M.; Martin, R.; Becker, A.; Gremion, G. Patellofemoral pain syndrome: Understand better in order to treat better. Rev. Med. Suisse 2014, 10, 1451–1456. [Google Scholar] [PubMed]
- Neal, B.S.; Lack, S.D.; Lankhorst, N.E.; Raye, A.; Morrissey, D.; van Middelkoop, M. Risk Factors for Patellofemoral Pain: A Systematic Review and Meta-Analysis. Br. J. Sports Med. 2019, 53, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Crossley, K.M.; Stefanik, J.J.; Selfe, J.; Collins, N.J.; Davis, I.S.; Powers, C.M.; McConnell, J.; Vicenzino, B.; Bazett-Jones, D.M.; Esculier, J.-F.; et al. 2016 Patellofemoral Pain Consensus Statement from the 4th International Patellofemoral Pain Research Retreat, Manchester. Part 1: Terminology, Definitions, Clinical Examination, Natural History, Patellofemoral Osteoarthritis and Patient-Reported Outcome Measures. Br. J. Sports Med. 2016, 50, 839–843. [Google Scholar] [CrossRef] [PubMed]
- Gaitonde, D.Y.; Ericksen, A.; Robbins, R.C. Patellofemoral Pain Syndrome. Am. Fam. Physician 2019, 99, 88–94. [Google Scholar] [PubMed]
- Akkurt, E.; Salli, A.; Ozerbil, O.M.; Ugurlu, H. The Effect of Isokinetic Exercise on Symptoms, Functional Status and EMG Activation Onset Time of the Vastus Medialis Oblique and Vastus Lateralis in Female Patients with Patellofemoral Pain Syndrome. Isokinet. Exerc. Sci. 2010, 18, 157–161. [Google Scholar] [CrossRef]
- Coudeyre, E.; Jegu, A.G.; Giustanini, M.; Marrel, J.P.; Edouard, P.; Pereira, B. Isokinetic Muscle Strengthening for Knee Osteoarthritis: A Systematic Review of Randomized Controlled Trials with Meta-Analysis. Ann. Phys. Rehabil. Med. 2016, 59, 207–215. [Google Scholar] [CrossRef]
- Hammami, N.; Mechraoui, A.; Hattabi, S.; Forte, P.; Sampaio, T.; Sortwell, A.; Teixeira, J.E.; Branquinho, L.; Ferraz, R.; Bouassida, A. Concentric Isokinetic Strengthening Program’s Impact on Knee Biomechanical Parameters, Physical Performance and Quality of Life in Overweight/Obese Women with Chronic Meniscal Lesions. Healthcare 2023, 11, 2079. [Google Scholar] [CrossRef] [PubMed]
- Hammami, N.; Jdidi, H.; Khezami, M.A.; Ghidaoui, L.; Talbi, A.; Hannachi, C.; Farinha, P.M.; Behlouli, E.; Bouassida, A.; Dziri, C.; et al. Isokinetic Strengthening and Neuromuscular Electrical Stimulation Protocol Impact on Physical Performances, Functional Status and Quality of Life in Knee Osteoarthritis Overweight/Obese Women. Knee 2022, 39, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Ölmez, C.; Hammami, N.; Yücelsoy, B.; Hattabi, S.; Forte, P.; Sortwell, A.; Khezami, M.A.; İnce, A. Examining the Link between Isokinetic Strength Metrics and Ball Speed in Women’s Soccer. Appl. Sci. 2023, 13, 12217. [Google Scholar] [CrossRef]
- Ölmez, C.; Hammami, N.; Apaydın, N.; Hattabi, S.; Şar, H.; Khezami, M.A.; İnce, A. Is isokinetic shoulder strength a determinant of serve ball velocity in tennis? Sports Biomech. 2024, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Hammami, N.; Coroian, F.O.; Julia, M.; Amri, M.; Mottet, D.; Hérisson, C.; Laffont, I. Isokinetic Muscle Strengthening after Acquired Cerebral Damage: A Literature Review. Ann. Phys. Rehabil. Med. 2012, 55, 279–291. [Google Scholar] [CrossRef]
- Degache, F. Évaluation Musculaire Isocinétique Appliquée Aux Pathologies Neurologiques. In Guide D’isocinétisme; Edouard, P., Degache, F., Eds.; Elsevier Masson: Paris, France, 2016; pp. 223–245. ISBN 978-2-294-74591-1. [Google Scholar] [CrossRef]
- Degache, F. Évaluation Musculaire Isocinétique Appliquée Aux Pathologies Cardio-Vasculaires. In Guide D’isocinétisme; Edouard, P., Degache, F., Eds.; Elsevier Masson: Paris, France, 2016; pp. 247–266. ISBN 978-2-294-74591-1. [Google Scholar] [CrossRef]
- Papadopoulos, K.; Stasinopoulos, D.; Ganchev, D. A Systematic Review of Reviews on Patellofemoral Pain Syndrome. Exploring the Risk Factors, Diagnostic Tests, Outcome Measurements and Exercise Treatment. Open Sports Med. J. 2015, 9, 7–17. [Google Scholar] [CrossRef]
- Price, J.L. Patellofemoral Syndrome: How to Perform a Basic Knee Evaluation. JAAPA 2008, 21, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Lake, D.A.; Wofford, N.H. Effect of Therapeutic Modalities on Patients with Patellofemoral Pain Syndrome: A Systematic Review. Sports Health 2011, 3, 182–189. [Google Scholar] [CrossRef]
- Yip, S.L.M.; Ng, G.Y.F. Biofeedback Supplementation to Physiotherapy Exercise Programme for Rehabilitation of Patellofemoral Pain Syndrome: A Randomized Controlled Pilot Study. Clin. Rehabil. 2006, 20, 1050–1057. [Google Scholar] [CrossRef]
- Alaca, R.; Yilmaz, B.; Goktepe, A.S.; Mohur, H.; Kalyon, T.A. Efficacy of Isokinetic Exercise on Functional Capacity and Pain in Patellofemoral Pain Syndrome. Am. J. Phys. Med. Rehabil. 2002, 81, 807–813. [Google Scholar] [CrossRef]
- Williamson, K.; Blane, D.N.; Lean, M.E.J. Challenges in Obtaining Accurate Anthropometric Measures for Adults with Severe Obesity: A Community-Based Study. Scand. J. Public Health 2023, 51, 935–943. [Google Scholar] [CrossRef]
- Mau-Moeller, A.; Gube, M.; Felser, S.; Feldhege, F.; Weippert, M.; Husmann, F.; Tischer, T.; Bader, R.; Bruhn, S.; Behrens, M. Intrarater Reliability of Muscle Strength and Hamstring to Quadriceps Strength Imbalance Ratios During Concentric, Isometric, and Eccentric Maximal Voluntary Contractions Using the Isoforce Dynamometer. Clin. J. Sport Med. 2019, 29, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Snow, C.J.; Blacklin, K. Reliability of Knee Flexor Peak Torque Measurements from a Standardized Test Protocol on a Kin/Com Dynamometer. Arch. Phys. Med. Rehabil. 1992, 73, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Çankaya, M.; Karakaya, İ.Ç.; Yargiç, P.M.; Karakaya, M.G. Effects of Russian and Aussie Currents Combined with Isokinetic Training on Symptoms, Pain, Functional Mobility and Quality of Life in Individuals with Patellofemoral Pain Syndrome: A Randomized, Placebo-Controlled Study. Am. J. Phys. Med. Rehabil. 2024. [Google Scholar] [CrossRef] [PubMed]
- Amatachaya, S.; Kwanmongkolthong, M.; Thongjumroon, A.; Boonpew, N.; Amatachaya, P.; Saensook, W.; Thaweewannakij, T.; Hunsawong, T. Influence of Timing Protocols and Distance Covered on the Outcomes of the 10-Meter Walk Test. Physiother. Theory Pract. 2020, 36, 1348–1353. [Google Scholar] [CrossRef] [PubMed]
- Bennell, K.; Dobson, F.; Hinman, R. Measures of Physical Performance Assessments: Self-Paced Walk Test (SPWT), Stair Climb Test (SCT), Six-Minute Walk Test (6MWT), Chair Stand Test (CST), Timed Up & Go (TUG), Sock Test, Lift and Carry Test (LCT), and Car Task. Arthritis Care Res. 2011, 63 (Suppl. 11), S350–S370. [Google Scholar] [CrossRef]
- Batista, N.P.; de Oliveira Silva, D.; Mochizuki, L.; Norte, G.E.; Bazett-Jones, D.M. Clinic- and Laboratory-Based Measures of Postural Control in Patellofemoral Pain: A Systematic Review with Meta-Analysis and Evidence Gap Map. Gait Posture 2024, 109, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Le Metayer, M.; Blanc, Y.; Domken, V.; Wos, R.; Misson, J.-P. Étude comparative de l’évaluation clinique de l’angle poplité en décubitus dorsal versus décubitus latéral asymétrique, chez des sujets infirmes moteurs cérébraux et polyhandicapés (paralysés cérébraux). Mot. Cérébrale Réadapt. Neurol. Dév. 2012, 33, 111–123. [Google Scholar] [CrossRef]
- Geyer, S.; Winden, F.; Braunsperger, A.; Kreuzpointner, F.; Kleim, B.D.; Lappen, S.; Imhoff, A.B.; Mehl, J.; Hinz, M. Midterm Outcome and Strength Assessment after Quadriceps Tendon Refixation with Suture Anchors. Eur. J. Orthop. Surg. Traumatol. 2022, 33, 869–875. [Google Scholar] [CrossRef]
- Rwakabayiza, S.; Pereira, L.C.; Lécureux, E.; Jolles-Haeberli, B. Measurement of the knee range of motion: Standard goniometer or smartphone? Rev. Med. Suisse 2013, 9, 2372–2375. [Google Scholar]
- Willy, R.W.; Hoglund, L.T.; Barton, C.J.; Bolgla, L.A.; Scalzitti, D.A.; Logerstedt, D.S.; Lynch, A.D.; Snyder-Mackler, L.; McDonough, C.M. Patellofemoral Pain. J. Orthop. Sports Phys. Ther. 2019, 49, CPG1–CPG95. [Google Scholar] [CrossRef] [PubMed]
- Collins, N.J.; Prinsen, C.a.C.; Christensen, R.; Bartels, E.M.; Terwee, C.B.; Roos, E.M. Knee Injury and Osteoarthritis Outcome Score (KOOS): Systematic Review and Meta-Analysis of Measurement Properties. Osteoarthr. Cartil. 2016, 24, 1317–1329. [Google Scholar] [CrossRef] [PubMed]
- Pollatos, D.; Chandolias, K.; Giordamni, M.-A.; Chalkia, A.; Trevlaki, E. Review of New Data in Physiotherapeutic Approach to Patellofemoral Pain Syndrome (PFPS). J. Biosci. Med. 2021, 9, 103–125. [Google Scholar] [CrossRef]
- Bump, J.M.; Lewis, L. Patellofemoral Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Rothermich, M.A.; Glaviano, N.R.; Li, J.; Hart, J.M. Patellofemoral Pain: Epidemiology, Pathophysiology, and Treatment Options. Clin. Sports Med. 2015, 34, 313–327. [Google Scholar] [CrossRef]
- Brown, L. Isokinetics in Human Performance; Human Kinetics: Champaign, IL, USA, 2000; Volume 32, ISBN 978-0-7360-0005-5. [Google Scholar]
- Hamdoun-Kahlaoui, S.; Lebib, S.; Miri, I.; Ghorbel, S.; Koubaa, S.; Rahali-Khachlouf, H.; Ben Salah, F.Z.; Dziri, C. Isokinetic evaluation and rehabilitation of the knee in patients with patellofemoral pain syndrome. J. Réadapt. Médicale Prat. Form. Méd. Phys. Réadapt. 2010, 30, 3–11. [Google Scholar] [CrossRef]
- Guney, H.; Yuksel, I.; Kaya, D.; Doral, M.N. The Relationship between Quadriceps Strength and Joint Position Sense, Functional Outcome and Painful Activities in Patellofemoral Pain Syndrome. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 2966–2972. [Google Scholar] [CrossRef]
- Werner, S.; Eriksson, E. Isokinetic Quadriceps Training in Patients with Patellofemoral Pain Syndrome. Knee Surg. Sports Traumatol. Arthrosc. 1993, 1, 162–168. [Google Scholar] [CrossRef] [PubMed]
- van den Dolder, P.A.; Roberts, D.L. Six Sessions of Manual Therapy Increase Knee Flexion and Improve Activity in People with Anterior Knee Pain: A Randomised Controlled Trial. Aust. J. Physiother. 2006, 52, 261–264. [Google Scholar] [CrossRef] [PubMed]
- Zamboti, C.L.; Marçal Camillo, C.A.; Ricardo Rodrigues da Cunha, A.P.; Ferreira, T.M.; Macedo, C.S.G. Impaired Performance of Women with Patellofemoral Pain during Functional Tests. Braz. J. Phys. Ther. 2021, 25, 156–161. [Google Scholar] [CrossRef]
- Waryasz, G.R.; McDermott, A.Y. Patellofemoral Pain Syndrome (PFPS): A Systematic Review of Anatomy and Potential Risk Factors. Dyn. Med. 2008, 7, 9. [Google Scholar] [CrossRef]
- McMullen, W.; Roncarati, A.; Koval, P. Static and Isokinetic Treatments of Chondromalacia Patella: A Comparative Investigation. J. Orthop. Sports Phys. Ther. 1990, 12, 256–266. [Google Scholar] [CrossRef]
- Steultjens, M.P.; Dekker, J.; van Baar, M.E.; Oostendorp, R.A.; Bijlsma, J.W. Range of Joint Motion and Disability in Patients with Osteoarthritis of the Knee or Hip. Rheumatology 2000, 39, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Coburn, S.L.; Barton, C.J.; Filbay, S.R.; Hart, H.F.; Rathleff, M.S.; Crossley, K.M. Quality of Life in Individuals with Patellofemoral Pain: A Systematic Review Including Meta-Analysis. Phys. Ther. Sport 2018, 33, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Reijnders, L.; van de Groes, S.A. The Quality of Life of Patients with Patellofemoral Pain—A Systematic Review. Acta Orthop. Belg. 2020, 86, 678–687. [Google Scholar] [PubMed]
Number of Rounds × Number of Repetitions | |||
---|---|---|---|
* Weeks 1 + 2 | * Weeks 3 + 4 | * Weeks 5 + 6 | |
60°/s (Concentric) | 3 × 5 | 3 × 7 | 3 × 10 |
ISO.G (n = 12) | PCM.G (n = 12) | p | |
---|---|---|---|
Age (years) | 53.50 ± 5.14 | 50.83 ± 9.50 | 0.4 |
Weight (Kg) | 85.43 ± 10.96 | 87.33 ± 8.50 | 0.65 |
Height (cm) | 1.58 ± 0.06 | 1.59 ± 0.08 | 0.67 |
BMI (kg/m2) | 34.38 ± 4.59 | 34.72 ± 3.94 | 0.84 |
% Fat | 41.44 ± 6.80 | 41.46 ± 9.21 | 0.99 |
Right Member | Left Member | ||||
---|---|---|---|---|---|
PTE (Nm) | PTE (Nm) | PTE (Nm) | PTE (Nm) | ||
ISO.G | Test | 1.07 ± 0.36 | 0.52 ± 0.12 | 0.79 ± 0.25 | 0.42 ± 0.12 |
Re-Test | 1.41 ± 0.42 * | 0.77 ± 0.16 *+ | 1.05 ± 0.21 * | 0.39 ± 0.13 *+ | |
PCM.G | Test | 1.06 ± 0.46 | 0.52 ± 0.18 | 1 ± 0.40 | 0.66 ± 0.16 |
Re-Test | 1.03 ± 0.39 | 0.52 ± 0.22 * | 1 ± 0.34 | 0.38 ± 0.11 |
SCT (s) | 10 m Walk Test (s) | Chair Stand Test (A.U.) | Monopodal Stance Test (s) | |||
---|---|---|---|---|---|---|
Right | Left | |||||
ISO.G | Test | 7.41 ± 1.19 | 7.45 ± 0.82 | 10.08 ± 1.44 | 14.29 ± 5.69 | 15.66 ± 8.33 |
Re-Test | 5.21 ± 1.04 * | 5.72 ± 0.40 * | 18.83 ± 1.11 * | 43.92 ± 6.74 * | 50.59 ± 14.09 * | |
PCM.G | Test | 7.48 ± 0.73 | 7.63 ± 0.70 | 9.08 ± 1.00 | 11.25 ± 4.80 | 12.38 ± 6.69 |
Re-Test | 4.95 ± 0.97 * | 5.49 ± 0.50 * | 19.17 ± 1.27 * | 41.16 ± 11.02 * | 50.05 ± 9.85 * |
Popliteal Angle (Degrees) | Distance Heel to Buttocks (cm) | Flexion (Degrees) | Extension (Degrees) | ||||||
---|---|---|---|---|---|---|---|---|---|
Right | Left | Right | Left | Right | Left | Right | Left | ||
ISO.G | Test | 13.33 ± 8.35 | 13.75 ± 9.32 | 36.75 ± 6.12 | 36.33 ± 6.12 | 120.0 ± 11.28 | 122.08 ± 8.38 | 3.75 ± 6.44 | 3.75 ± 6.44 |
Re-Test | 7.92 ± 5.82 * | 7.08 ± 5.42 * | 29.92 ± 5.63 * | 29.50 ± 4.96 * | 137.0 ± 3.96 * | 136.67 ± 3.26 * | 1.67 ± 3.26 | 1.67 ± 3.26 | |
PCM.G | Test | 14.58 ± 5.42 | 15.83 ± 4.69 | 38.00 ± 4.65 | 38.50 ± 3.92 | 122.92 ± 6.20 | 123.75 ± 6.44 | 7.08 ± 7.22 | 7.08 ± 7.22 |
Re-Test | 5.83 ± 4.17 * | 6.67 ± 3.89 * | 28.08 ± 2.68 * | 28.83 ± 4.09 * | 135.00 ± 4.77 * | 134.17 ± 6.34 * | 3.75 ± 4.33 * | 3.33 ± 4.44 * |
Quality of Life (A.U.) | Pain (A.U) | |||
---|---|---|---|---|
Test | Re-Test | Test | Re-Test | |
ISO.G | 29.75 ± 2.70 | 4.33 ± 1.92 * | 29.75 ± 2.70 | 4.33 ± 1.92 * |
PCM.G | 26.33 ± 4.83 | 3.08 ± 1.88 * | 26.33 ± 4.83 | 3.08 ± 1.88 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammami, N.; Bouzouraa, E.; Ölmez, C.; Hattabi, S.; Mhimdi, N.; Khezami, M.A.; Forte, P.; Sortwell, A.; Bouassida, A.; Jemni, M. Isokinetic Knee Strengthening Impact on Physical and Functional Performance, Pain Tolerance, and Quality of Life in Overweight/Obese Women with Patellofemoral Pain Syndrome. J. Clin. Med. 2024, 13, 4696. https://doi.org/10.3390/jcm13164696
Hammami N, Bouzouraa E, Ölmez C, Hattabi S, Mhimdi N, Khezami MA, Forte P, Sortwell A, Bouassida A, Jemni M. Isokinetic Knee Strengthening Impact on Physical and Functional Performance, Pain Tolerance, and Quality of Life in Overweight/Obese Women with Patellofemoral Pain Syndrome. Journal of Clinical Medicine. 2024; 13(16):4696. https://doi.org/10.3390/jcm13164696
Chicago/Turabian StyleHammami, Nadhir, Eya Bouzouraa, Cengiz Ölmez, Soukaina Hattabi, Najla Mhimdi, Mehrzia Amani Khezami, Pedro Forte, Andrew Sortwell, Anissa Bouassida, and Monèm Jemni. 2024. "Isokinetic Knee Strengthening Impact on Physical and Functional Performance, Pain Tolerance, and Quality of Life in Overweight/Obese Women with Patellofemoral Pain Syndrome" Journal of Clinical Medicine 13, no. 16: 4696. https://doi.org/10.3390/jcm13164696
APA StyleHammami, N., Bouzouraa, E., Ölmez, C., Hattabi, S., Mhimdi, N., Khezami, M. A., Forte, P., Sortwell, A., Bouassida, A., & Jemni, M. (2024). Isokinetic Knee Strengthening Impact on Physical and Functional Performance, Pain Tolerance, and Quality of Life in Overweight/Obese Women with Patellofemoral Pain Syndrome. Journal of Clinical Medicine, 13(16), 4696. https://doi.org/10.3390/jcm13164696