Next Article in Journal
A Virtual Reality Cognitive Stimulation Program as an Effective Tool Against Residual/Prodromal Depressive Symptoms in Bipolar Disorders
Previous Article in Journal
Acute Pancreatitis in Individuals with Sickle Cell Disease: A Systematic Review
Previous Article in Special Issue
Exploring TSLP and IL-33 Serum Levels and Genetic Variants: Unveiling Their Limited Potential as Biomarkers for Mild Asthma in Children
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Malnutrition and Allergies: Tipping the Immune Balance towards Health

by
Emilia Vassilopoulou
1,2,
Carina Venter
3 and
Franziska Roth-Walter
4,5,*
1
Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece
2
Department of Clinical Sciences and Community Health, Univertià degli Studi die Milano, 20122 Milan, Italy
3
Pediatrics, Section of Allergy & Immunology, University of Colorado Denver School of Medicine, Children’s Hospital Colorado, Box B518, Anschutz Medical Campus, Aurora, CO 80045, USA
4
Messerli Research Institute, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, 1210 Vienna, Austria
5
Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
*
Author to whom correspondence should be addressed.
J. Clin. Med. 2024, 13(16), 4713; https://doi.org/10.3390/jcm13164713
Submission received: 22 July 2024 / Revised: 4 August 2024 / Accepted: 5 August 2024 / Published: 11 August 2024
(This article belongs to the Special Issue New Clinical Advances in Pediatric Allergic Diseases)

Abstract

:
Malnutrition, which includes macro- and micronutrient deficiencies, is common in individuals with allergic dermatitis, food allergies, rhinitis, and asthma. Prolonged deficiencies of proteins, minerals, and vitamins promote Th2 inflammation, setting the stage for allergic sensitization. Consequently, malnutrition, which includes micronutrient deficiencies, fosters the development of allergies, while an adequate supply of micronutrients promotes immune cells with regulatory and tolerogenic phenotypes. As protein and micronutrient deficiencies mimic an infection, the body’s innate response limits access to these nutrients by reducing their dietary absorption. This review highlights our current understanding of the physiological functions of allergenic proteins, iron, and vitamin A, particularly regarding their reduced bioavailability under inflamed conditions, necessitating different dietary approaches to improve their absorption. Additionally, the role of most allergens as nutrient binders and their involvement in nutritional immunity will be briefly summarized. Their ability to bind nutrients and their close association with immune cells can trigger exaggerated immune responses and allergies in individuals with deficiencies. However, in nutrient-rich conditions, these allergens can also provide nutrients to immune cells and promote health.

Graphical Abstract

An often overlooked aspect in the etiology of allergies is the fact that not everyone becomes allergic despite being exposed to the same allergenic and environmental threats. This suggests that certain intrinsic conditions promote allergies, making an individual particularly sensitive to allergenic substances. The term “atopy” reflects the hypersensitive predisposition of a person prone to allergies compared to a person with no such risk.
Here, we review the diet as a major contributor to “atopy”, highlighting how deficiencies in specific proteins, minerals, and vitamins can shift the immune system toward type 2 inflammation. We focus on three common deficiencies worldwide, protein, iron, and vitamin A, and explore their impact on ameliorating the disease course.

1. Definition of Malnutrition

Though malnutrition often refers to undernutrition, encompassing protein–energy malnutrition and micronutrient deficiencies, it also includes overnutrition, referring to both deficiencies and excesses in nutrient intake. Obese individuals are often deficient in micronutrients despite calorie excess [1]. Moreover, the World Health Organization (WHO) also includes impaired nutrient utilization as one form of malnutrition.
Malnutrition is not always the result of an inadequate intake of micro- and macronutrients but may also arise from impaired nutrient utilization. While micronutrient deficiencies are more frequent and severe among disadvantaged populations, they also represent a public health problem in industrialized countries [2]. The NHANES study revealed inadequate intake of vitamins and minerals in about 40% of Americans [3,4,5], highlighting that malnutrition is a problem in industrialized, developed countries. About 40% [6] of all people with chronic illnesses and up to 90% of hospitalized people suffer from malnutrition [7], which is an independent risk factor for increased morbidity and mortality. Reasons for hospital-acquired malnutritionis beside poor appetite hospital meal refusal, operation-related fasting, polypharmacy, and comorbidities [7], with malnutrition being a predictor of postoperative morbidity and mortality [8]. The increased consumption of highly processed, energy-dense but micronutrient-poor foods in industrialized countries, and increasingly in those undergoing social and economic transition, adversely affects micronutrient intake and status [9]. Certain lifestyle factors also increase the risk of malnutrition, such as frequent blood donations, smoking, vegan/vegetarian diets, excessive use of some medication (e.g., antacids hindering dietary iron uptake), and greater nutritional demands during specific life stages (growth, pregnancy, or endurance sports) [10].

1.1. Malabsorption Due to Inflammation and Nutritional Immunity

Both inflammation and malnutrition can evoke “nutritional immunity” [11], one of the most evolutionary conserved innate mechanisms present in all living organisms. In humans, nutritional immunity involves the redistribution of vitamins and minerals away from circulation [11,12] to safer havens, such as the macrophages and liver cells, while it also hinders the dietary uptake of micronutrients. Consequently, “nutritional immunity” impairs nutrient utilization within the body and results in malabsorption, with “impaired nutrient utilization” listed by the WHO as one form of malnutrition.
People at risk of nutritional deficiencies include obese people, due to low-grade inflammation, individuals with inadequate nutrient intake, and those suffering from chronic diseases including congestive heart failure [13,14,15], chronic kidney diseases [16,17,18] autoimmune diseases [19,20,21,22,23], inflammatory bowel disease [24,25], cancer [26,27,28], and allergic diseases [29,30,31,32,33] (Figure 1).

1.2. Physiological Pathways of Nutrient Absorption

Nutrient absorption is a complex process that depends on many variables, including the interinfluence among them and one’s overall nutritional status [34]. Most nutrients are absorbed in the jejunum, while B12 and bile salts are absorbed in the terminal ileum. Iron and most minerals [35] are absorbed in the duodenum, while magnesium’s predominant absorption site is the terminal ileum and proximal colon [36]. Once nutrients pass the gut lining, they enter either directly into the bloodstream or via the lymphatic system, before being released into circulation (Figure 2).
Micronutrients are assimilated via three major mechanisms:
(1)
Direct bloodstream absorption: Simple sugars [37] (glucose, fructose), amino acids (from digested proteins), short-chain fatty acids SCFA and medium-chain fatty acids MCFA, water-soluble vitamin C, vitamin Bs (except B12) and folate [38], and most minerals (iron, calcium, potassium) are readily absorbed into the bloodstream and enter via the portal vein the liver.
(2)
Lymphatic absorption: Fat and fat-soluble compounds (including fat-soluble vitamin A, D, E, and K) are taken up via the lymphatic vessels [39]. These nutrients are emulsified in micelles composed of bile salts absorbed by the enterocytes and packed into chylomicrons [40,41]. Chylomicrons are composed primarily of triglycerides, phospholipids, cholesterol, and lipoproteins and enter the bloodstream near the collarbone.
(3)
Receptor-specific uptake: Digestion-resistant proteins serve as carriers for nutrients (iron [2,42,43,44,45,46,47,48,49,50,51], calcium/magnesium [52,53], vitamins [43,44,47], carbohydrates [54,55], phenolics [48,49,50,56], and lipids [57,58,59]). This receptor-specific uptake occurs often, typically exploiting the lacteals—the jejunal lymphatic vessels [60]—as shown with the absorption of milk proteins (whey) [61] and egg proteins [62,63] but also for plant-derived food, such as soy [64,65] and nut proteins [64,65].
Notably, these nutrient-binding proteins are sensitive to heat and food processing, which can impair their nutrient-carrying abilities. Minerals such as iron, zinc, selenium, and calcium have reduced bioavailability in inflamed settings via a range of mechanisms, including the presence of a mucosal block for iron [66,67] and zinc [68,69], a compromised epithelial barrier function affecting e.g., folate [70], as well as vitamin B12 [71,72,73] absorption. Iron and vitamin D deficiencies can affect calcium and magnesium [74] absorption, while vitamin B6 deficiency increases zinc and lowers copper but not iron absorption [75]. Also, uptake of fat-solubilized vitamin A [76] can be compromised in an inflamed setting, likely due to an altered bile secretion profile [77], and is exacerbated by zinc and iron deficiency, with the bioavailability of vitamin D also being reduced in inflamed settings. A lack of iron [78,79,80] and vitamin A [81,82,83] has detrimental health consequences and is associated with increased morbidity and mortality [84,85].

2. General Immunological Implications of Malnutrition (Protein and Micronutrients): A Shift towards Th2

2.1. Malnutrition and the Thymus

Particularly, protein and micronutrient deficiencies in minerals (iron, zinc, magnesium) or vitamins (A, Bs, C, D) have a direct impact on our immune system and drive inflammation [11] via their effect on the thymus and other lymphoid organs. A lack of these proteins, vitamins, and minerals causes atrophy of lymphoid tissues, and here, the thymus and the lymph organs are the major organs particularly affected. The thymus was described as a very sensitive barometer of malnutrition by Menkel 200 years ago [86,87], when its function was not clear. The thymus is, beside the bone marrow, a primary lymphoid organ, which is located in the upper chest area and is essential for lymphocyte production (though it also contains macrophages, dendritic cells, and a small number of B cells, neutrophils, and eosinophils). It is very sensitive to nutritional deprivation resulting in the depletion of immature CD4+CD8+ cells [88,89] and is associated with a Th2 skewing [90].
Nutrient deficiencies induce similar cellular changes in the thymus, such as acute infections. Already, mild malnutrition [88,91] induces the following changes in the thymus: An increase in the extracellular matrix, which contains fibronectin, laminin, and type IV collagen (preceding thymocyte depletion), followed by thymocytic depletion. This goes along with a relative rise in macrophages (phagocyting dead thymocytes) and less production of thymulin-a zinc-containing thymic peptide hormones capable of downregulating inflammatory mediators [89,92,93].
The depletion of thymocytes [89] is a consistent finding in individuals consuming a diet deficient in proteins for a prolonged period (in in vivo models, deficits are seen from two weeks on, despite calorie sufficiency) [94,95,96,97] but also when single nutrients, such as iron [98,99], zinc [100], magnesium [101,102,103], or vitamin (B1/B2/B5/B6/C) [104,105], are missing. Regarding the type of immune response generated during malnutrition, the skewing of the immune system towards Th2 is well established [106] and already seen upon “moderate malnutrition”. Moderate malnutrition is defined after the Global Leadership Initiative on Malnutrition GLIM’s definition, with a weight loss of 5–10% within the past 6 months, BMI 18.5–20 m/kg2 (age < 70 years), and/or BMI < 22 m/kg2 (≥70 years). Severe malnutrition includes weight loss >10% within the past 6 months, BMI <18.5 m/kg2 (<70 years), and/or BMI < 20 m/kg2 (≥70 years) [107]. Importantly, thymic atrophy is reversible upon providing the missing nutrients.
One cannot overemphasize that nutritional deficits not only can elicit inflammation [108] but also lay the groundwork for a Th2 environment (typically characterized by the presence of IL4, IL13, and/or IL5), which is the prerequisite for allergic sensitization. In the acute phase, nutrient deficiencies usually manifest as a Th1/Th17 response, before this changes to a Th2 response in the chronic phase [11,109]. Immunological changes are reported in apparently healthy people with a low BMI (<18.5) showing subclinical inflammation with elevated Th1 (IL2, IL12, TNFα,) and Th2 cytokines (IL4, IL5, IL13, IL10) [110]. Malnourished children also show greater IL4 and IL10 levels [111], while asthma risk seems to increase [112]. IL4 concentrations are significantly higher in school children from Tanzania affected with stunting [113]. Thus, persistent malnutrition per se results in the establishment of a Th2 milieu [90,112,114,115,116,117,118]. Importantly, these findings are consistently reproduced in clinical settings, with inferior intake of several minerals and vitamins correlating with higher IL4 and IL10 levels.

2.2. The Importance of Allergenic Proteins: Saviors or Dangers

Proteins are essential for human health, as inadequate protein consumption leads to type 2 inflammation. Animal studies consistently demonstrate that a protein-poor diet results in low-grade inflammation (IL4/IFNγ) [119], while increased dietary proteins strongly correlate with the immune system’s abilities to combat parasites [120]. Mice fed amino acids instead of proteins had poorly developed gut-associated lymphoid tissue [121] and normal IgM but reduced circulating IgG and IgA, and they showed a predominant Th2 profile [122]. In pigs, a high protein diet results in an improved barrier in the ileum and decreased glucose and glutamine transport [123]. Protein–energy malnutrition is an important cause of secondary immune deficiency and is associated with high TNFα, IFNγ, and IL4 levels in moderate/severely malnourished children [124] and occurs in the [125] Western world usually in the context of chronic diseases [126].
While most proteins are harmless, a few protein families tend to trigger allergic reactions. Indeed, these allergens are usually clustered in specific protein families (Table 1). In mammals, the most important major allergens often belong to the “lipocalin” superfamily [66]. Allergens from plants originate from protein families that are often seed proteins, including the pathogenesis-related proteins PR10 family; the prolamin superfamily (including seed storage protein 2S albumins and the nonspecific lipid transfer proteins nsLTPs) [127,128,129]; the cupin protein superfamily (including the legumins and vicilins); and Ole e 1 families [130].
A key feature of most major allergens is their ability to bind to, transport, and enhance the absorption of essential nutrients. This ability has been observed for iron (in lipocalins, seed storage proteins 7S, 11S, and PR10 proteins, Alt a 1, 2S albumin) [2,42,43,44,45,46,47,48,49,50,51,56,131], zinc [132,133,134,135,136] (lipocalin, Ole e 1, nsLTPs), lipids (in lipocalins, PR10 and LTPs) [132,137,138], and vitamin A (lipocalins, PR10, Alt a 1) [43,44,45,46,47,121]. Many plant proteins can bind iron via antioxidative flavonoids, with the ligands for PR10, 2S protein, 7S proteins identified in birch and hazelnut having quercetin as a common core structure [139,140], strawberry proteins binding to catechins [141], peanut proteins Ara h 2 and Ara h 6 capable of binding to the flavonoid epigallocatechin-3-gallate [142], quercetin, [143] epicatechin [144], or proanthocyanidins [145], with binding decreasing their allergenicity [146].
Interestingly, studies suggest that iron binding may play a role in reducing the immunogenicity of these proteins, hence their ability to trigger an immune response. This has been demonstrated with peanut allergens (Ara h 1–7S, Ara h 3 -11S protein) [51], egg proteins (Gal d 3 [147]), lipocalin beta-lactoglobulin (Bos d 5) [48,50], and the birch allergen Bet v 1 [49,56].
Food processing often changes mineral and vitamin content and alters the structures of these proteins. For example, the pasteurization of milk promotes the aggregation of whey proteins [61] and impairs the ligand-binding capacity of the whey protein beta-lactoglobulin, shown with ligands such as retinol and palmitic acid [148], while simultaneously increasing its antigenicity [61,148]. Similarly, pasteurization decreases copper and iron content [149] in milk.
Studies by us and others suggest that their nutrient-binding features switch these proteins from tolerogenic (with nutrients) to allergenic (without nutrients). Nutrient-poor conditions turn birch, peanut, egg proteins, and milk proteins into potent allergens, while micronutrient-adequate conditions appear to promote immune resilience [30,42,43,44,48,49,50,56,131].
Additionally, the function of these proteins should be considered, as the majority of these protein families are known to act during the stress response and nutritional immunity in their respective plants [150,151] and organisms [2,42,48,66,131,150,152,153,154,155,156,157,158,159,160,161,162,163,164].
These findings support an emerging principle that these proteins can deprive their local environment of important nutrients such as iron, lipids, or vitamins and thereby have a profound metabolic impact on our immune cells. This depletion triggers a danger signal to the immune system, especially in atopic individuals. If, on the other hand, nutrients are available in abundance, these same proteins act as carriers for micronutrients. They bind and deliver essential nutrients (become “holo-proteins”) and contribute to immune cell health by promoting tolerance.
Essentially, the allergenicity of these proteins appears to be a context-dependent phenomenon. Their function can change depending on nutrient availability, from useful nutrient carriers in a nutrient-rich environment to potential allergens under nutrient-poor conditions.
Table 1. Summary of allergenic protein families on known ligands and biological function.
Table 1. Summary of allergenic protein families on known ligands and biological function.
Protein FamiliesStructureExamplesKnown LigandsOriginFunctionRef
Pathogenesis-related class
seed storage protein
small protein with antiparallel beta-strands and alpha-helicesBet v 1, Pru a 1, Mal d 1, Fra a 1phytohormones, siderophores, flavonoids, alkaloidsplantsPathogenesis-related proteins (PRPs): signature genes for systemic acquired resistance in plants
Microbicidic, Kunitz type of protease inhibitor
[154,155,156,157,158,159,160]
Ole e 1 Familyβ-barrel fold, stabilized by 3 disulfide bond, heat stableOle e 1, Pla l 1, Che a 12+ metalsplantsPollen tube development, leave senescence
Activated under ROS induction, contribute to antioxidant production, plant defense responses.
[135,161,162,163,164]
nsLTPs
seed storage proteins
Prolamin superfamily
cysteine-rich alpha-helical; rich in proline and glutaminePru p 3, Ara h 9, Fra a 3Fatty acids, phospholipidsplantsAntimicrobial, lipid utilization, plant stress
Regulate FAO, binds to calmodulin (central hub in calcium-dependent cellular regulation)
[154,165]
2S albumin (conglutin)
seed storage proteins
prolamin superfamily
small cysteine-rich, alpha-helical proteinAra h 2, Ber e 1, Ses I 1, Gly m 8phenolicsplantsNutrient reservoir, regulate germination
Antimicrobial, stress response [166]
[154,165]
Albumin 2S
seed storage
hemopexin-like fold
no disulphide bonds
thermostabile, ß-propeller
heme, spermidine
thiamine
plantStress response, antioxidative, agglutinate erythrocytes; peroxidase activity or heme binding
Seed germination
[167,168,169]
cereal prolamins
prolamin superfamily
alpha-helical, conserved cystein-skeleton; rich in proline and glutamineTri a 19 (wheat), Sec c 20
Hor v 21
copper, sugars, fats, phenolicsplantsNutrient reservoir, regulate germination
Antimicrobial, stress response
[166,170]
prolamin
alpha-amylase inhibitors [171]
alpha-helical, cystein-richTri a 28
Hor v 15
calciumplantsAntimicrobial, stress response
Inhibit exogenous insect amylases
[172]
7S/vicilin
CUPIN
beta-barrel core [165]Ara h 1, Jug r 2, Ses I 3copper, sugars, fats, phenolicsplantsNutrient reservoir, regulate germination,
Antimicrobial, stress response
[154,165,166]
11S/legumin-like
CUPIN
beta-barrel core Ara h 3, Ber e 2, Ses i 6copper, sugars, fats, phenolicsplantsNutrient reservoir, regulate germination
Antimicrobial, stress response [166]
[154,165]
Lipocalinssymmetrical β-barrel fold,Can f 1, Fel d 4, Bos d 5siderophores, phenolics, vitamin, heme productsanimalStress response, microbicidic, nutritional immunity[66,173,174]
Serum Albuminglobular, several long α helicesFel d 2, Gal d 5, Can f 3, Equ c 3Cu2+, Zn2+, hormones, vitamins, minerals, drugs, heminanimalCarrier protein, nutritional immunity
Negative acute phase protein
Anti-inflammatory
[175,176,177]
Parvalbumincalcium-binding, long α helices, EF-hand superfamilyCyp c 1, Gad c 1Ca2+, phosphatidylcholine, phospatidylethanolamineanimalCalcium buffer, immunomodulatory
Protective against reactive oxygen species, antibacterial
[178,179]
Tropomyosintwo-chained, α-helical coiled coil proteinBla g 7, Lep s 1, Der f 10actinanimalRegulates stress fiber assembly
Regulatea calcium-dependent interaction of actin/myosin during muscle contraction
Host defense, immunomodulatory
[180,181,182]
Uteroglobinhomodimeric, alpha helical strucure linked by disulfide bondeFel d 1, Ory c 3phosphatidylcholine, phosphatidylinositol, polychlorinated, steroids, environmental toxins progesteroneanimalAnti-inflammatory, antioxidant
Inhibitor of phospholipase A2
Increased vulnerability to oxygen toxicity in uteroglobin-knock-out mice, defects in uteroglobin are associated with a susceptibility to asthma; protects epithelial linings
[183,184]
NPC2 proteins
MD-2-related lipid recognition family
immunoglobulin-like β-sandwich fold Der p 2, Gly d 2, Tyr p 2lipids cholesterol
other sterols, LPS
animalCrucial for cholesterol transport and utilization
Arginin Kinasemainly α-helicalBla g 9, Pen m 2, Der p 20ATP and L-arginine
phosphoarginine
animalImmunomodulatory, stress response
Storage of phosphoarginine
Cell signaling, apoptosis
[185,186,187]

2.3. Iron Deficiency

Iron deficiency is the most common deficiency worldwide and can lead to mucosal inflammation, a weak immune system, anemia, cognitive deficits in children [188], preterm birth, low birth weight [189], and increased mortality [78,79,80,190]. Even in healthy adults, iron deficiency is a driver of low-grade chronic inflammation [191]. Notably, functional iron deficiency has been linked to the highest risk for mortality in chronic kidney diseases [192].
There are different terms used to define a suboptimal iron status:
  • Iron deficiency/functional iron deficiency
Due to a lack of international consensus, iron deficiency is often defined as (1) serum ferritin < 100 ng/mL, or 100–299 ng/mL with transferrin saturation <20%, which is the guideline definition for heart failure patients, (2) serum iron concentration ≤ 13 μmol/L, or (3) transferrin saturation < 20% [193]. Iron deficiency, the most common nutrient deficiency globally, is associated with increased mortality, even in seemingly healthy populations [194]. Children under five years old, adolescents, and women of childbearing age are particularly at risk.
  • Anemia/absolute iron deficiency
It is important to note that iron deficiency is not synonymous with anemia. Iron deficient anemia, also known as absolute iron deficiency, is an extreme form of iron deficiency characterized by a measurable lack of hemoglobin in red blood cells, which are the most abundant cells in the human body, making up over 80% of all body cells. Absolute iron deficiency is defined by severely reduced or absent iron stores, whereas functional iron deficiency involves adequate iron stores but insufficient iron availability for incorporation into erythroid precursors. This often results from immune activation and the retention of iron in macrophages, the central hub for iron distribution and recycling in the human body [195]. Markers such as ferritin, typically used to assess body iron, are elevated under inflammatory conditions due to their role in the acute phase response, masking the presence of iron deficiency. In 2022, the global pooled prevalence of iron deficiency anemia was 16%, with 18% experiencing iron deficiency without anemia [196].

2.3.1. Iron Deficiency Shifts the System toward Th2

Iron deficiency per se is associated with low-grade inflammation [197,198,199,200] (measured by low serum iron levels, low transferrin saturation, and elevated high-sensitivity C-reactive protein, alpha1-acid glycoprotein CRP) [201], and more proinflammatory monocytes in children [202] and infants [203]. Initially, inflammatory mediators like IL6 and TNFα are induced, which then shifts toward elevated IL4 levels [198,199,200] in more severe iron-deficient cases in children. Th1 cells, compared with Th2 cells, are particularly sensitive to iron deprivation [204,205] (Figure 3).

2.3.2. Cell-Specific Alterations under Iron Deficiency

Macrophages

In humans, macrophages are not only central in the defense against pathogens, clearance of senescent cells, and wound healing. They also represent the central hub for iron distribution [206]. About 20–30 mg of iron is recycled daily from senescent red blood cells by splenic macrophages, whereas only 1–2 mg of dietary iron is absorbed daily [174].
Iron is a key regulator for immune function. Primarily, regulatory M2 macrophages can take up, recycle, and distribute iron. These cells are characterized by a large cytosolic iron pool, also known as the labile iron pool, low ferritin levels, and high expression of iron export/import proteins. The typical M2 marker is CD163, the hemoglobin/haptoglobin receptor, which contributes to iron homeostasis [207]. In contrast, M1 macrophages have a low labile iron pool and high levels of ferritin, in which iron is hidden from potential pathogenic invaders. M1 macrophages do not distribute iron, and under chronic inflammatory conditions, iron is retained by splenic macrophages resulting in anemia of chronic disease [208,209,210].
A chronic lack of iron or immune activation will change the by-default regulatory phenotype of macrophages, as iron turnover and the labile iron pool decrease [66]. The mitochondrial metabolic function, which heavily relies on iron, is impaired (citrate cycle and oxidative phosphorylation), causing a metabolic switch towards anaerobic glycolysis and increasing glucose uptake [211]. As such, iron deficiency changes the phenotype of macrophages, causing them to acquire characteristics of inflammatory cells. Infants [203] and children [202] with iron deficiency have monocytes with a proinflammatory signature, while a large labile iron pool is associated with an immature, regulatory macrophage phenotype [48,56].
Macrophages/monocytes [212,213], neutrophils, and NK cells [214] need iron for microbial killing, where they act as a catalyst for the generation of reactive oxygen species (ROS) [212,213,214]. A lack of bioavailable iron thus also impedes pathogen elimination, as the local and precise generation of ROS is impaired [215]. This is despite the greater “inflammatory” but ineffective activity that may contribute to the characteristics of senescent cells [216].

T Cells

An important aspect of iron deficiency is that lower red blood cell values often go along with an expansion of white blood cells. The lymphocytic population is elevated [217]; despite that, CD4+ cells and the CD4/CD8 ratio under iron-deficient conditions are reduced [217,218]. Iron deficiency or iron chelation impairs T-cell proliferation and results in apoptosis of proliferating activated T lymphocytes but not of resting peripheral blood lymphocytes or granulocytes [219]. In contrast, when sufficient iron is present, Th1, Th2, and Th17 differentiation [220] is repressed. Interestingly, T lymphocytes also partake in iron homeostasis, as T cell deficiency results in iron accumulation in the liver and pancreas [221]. Particularly, Th1 cells are very sensitive to iron-deficient conditions as the IFN-gamma/STAT1 signaling pathway is regulated by iron [204,222]. In contrast, Th2 cells are more resistant under iron-poor conditions, resulting in a shift toward a Th2 response and an increase in the cytokine IL-4 in humans with iron deficiency [198,199,200].

IgE Antibodies

In B cells, iron deficiency activates activation-induced cytidine deaminase (AID), an enzyme responsible for class switching and the affinity maturation of antibodies [223]. The lack of iron hampers heme synthesis in the mitochondria and maintains Bach2 activation [224] in B cells. Iron fortification studies significantly improved hemoglobin and serum ferritin levels, but also resulted in decreasing total IgE levels [225] in children and women [226]. Increased IgE levels are also commonly observed, such as sickle cell anemia [227] and autoimmune hemolytic anemia (where antibodies attack red blood cells [228]), upon infections [229] such as plasmodium falciparum malaria digesting hemoglobin in red blood cells, leading to anemia [230].

Epithelial Cells and Hair

Iron deficiency can disrupt the tight junctions in the gut epithelium, leading to increased permeability [231]. It also contributes to hair loss in Tmprss6 mask mice (with a defect in iron sensing), with fur regrowing with a high-iron diet [232]. An iron-restricted diet results in hair loss in IL10-deficient mice [233]. In humans, iron deficiency has been suggested as a contributor to nonscarring alopecia [234], telogen effluvium [235], and androgenic alopecia [236].

Mast Cells and Eosinophils

Lastly, mast cells are primed under iron-deficient conditions. The intradermal application of the iron binder desferrioxamine can activate connective-tissue-type mast cells and has been suggested as a positive control in intradermal skin tests. This induces a local iron deficiency, a concentration-dependent histamine release [237], and wheal formation, both in vitro and in vivo [237]. Conversely, the activation of mast cells can be hampered by the addition of iron-containing proteins such as transferrin, lactoferrin, and the iron-loaded whey protein beta-lactoglobulin [238,239,240,241,242]. Iron deficiency has been reported to cause and increase the prevalence of chronic generalized pruritus [243] and contribute to uremic pruritis in patients with chronic kidney diseases. Vice versa, in a clinical study, oral iron supplementation for 2 months was able to ameliorate chronic idiopathic urticaria in all 81 patients with mild hyposideremia [244]. The rare but described symptoms of anemia rashes in people afflicted with iron-deficient or aplastic anemia may further hint toward the priming of mast cells under iron deficiency. Eosinophils also seem to be promoted under iron-deficient conditions and repressed under iron-sufficient conditions in a murine model of allergic asthma [245]. In asthmatics, serum iron is negatively correlated with eosinophil counts [246], and poor fetal iron is speculated to be a risk factor for infant eosinophilia [247].
Thus, the extent of iron repletion in mast cells determines their priming state to release mediators such as histamine that are responsible for allergy symptoms, and eosinophils seem to be promoted under iron deficiency as well (Figure 3).

2.4. Vitamin A Deficiency

Vitamin A deficiency is the second most common deficiency worldwide. The WHO estimates that about 250 million preschool-aged children globally have subclinical or clinically relevant low serum vitamin A levels [248,249]. Importantly, vitamin A supplementation has repeatedly been shown to reduce “all-cause mortality” [81,82,83] and is also linked with iron homeostasis. Vitamin A supplementation alone can improve hemoglobin levels [250]. Vitamin A deficiency results in the impairment of vision, epithelial integrity, and inflammation [45,251], manifesting in its extreme forms in xerophthalmia and night blindness. Even subclinical vitamin A deficiency is associated with inflammation, iron deficiency, and increased all-cause morbidity [252,253]. During infection or inflammation, serum retinol levels decline [254,255], complicating the accurate assessment of vitamin A status when based solely on serum retinol levels due to concurrent rises in C-reactive protein [256].

2.4.1. Vitamin A Deficiency Results in Type 2 Inflammation

Vitamin A is essential for the mucosal immune system and the epithelial barrier, regulating the transcription of many genes. In apparently healthy people, low retinol levels are associated with elevated CRP levels [257].

2.4.2. Cell-Specific Alterations under Vitamin A Deficiency

Macrophages

In macrophages, vitamin-A-rich conditions suppress macrophage activation, differentiation [258], and inflammation cascade [259,260,261], while promoting a regulatory phenotype via STAT6 [262]. Similarly, IL4 can induce retinol production and excretion in macrophages via STAT6 [263].

Lymphoid Cells

As with iron, acute vitamin A deficiency will initially result in a Th1 response and IFNγ production [264,265], with a shift toward Th2 in the chronic phase [266,267], leading to elevated IgE levels in vivo [266]. In contrast, conditions with sufficient retinoic acid promote innate lymphoid cell ILC3s and T-regulatory cells [268]. A lack of vitamin A also results in a dramatic expansion of IL13-producing innate lymphoid cells [267,269].

Epithelial Cells

Vitamin A is essential for the skin and gut barrier function. Topical retinol application improves epithelial cell integrity and filaggrin expression [270] in UV-damaged skin, while retinoic acid intake improves intestinal epithelial cell differentiation and barrier function [271]. Vitamin A deficiency promotes squamous epithelial cell differentiation [272,273] and hyperkeratosis [274], which can be corrected by vitamin A supplementation in vivo [275]. Similarly, lung epithelial cell proliferation is suppressed by vitamin A intake [276].

Mast Cells

Vitamin A deficiency potentiates mast cell activation [277], while retinol absorption improves atopic dermatitis symptoms [278]. A concentration-dependent stabilizing effect on mast cells and histamine release has been reported in vitro [279] and in vivo [45,280,281] (Figure 3).

3. Malnutrition in Allergic Diseases

Both a high as well as a low body mass index (BMI) are associated with allergic diseases. As such, a high BMI contributes to disability-adjusted life years and death in asthma [282,283], and a low BMI is associated with allergic sensitization [284], food allergies [285,286,287,288], and allergic rhinitis [32,289].
Several studies have reported reduced intake of macronutrients, particularly proteins [290], and micronutrient deficiencies [285], such as vitamin A [291] and iron [285,287], in populations with food allergies. Interestingly, cow milk allergy is associated with malnutrition [286,288], with a large retrospective study confirming that children with cow milk allergies are significantly shorter and weigh less than nonallergic children [292]. Food restriction in children with atopic dermatitis and/or food allergy was also linked with stunting, underweight, and increased disease severity [293,294].

3.1. Iron Deficiency/Anemia and Atopic Diseases

Large epidemiological studies in the US [295], Korea [296,297], and Japan [298] consistently reported that people [295,296,297,299] with atopic diseases [295,296] are much more likely to be anemic—and lack iron—compared with those without any allergy. Children with atopic dermatitis [300] are more likely to have iron and zinc deficiencies [299], and low serum iron is associated with lower lung function [301]. Among food allergies, cow milk allergies are particularly a risk factor for iron-deficient anemia [302,303,304,305]. Additionally, maternal iron status during pregnancy affects children’s health outcomes. A lower iron status during pregnancy is associated with childhood wheezing, decreased lung function, and allergic sensitization [306,307,308,309]. Low cord blood iron levels at birth are associated with atopic urticaria, infantile eosinophilia, and wheezing by age four [247,306]. Conversely, a good iron status during pregnancy lowers the risk of developing atopic dermatitis [247] and asthma [247,306,307,309,310,311] in children. Low serum iron levels are inversely related to blood eosinophil counts in asthmatic adults [246], with adequate iron stores decreasing the odds of lifetime asthma, current asthma, and asthma attacks/episodes [312].
Allergic diseases are also more common in patients with anemic diseases, in which elevated IgE is commonly observed and not related to parasitic infestations [225]. Patients with beta-thalassemia major (Cooley’s anemia), who develop chronic anemia due to impaired hemoglobin synthesis and possess often enlarged spleens, livers, and hearts, are more likely to have allergic diseases [313,314] and suffer from asthma [313,315,316,317]. Similarly, also atopic dermatitis subjects have a greater risk of suffering from coronary heart disease, angina, peripheral artery disease, and anemia [318].
Anemia may precede allergy or may be the result of allergies, as both scenarios seem to be true. People with allergies are more likely to be anemic, and the incidence of developing anemia is higher among atopic subjects. Studies report that asthmatics without anemia have a fivefold greater risk of developing anemia within 5 years [319], and 2-year-old allergic children will nearly double their risk for anemia within a year [298].
Thus, iron deficiency is common in allergic individuals [320], with allergic individuals being at greater risk for anemia. Importantly, an improved iron status has been consistently associated with a decrease in symptoms and allergic diseases.

3.1.1. Iron Interventions

Iron supplementation during pregnancy, combined with folic acid, significantly reduces the risk of atopic dermatitis in children by age six [310]. A Finnish study showed that prenatal iron supplementation reduced the risk of asthma in the offspring of asthmatic mothers by nearly 70% [321]. Providing dietary iron for lymphoid uptake in pollen-allergic women improved their iron status and allergic rhinitis symptoms [30]. Oral iron supplementation for 2 months improved chronic idiopathic urticaria in patients with mild hyposideremia [244]. Clinical trials indicate that iron supplementation, rather than deworming strategies, decreases IgE levels.

3.1.2. Improving the Bioavailability of Iron

A person’s health status, the form of iron, and the presence of antioxidants markedly influence the uptake of iron. Multiple uptake mechanisms for protein-bound iron, heme-iron, and nonheme iron have been described [66,174]. Vitamin C can vastly improve iron absorption, with vitamin C deficiency (scurvy) always resulting in anemia. Phytates and tannins form large complexes with iron that are not bioavailable, thus hindering its uptake [322]. Only excessively high amounts of calcium have some modest capacity to impede iron absorption [323], which is greatly improved by vitamin C [324,325] in clinical trials. Consequently, iron-fortified milk products with high calcium levels have been successfully used to improve the iron status of preterm babies [326,327], children [328], adolescents [329], and pregnant women [330]. Clinical trials have shown that in the presence of low-grade inflammation, the addition of vitamin A [329], vitamin C [331,332], and lipids [333,334] improves dietary iron uptake in inflamed settings due to rerouting absorption to the lymph.

3.2. Vitamin A Deficiency and Atopic Diseases

Both the insufficient and excessive intake of bioavailable vitamin A can be detrimental and lead to inflammation. Insufficient vitamin A during infancy and early childhood is associated with allergic sensitization, allergic rhinoconjunctivitis, wheezing, and food hypersensitivity [335]. Children with atopic dermatitis exhibit significantly lower serum retinol levels and impaired retinoid-mediated signaling in the skin compared with nonatopic controls [336,337], and children and adults with asthma also have lower circulating vitamin A levels [338,339,340]. As a lack of retinol is associated with increased morbidity, retinol deficiency worsens asthma [341], allergic rhinitis [342], and atopic dermatitis [277,343]. Conversely, retinol supplementation during infancy did not increase the risk of atopy at age 7 [344], and the intake of the carotenoids beta-cryptoxanthin and alpha-carotene is inversely associated with allergic skin sensitization [345]. However, persons with protein–energy malnutrition are particularly sensitive to retinol toxicity, with intakes as low as 1500 IU/kg occurring in children and pregnant women [346]. Excess intake of bioavailable lipophilic vitamin A (≥2.5 times the recommended intake of 800 RAEs/d in Nordic countries) was associated with increased asthma risk in school-age children [347]. Vitamin A deficiency potentiates Th2 inflammation and mast cell activation in atopic dermatitis [277], with an increase in serum retinol improving atopic dermatitis symptoms [278].

Improving the Bioavailability of Vitamin A

The bioavailability of vitamin A as a fat-soluble vitamin differs vastly, with the addition of oil being essential when consuming carotenoids for retinol uptake via the lymph [348,349]. Without oil, these carotenoids are basically not absorbed, as the conversion rate for provitamin A to retinol is 24:1, and for beta-carotene to retinol, it is approximately 12:1. [350,351,352] As such, people at risk are particularly those who consume carotenoids without added oil.
The importance of bioavailable vitamin A has been very clearly demonstrated in a prospective birth cohort study, in which supplementation of children in the first year of life with vitamins A and D in the water-soluble form doubled the risk of food allergy and asthma at the age of four compared with children receiving the same formulation in oil suspension [353]. Similarly, in children, a high intake of dietary preformed vitamin A, but not ß-carotene intake, was associated with improved lung function and lower asthma risk [354].
However, many studies do not assess the bioavailability of vitamin A, which may partly explain contradictory findings, in which some studies reported dietary beta-carotene intake reduced the risk of allergic sensitization [355,356], while another study reported an increased risk for hay fever [357]. To sum up, atopic individuals have lower retinol levels with improving vitamin A deficiency, decreasing morbidity. Intervention trials have to be interpreted carefully, taking dose and bioavailability into account.

4. Nutrition to Prevent Allergies

Allergic individuals suffer from numerous mineral and vitamin deficiencies [174,247,277,295,296,297,303,306,310,338,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372]. Importantly, adequate levels of some trace elements such as iron are known to be crucial for adequate lung functioning [373,374], with lower serum iron levels being associated with lower lung function [301] and increased asthma [312] severity [375]. Unnecessary food avoidance is often observed in people with food allergies, increasing their risk of nutritional inadequacies. As such, food restriction has been reported to lead to micronutritional deficiencies in children with atopic dermatitis and was associated with disease severity [293,376,377]. Many allergy sufferers experience cross-allergic symptoms, reacting not only to specific proteins like PR10 or LTP in a particular allergenic source but also to cross-reactive dietary sources such as fruit and vegetables. Consequently, many allergic persons avoid a wide range of raw fruits, vegetables, and animal products out of caution. This, however, is unwarranted and may aggravate the disease course. Only specific foods that have previously caused reactions need to be avoided. When an entire food group is avoided, nutritional deficiencies are more likely to occur, further exacerbating the disease. Additionally, misconceptions about avoiding certain allergenic foods often fail to consider the stability of some allergenic proteins. For example, people allergic to cow’s milk, even if they are allergic to bovine serum albumin, can still consume cooked meat, as bovine serum albumin is thermolabile [378,379,380]. Several studies emphasize that maternal food consumption may have an impact on the development of allergic diseases, though randomized controlled trials of micronutrient supplementation do not give clear consistent information, and randomized trials focusing on food and food patterns are lacking [381]. Maternal consumption of allergenic foods such as milk and peanuts has been linked to reduced allergy and asthma risk in the offspring of a prebirth US cohort [382]. Similarly, maternal intake of fish and apples was found to be protective against the onset of asthma [383]. In the Danish National birth cohort, maternal ingestion of peanuts, tree nuts [384], and/or fish [385] decreased the risk of asthma. In contrast, maternal fish oil consumption alone did not reduce atopy [386,387,388] but did seem to slightly reduce the risk of asthma in offspring [389]. Maternal intake of vegetables and yogurt was associated with the prevention of any allergy [390], while lower maternal egg intake was linked with elevated serum total IgE and peripheral eosinophilia in children with atopic dermatitis [391]. Moreover, better iron and vitamin status [381], as well as iron supplementation during pregnancy, are associated with a lower risk of allergies and asthma in children [306,307,308,309,310,311,321]. Despite the data from current studies and systematic reviews [392], the only guidelines about maternal diet and food allergy prevention are that food allergens do not need to be avoided and that vitamin D supplementation in pregnant women with suboptimal levels may prevent offspring asthma [393,394,395].
Supporting the role of nutrient-poor conditions promoting allergy development is that numerous studies associate adequate nutrition with the prevention of atopy [30,396,397]. While not addressed in systematic reviews, several studies showed that frequent intake of nuts [382,398,399], milk [382,398,400,401], butter [398,401] wheat [382], apples [383] and other fruits [399,402,403,404], fish [383,385,399,403,405,406,407], vegetables [390,399,402], yogurt [390], and meat (of high quality) [404,407] in childhood is associated with reduced allergy and asthma risk in children. Meta-analyses revealed that probiotics alone or combined with prebiotics can reduce atopic dermatitis symptoms in children without food allergies [408].
In the Spanish ISAAC phase III, the intake of cow’s milk, butter, and nuts was found to reduce the risk of atopic dermatitis in children [398]. In the GABRIELA cohort, raw cow’s milk consumption was associated with a reduced risk of asthma and atopy, with whey protein levels being inversely associated with asthma [400].
One-month consumption of a whey-based oral supplement was able to reduce total IgE levels and improve lung function in asthmatic children [409]. In a randomized controlled trial from Brazil, consumption of a micronutrient and a prebiotic-fortified milk beverage for 6 months decreased the risk of allergic manifestations by 36% [410]. Moreover, consumption of a whey supplement fortified with iron, vitamin A, and zinc for 3–6 months ameliorated symptoms of allergic rhinitis [30,411,412]. Additionally, drinking raw milk was better tolerated in allergic children than highly processed milk in a pilot study [413].

5. Conclusions

Allergic individuals are at increased risk of malnutrition, particularly with deficiencies of iron and vitamin A, compared with those without allergies. These nutrient deficiencies have a profound impact, triggering nutritional immunity, type 2 inflammation, and restricting dietary uptake of micronutrients. Allergenic proteins can bind nutrients very effectively and are able to evoke nutritional immunity in persons with protein or micronutritional deficiencies. However, these same proteins in nutrient-adequate conditions act as carriers for micronutrients and contribute to immune health. Despite the high prevalence of malnutrition and the impact of protein and micronutrient deficiencies on the development as well as the severity of allergic diseases, nutritional care is many times inadequate, with many in the medical/nursing field not being able to diagnose malnutrition and not including dietary measurements to prevent the disease course.
Nutritional education for both people with allergies and health care professionals plays a crucial role in preventing the atopic march. Consumption of allergenic food such as milk, whey products, fish, nuts, fruits, and vegetables should be encouraged, as these foods are rich in micronutrients and have been shown to be beneficial for the prevention and amelioration of the atopic state. Malnutrition can be prevented through nutritional education and the consumption of a healthy, varied diet, as well as by fortifying foods or direct supplementation as needed.

Author Contributions

E.V. structured, contributed to writing and data acquisition, and critically revised manuscript draft; C.V. contributed to writing and critically revised the manuscript for the intellectual content; F.R.-W. conceptualized the topic, coordinated, wrote the first manuscript draft, and prepared the figures. All authors have read and agreed to the published version of the manuscript.

Funding

This review received no funding.

Conflicts of Interest

E.V. has no conflicts of interest to declare. C.V. has received research funding from Reckitt and has provided consultancy or lectures for Nestle Nutrition Institute, Danone, Reckitt, Abbott, Else Nutrition, Ausnutria, and HAL Allergy. F.R.-W. is the lead inventor of EP2894478 (applicant Biomedical International R+D, Austria), has served as an investigator, and received personal fees from Biomedical Int R&D, Allergy Therapeutics, Bencard Allergy, and Lofarma. F.R.-W. is the founder of ViaLym.

References

  1. Valentino, D.; Sriram, K.; Shankar, P. Update on micronutrients in bariatric surgery. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 635–641. [Google Scholar] [CrossRef] [PubMed]
  2. Fakhimahmadi, A.; Hasanaj, I.; Hofstetter, G.; Pogner, C.; Gorfer, M.; Wiederstein, M.; Szepannek, N.; Bianchini, R.; Dvorak, Z.; Jensen, S.A.; et al. Nutritional Provision of Iron Complexes by the Major Allergen Alt a 1 to Human Immune Cells Decreases Its Presentation. Int. J. Mol. Sci. 2023, 24, 11934. [Google Scholar] [CrossRef]
  3. Crook, J.; Horgas, A.; Yoon, S.J.; Grundmann, O.; Johnson-Mallard, V. Insufficient Vitamin C Levels among Adults in the United States: Results from the NHANES Surveys, 2003–2006. Nutrients 2021, 13, 3910. [Google Scholar] [CrossRef] [PubMed]
  4. Agarwal, S.; Reider, C.; Brooks, J.R.; Fulgoni, V.L., 3rd. Comparison of prevalence of inadequate nutrient intake based on body weight status of adults in the United States: An analysis of NHANES 2001-2008. J. Am. Coll. Nutr. 2015, 34, 126–134. [Google Scholar] [CrossRef]
  5. Higgins, K.A.; Bi, X.; Davis, B.J.; Barraj, L.M.; Scrafford, C.G.; Murphy, M.M. Adequacy of total usual micronutrient intakes among pregnant women in the United States by level of dairy consumption, NHANES 2003–2016. Nutr. Health 2022, 28, 621–631. [Google Scholar] [CrossRef] [PubMed]
  6. Barker, L.A.; Gout, B.S.; Crowe, T.C. Hospital malnutrition: Prevalence, identification and impact on patients and the healthcare system. Int. J. Environ. Res. Public Health 2011, 8, 514–527. [Google Scholar] [CrossRef] [PubMed]
  7. Bellanti, F.; Lo Buglio, A.; Quiete, S.; Vendemiale, G. Malnutrition in Hospitalized Old Patients: Screening and Diagnosis, Clinical Outcomes, and Management. Nutrients 2022, 14, 910. [Google Scholar] [CrossRef] [PubMed]
  8. La Torre, M.; Ziparo, V.; Nigri, G.; Cavallini, M.; Balducci, G.; Ramacciato, G. Malnutrition and pancreatic surgery: Prevalence and outcomes. J. Surg. Oncol. 2013, 107, 702–708. [Google Scholar] [CrossRef] [PubMed]
  9. Schreinemachers, P.; Shrestha, R.M.; Gole, B.; Bhattarai, D.R.; Ghimire, P.L.; Subedi, B.P.; Bruck, T.; Baliki, G.; Gautam, I.P.; Blake, C.E. Drivers of Food Choice among Children and Caregivers in Post-earthquake Nepal. Ecol. Food Nutr. 2021, 60, 826–846. [Google Scholar] [CrossRef]
  10. Camaschella, C. Iron deficiency. Blood 2019, 133, 30–39. [Google Scholar] [CrossRef]
  11. Roth-Walter, F.; Berni Canani, R.; O’Mahony, L.; Peroni, D.; Sokolowska, M.; Vassilopoulou, E.; Venter, C. Nutrition in chronic inflammatory conditions: Bypassing the mucosal block for micronutrients. Allergy 2024, 79, 353–383. [Google Scholar] [CrossRef]
  12. Ejaz, S.; Nasim, F.U.; Ashraf, M.; Ahmad, S. Serum Proteome Profiling to Identify Proteins Promoting Pathogenesis of Non-atopic Asthma. Protein Pept. Lett. 2018, 25, 933–942. [Google Scholar] [CrossRef] [PubMed]
  13. Cho, M.E.; Hansen, J.L.; Sauer, B.C.; Cheung, A.K.; Agarwal, A.; Greene, T. Heart Failure Hospitalization Risk associated with Iron Status in Veterans with CKD. Clin. J. Am. Soc. Nephrol. 2021, 16, 522–531. [Google Scholar] [CrossRef] [PubMed]
  14. Guedes, M.; Muenz, D.; Zee, J.; Lopes, M.B.; Waechter, S.; Stengel, B.; Massy, Z.A.; Speyer, E.; Ayav, C.; Finkelstein, F.; et al. Serum biomarkers of iron stores are associated with worse physical health-related quality of life in nondialysis-dependent chronic kidney disease patients with or without anemia. Nephrol. Dial. Transplant. 2021, 36, 1694–1703. [Google Scholar] [CrossRef]
  15. Kalra, P.R.; Cleland, J.G.F.; Petrie, M.C.; Thomson, E.A.; Kalra, P.A.; Squire, I.B.; Ahmed, F.Z.; Al-Mohammad, A.; Cowburn, P.J.; Foley, P.W.X.; et al. Intravenous ferric derisomaltose in patients with heart failure and iron deficiency in the UK (IRONMAN): An investigator-initiated, prospective, randomised, open-label, blinded-endpoint trial. Lancet 2022, 400, 2199–2209. [Google Scholar] [CrossRef] [PubMed]
  16. Singh, A.K.; Cizman, B.; Carroll, K.; McMurray, J.J.V.; Perkovic, V.; Jha, V.; Johansen, K.L.; Lopes, R.D.; Macdougall, I.C.; Obrador, G.T.; et al. Efficacy and Safety of Daprodustat for Treatment of Anemia of Chronic Kidney Disease in Incident Dialysis Patients: A Randomized Clinical Trial. JAMA Intern. Med. 2022, 182, 592–602. [Google Scholar] [CrossRef]
  17. Ambrosy, A.P.; von Haehling, S.; Kalra, P.R.; Court, E.; Bhandari, S.; McDonagh, T.; Cleland, J.G.F. Safety and Efficacy of Intravenous Ferric Derisomaltose Compared to Iron Sucrose for Iron Deficiency Anemia in Patients with Chronic Kidney Disease With and Without Heart Failure. Am. J. Cardiol. 2021, 152, 138–145. [Google Scholar] [CrossRef]
  18. Pisani, A.; Riccio, E.; Sabbatini, M.; Andreucci, M.; Del Rio, A.; Visciano, B. Effect of oral liposomal iron versus intravenous iron for treatment of iron deficiency anaemia in CKD patients: A randomized trial. Nephrol. Dial. Transplant. 2015, 30, 645–652. [Google Scholar] [CrossRef] [PubMed]
  19. Chen, W.S.; Liu, C.Y.; Lee, H.T.; Tsai, K.; Lin, Y.C.; Tarng, D.C.; Ho, C.H.; Lin, H.Y. Effects of intravenous iron saccharate on improving severe anemia in rheumatoid arthritis patients. Clin. Rheumatol. 2012, 31, 469–477. [Google Scholar] [CrossRef]
  20. Luo, J.; Wang, X.; Yuan, L.; Guo, L. Iron Deficiency, a Risk Factor of Thyroid Disorders in Reproductive-Age and Pregnant Women: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2021, 12, 629831. [Google Scholar] [CrossRef]
  21. Kisaoglu, H.; Baba, O.; Kalyoncu, M. Hematologic manifestations of juvenile systemic lupus erythematosus: An emphasis on anemia. Lupus 2022, 31, 730–736. [Google Scholar] [CrossRef] [PubMed]
  22. Mittal, S.; Agarwal, P.; Wakhlu, A.; Kumar, A.; Mehrotra, R.; Mittal, S. Anaemia in Systemic Lupus Erythematosus Based on Iron Studies and Soluble Transferrin Receptor Levels. J. Clin. Diagn. Res. 2016, 10, EC08–EC11. [Google Scholar] [CrossRef] [PubMed]
  23. Chang, R.; Chu, K.A.; Lin, M.C.; Chu, Y.H.; Hung, Y.M.; Wei, J.C. Newly diagnosed iron deficiency anemia and subsequent autoimmune disease: A matched cohort study in Taiwan. Curr. Med. Res. Opin. 2020, 36, 985–992. [Google Scholar] [CrossRef] [PubMed]
  24. Maas, L.A.; Krishna, M.; Parian, A.M. Ironing It All Out: A Comprehensive Review of Iron Deficiency Anemia in Inflammatory Bowel Disease Patients. Dig. Dis. Sci. 2022, 68, 357–369. [Google Scholar] [CrossRef] [PubMed]
  25. Gordon, M.; Sinopoulou, V.; Iheozor-Ejiofor, Z.; Iqbal, T.; Allen, P.; Hoque, S.; Engineer, J.; Akobeng, A.K. Interventions for treating iron deficiency anaemia in inflammatory bowel disease. Cochrane Database Syst. Rev. 2021, 1, CD013529. [Google Scholar] [CrossRef] [PubMed]
  26. Wyart, E.; Hsu, M.Y.; Sartori, R.; Mina, E.; Rausch, V.; Pierobon, E.S.; Mezzanotte, M.; Pezzini, C.; Bindels, L.B.; Lauria, A.; et al. Iron supplementation is sufficient to rescue skeletal muscle mass and function in cancer cachexia. EMBO Rep. 2022, 23, e53746. [Google Scholar] [CrossRef]
  27. Ludwig, H.; Evstatiev, R.; Kornek, G.; Aapro, M.; Bauernhofer, T.; Buxhofer-Ausch, V.; Fridrik, M.; Geissler, D.; Geissler, K.; Gisslinger, H.; et al. Iron metabolism and iron supplementation in cancer patients. Wien. Klin. Wochenschr. 2015, 127, 907–919. [Google Scholar] [CrossRef] [PubMed]
  28. Escobar Alvarez, Y.; de Las Penas Bataller, R.; Perez Altozano, J.; Ros Martinez, S.; Sabino Alvarez, A.; Blasco Cordellat, A.; Brozos Vazquez, E.; Corral Jaime, J.; Garcia Escobar, I.; Beato Zambrano, C. SEOM clinical guidelines for anaemia treatment in cancer patients (2020). Clin. Transl. Oncol. 2021, 23, 931–939. [Google Scholar] [CrossRef] [PubMed]
  29. Meyer, R.; Wright, K.; Vieira, M.C.; Chong, K.W.; Chatchatee, P.; Vlieg-Boerstra, B.J.; Groetch, M.; Dominguez-Ortega, G.; Heath, S.; Lang, A.; et al. International survey on growth indices and impacting factors in children with food allergies. J. Hum. Nutr. Diet. 2019, 32, 175–184. [Google Scholar] [CrossRef]
  30. Bartosik, T.; Jensen, S.A.; Afify, S.M.; Bianchini, R.; Hufnagl, K.; Hofstetter, G.; Berger, M.; Bastl, M.; Berger, U.; Rivelles, E.; et al. Ameliorating Atopy by Compensating Micronutritional Deficiencies in Immune Cells: A Double-Blind Placebo-Controlled Pilot Study. J. Allergy Clin. Immunol. Pract. 2022, 10, 1889–1902. [Google Scholar] [CrossRef]
  31. Petje, L.M.; Jensen, S.A.; Szikora, S.; Sulzbacher, M.; Bartosik, T.; Pjevac, P.; Hausmann, B.; Hufnagl, K.; Untersmayr, E.; Fischer, L.; et al. Functional iron-deficiency in women with allergic rhinitis is associated with symptoms after nasal provocation and lack of iron-sequestering microbes. Allergy 2021, 76, 2882–2886. [Google Scholar] [CrossRef] [PubMed]
  32. Fukuda, Y.; Kameda, M. Assessment of the Correlation Between Mother and Child Body Mass Index and Mother and Child Diet in Children With Food Allergies. J. Clin. Med. Res. 2019, 11, 703–710. [Google Scholar] [CrossRef] [PubMed]
  33. Jakobsen, M.D.; Braaten, T.; Obstfelder, A.; Abelsen, B. Self-Reported Food Hypersensitivity: Prevalence, Characteristics, and Comorbidities in the Norwegian Women and Cancer Study. PLoS ONE 2016, 11, e0168653. [Google Scholar] [CrossRef]
  34. Mohn, E.S.; Johnson, E.J. Nutrient absorption in the human gastrointestinal tract. In Nanotechnology and Functional Foods; Wiley: Hoboken, NJ, USA, 2015; pp. 3–34. [Google Scholar]
  35. Basile, E.; Launico, M.; Sheer, A. Physiology, Nutrient Absorption. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
  36. Guillen, B.; Atherton, N.S. Short Bowel Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
  37. Steenbergen, J.M.; Lash, J.M.; Bohlen, H.G. Role of a lymphatic system in glucose absorption and the accompanying microvascular hyperemia. Am. J. Physiol. 1994, 267 Pt 1, G529–G535. [Google Scholar] [CrossRef]
  38. Rose, R.C. Intestinal absorption of water-soluble vitamins. Proc. Soc. Exp. Biol. Med. 1996, 212, 191–198. [Google Scholar] [CrossRef] [PubMed]
  39. Kvietys, P.R.; Granger, D.N. Role of intestinal lymphatics in interstitial volume regulation and transmucosal water transport. Ann. N. Y. Acad. Sci. 2010, 1207 (Suppl. S1), E29–E43. [Google Scholar] [CrossRef] [PubMed]
  40. Varsamis, N.; Christou, G.A.; Derdemezis, C.; Tselepis, A.; Kiortsis, D. The Associations of Dietary Vitamin K Intake and Circulating Vitamin 25(OH)D with Serum Lipoprotein Levels: The Vitamin Deficiency Matters. Horm. Metab. Res. 2023, 55, 196–204. [Google Scholar] [CrossRef] [PubMed]
  41. Kohlmeier, M.; Salomon, A.; Saupe, J.; Shearer, M.J. Transport of Vitamin K to Bone in Humans. J. Nutr. 1996, 126, 1192S–1196S. [Google Scholar] [CrossRef] [PubMed]
  42. Afify, S.M.; Pali-Scholl, I.; Hufnagl, K.; Hofstetter, G.; El-Bassuoni, M.A.-R.; Roth-Walter, F.; Jensen-Jarolim, E. Bovine Holo-Beta-Lactoglobulin Cross-Protects Against Pollen Allergies in an Innate Manner in BALB/c Mice: Potential Model for the Farm Effect. Front. Immunol. 2021, 12, 176. [Google Scholar] [CrossRef] [PubMed]
  43. Hufnagl, K.; Afify, S.M.; Braun, N.; Wagner, S.; Wallner, M.; Hauser, M.; Wiederstein, M.; Gadermaier, G.; Wildner, S.; Redegeld, F.A.; et al. Retinoic acid-loading of the major birch pollen allergen Bet v 1 may improve specific allergen immunotherapy: In silico, in vitro and in vivo data in BALB/c mice. Allergy 2020, 75, 2073–2077. [Google Scholar] [CrossRef]
  44. Hufnagl, K.; Ghosh, D.; Wagner, S.; Fiocchi, A.; Dahdah, L.; Bianchini, R.; Braun, N.; Steinborn, R.; Hofer, M.; Blaschitz, M.; et al. Retinoic acid prevents immunogenicity of milk lipocalin Bos d 5 through binding to its immunodominant T-cell epitope. Sci. Rep. 2018, 8, 1598. [Google Scholar] [CrossRef]
  45. Hufnagl, K.; Jensen-Jarolim, E. Vitamin A and D in allergy: From experimental animal models and cellular studies to human disease. Allergo J. Int. 2018, 27, 72–78. [Google Scholar] [CrossRef]
  46. Hufnagl, K.; Jensen-Jarolim, E. Does a carrot a day keep the allergy away? Immunol. Lett. 2019, 206, 54–58. [Google Scholar] [CrossRef]
  47. Hufnagl, K.; Kromp, L.; Bianchini, R.; Afify, S.M.; Wiederstein, M.; Redegeld, F.A.; Zuvalova, I.; Dvorak, Z.; Hofstetter, G.; Roth-Walter, F.; et al. Bet v 1 from birch pollen is a hypoallergen with vitamin D3 in the pocket. Allergy 2021, 76, 3801–3804. [Google Scholar] [CrossRef]
  48. Roth-Walter, F.; Afify, S.M.; Pacios, L.F.; Blokhuis, B.R.; Redegeld, F.; Regner, A.; Petje, L.M.; Fiocchi, A.; Untersmayr, E.; Dvorak, Z.; et al. Cow’s milk protein beta-lactoglobulin confers resilience against allergy by targeting complexed iron into immune cells. J. Allergy Clin. Immunol. 2021, 147, 321–334 e324. [Google Scholar] [CrossRef] [PubMed]
  49. Roth-Walter, F.; Gomez-Casado, C.; Pacios, L.F.; Mothes-Luksch, N.; Roth, G.A.; Singer, J.; Diaz-Perales, A.; Jensen-Jarolim, E. Bet v 1 from Birch Pollen is a Lipocalin-like Protein acting as Allergen only when devoid of Iron by promoting Th2 lymphocytes. J. Biol. Chem. 2014, 289, 17416–17421. [Google Scholar] [CrossRef]
  50. Roth-Walter, F.; Pacios, L.F.; Gomez-Casado, C.; Hofstetter, G.; Roth, G.A.; Singer, J.; Diaz-Perales, A.; Jensen-Jarolim, E. The major cow milk allergen Bos d 5 manipulates T-helper cells depending on its load with siderophore-bound iron. PLoS ONE 2014, 9, e104803. [Google Scholar] [CrossRef]
  51. Ghatak, S.K.; Majumdar, D.; Singha, A.; Sen, S.; Das, D.; Chakrabarti, A.; Mukhopadhyay, C.; Sen, K. Peanut protein sensitivity towards trace iron: A novel mode to ebb allergic response. Food Chem. 2015, 176, 308–313. [Google Scholar] [CrossRef]
  52. Zolfaghari Emameh, R.; Masoori, L.; Nosrati, H.; Falak, R.; Parkkila, S. Identification and characterization of the first fish parvalbumin-like protein data from a pathogenic fungal species, Trichophyton violaceum. Data Brief. 2020, 33, 106420. [Google Scholar] [CrossRef] [PubMed]
  53. Cantillo, J.F.; Puerta, L.; Lafosse-Marin, S.; Subiza, J.L.; Caraballo, L.; Fernandez-Caldas, E. Allergens involved in the cross-reactivity of Aedes aegypti with other arthropods. Ann. Allergy Asthma Immunol. 2017, 118, 710–718. [Google Scholar] [CrossRef] [PubMed]
  54. Andrews, P.; Kitchen, B.J.; Winzor, D.J. Use of affinity chromatography for the quantitative study of acceptor-ligand interactions: The lactose synthetase system. Biochem. J. 1973, 135, 897–900. [Google Scholar] [CrossRef] [PubMed]
  55. Kronman, M.J.; Bratcher, S.C. Conformational changes induced by zinc and terbium binding to native bovine alpha-lactalbumin and calcium-free alpha-lactalbumin. J. Biol. Chem. 1984, 259, 10887–10895. [Google Scholar] [CrossRef] [PubMed]
  56. Regner, A.; Szepannek, N.; Wiederstein, M.; Fakhimahmadi, A.; Paciosis, L.F.; Blokhuis, B.R.; Redegeld, F.A.; Hofstetter, G.; Dvorak, Z.; Jensen-Jarolim, E.; et al. Binding to Iron Quercetin Complexes Increases the Antioxidant Capacity of the Major Birch Pollen Allergen Bet v 1 and Reduces Its Allergenicity. Antioxidants 2022, 12. [Google Scholar] [CrossRef] [PubMed]
  57. Yang, H.; Gao, Y.; Sun, S.; Qu, Y.; Ji, S.; Wu, R.; Wu, J. Formation, characterization, and antigenicity of lecithin-beta-conglycinin complexes. Food Chem. 2023, 407, 135178. [Google Scholar] [CrossRef] [PubMed]
  58. Bublin, M.; Eiwegger, T.; Breiteneder, H. Do lipids influence the allergic sensitization process? J. Allergy Clin. Immunol. 2014, 134, 521–529. [Google Scholar] [CrossRef] [PubMed]
  59. Finkina, E.I.; Melnikova, D.N.; Bogdanov, I.V.; Matveevskaya, N.S.; Ignatova, A.A.; Toropygin, I.Y.; Ovchinnikova, T.V. Impact of Different Lipid Ligands on the Stability and IgE-Binding Capacity of the Lentil Allergen Len c 3. Biomolecules 2020, 10, 1668. [Google Scholar] [CrossRef]
  60. Rubas, W.; Grass, G.M. Gastrointestinal lymphatic absorption of peptides and proteins. Adv. Drug Deliv. Rev. 1991, 7, 15–69. [Google Scholar] [CrossRef]
  61. Roth-Walter, F.; Berin, M.C.; Arnaboldi, P.; Escalante, C.R.; Dahan, S.; Rauch, J.; Jensen-Jarolim, E.; Mayer, L. Pasteurization of milk proteins promotes allergic sensitization by enhancing uptake through Peyer’s patches. Allergy 2008, 63, 882–890. [Google Scholar] [CrossRef]
  62. Kilshaw, P.J.; Cant, A.J. The passage of maternal dietary proteins into human breast milk. Int. Arch. Allergy Appl. Immunol. 1984, 75, 8–15. [Google Scholar] [CrossRef]
  63. Wang, Y.; Ghoshal, S.; Ward, M.; de Villiers, W.; Woodward, J.; Eckhardt, E. Chylomicrons promote intestinal absorption and systemic dissemination of dietary antigen (ovalbumin) in mice. PLoS ONE 2009, 4, e8442. [Google Scholar] [CrossRef]
  64. Cohn, J.S.; Kamili, A.; Wat, E.; Chung, R.W.; Tandy, S. Reduction in intestinal cholesterol absorption by various food components: Mechanisms and implications. Atheroscler. Suppl. 2010, 11, 45–48. [Google Scholar] [CrossRef] [PubMed]
  65. Li, J.; Wang, Y.; Tang, L.; de Villiers, W.J.; Cohen, D.; Woodward, J.; Finkelman, F.D.; Eckhardt, E.R. Dietary medium-chain triglycerides promote oral allergic sensitization and orally induced anaphylaxis to peanut protein in mice. J. Allergy Clin. Immunol. 2013, 131, 442–450. [Google Scholar] [CrossRef] [PubMed]
  66. Roth-Walter, F. Iron-Deficiency in Atopic Diseases: Innate Immune Priming by Allergens and Siderophores. Front. Allergy 2022, 3, 859922. [Google Scholar] [CrossRef] [PubMed]
  67. Kalach, N.; Benhamou, P.H.; Campeotto, F.; Dupont, C. Anemia impairs small intestinal absorption measured by intestinal permeability in children. Eur. Ann. Allergy Clin. Immunol. 2007, 39, 20–22. [Google Scholar] [PubMed]
  68. Cousins, R.J. Toward a molecular understanding of zinc metabolism. Clin. Physiol. Biochem. 1986, 4, 20–30. [Google Scholar] [PubMed]
  69. Hennigar, S.R.; McClung, J.P. Hepcidin Attenuates Zinc Efflux in Caco-2 Cells. J. Nutr. 2016, 146, 2167–2173. [Google Scholar] [CrossRef] [PubMed]
  70. Halsted, C.H.; Reisenauer, A.M.; Shane, B.; Tamura, T. Availability of monoglutamyl and polyglutamyl folates in normal subjects and in patients with coeliac sprue. Gut 1978, 19, 886–891. [Google Scholar] [CrossRef]
  71. Sobczynska-Malefora, A.; Delvin, E.; McCaddon, A.; Ahmadi, K.R.; Harrington, D.J. Vitamin B(12) status in health and disease: A critical review. Diagnosis of deficiency and insufficiency-clinical and laboratory pitfalls. Crit. Rev. Clin. Lab. Sci. 2021, 58, 399–429. [Google Scholar] [CrossRef] [PubMed]
  72. Kather, S.; Kacza, J.; Pfannkuche, H.; Bottcher, D.; Sung, C.H.; Steiner, J.M.; Gabel, G.; Dengler, F.; Heilmann, R.M. Expression of the cobalamin transporters cubam and MRP1 in the canine ileum-Upregulation in chronic inflammatory enteropathy. PLoS ONE 2024, 19, e0296024. [Google Scholar] [CrossRef]
  73. van den Berg, H.; van der Gaag, M.; Hendriks, H. Influence of lifestyle on vitamin bioavailability. Int. J. Vitam. Nutr. Res. 2002, 72, 53–59. [Google Scholar] [CrossRef]
  74. Weiss, D.; Brunk, D.K.; Goodman, D.A. Scottsdale Magnesium Study: Absorption, Cellular Uptake, and Clinical Effectiveness of a Timed-Release Magnesium Supplement in a Standard Adult Clinical Population. J. Am. Coll. Nutr. 2018, 37, 316–327. [Google Scholar] [CrossRef] [PubMed]
  75. Turnlund, J.R.; Keyes, W.R.; Hudson, C.A.; Betschart, A.A.; Kretsch, M.J.; Sauberlich, H.E. A stable-isotope study of zinc, copper, and iron absorption and retention by young women fed vitamin B-6-deficient diets. Am. J. Clin. Nutr. 1991, 54, 1059–1064. [Google Scholar] [CrossRef] [PubMed]
  76. Rubin, L.P.; Ross, A.C.; Stephensen, C.B.; Bohn, T.; Tanumihardjo, S.A. Metabolic Effects of Inflammation on Vitamin A and Carotenoids in Humans and Animal Models. Adv. Nutr. 2017, 8, 197–212. [Google Scholar] [CrossRef] [PubMed]
  77. Chiang, J.Y. Bile acid metabolism and signaling. Compr. Physiol. 2013, 3, 1191–1212. [Google Scholar] [CrossRef] [PubMed]
  78. Docherty, K.F.; Welsh, P.; Verma, S.; De Boer, R.A.; O’Meara, E.; Bengtsson, O.; Kober, L.; Kosiborod, M.N.; Hammarstedt, A.; Langkilde, A.M.; et al. Iron Deficiency in Heart Failure and Effect of Dapagliflozin: Findings From DAPA-HF. Circulation 2022, 146, 980–994. [Google Scholar] [CrossRef]
  79. O’Brien, M.E.; Kupka, R.; Msamanga, G.I.; Saathoff, E.; Hunter, D.J.; Fawzi, W.W. Anemia is an independent predictor of mortality and immunologic progression of disease among women with HIV in Tanzania. J. Acquir. Immune Defic. Syndr. 2005, 40, 219–225. [Google Scholar] [CrossRef]
  80. Pries-Heje, M.M.; Hasselbalch, R.B.; Wiingaard, C.; Fosbol, E.L.; Glenthoj, A.B.; Ihlemann, N.; Gill, S.U.A.; Christiansen, U.; Elming, H.; Bruun, N.E.; et al. Severity of anaemia and association with all-cause mortality in patients with medically managed left-sided endocarditis. Heart 2022, 108, 882–888. [Google Scholar] [CrossRef]
  81. Baye, K.; Laillou, A.; Seyoum, Y.; Zvandaziva, C.; Chimanya, K.; Nyawo, M. Estimates of child mortality reductions attributed to vitamin A supplementation in sub-Saharan Africa: Scale up, scale back, or refocus? Am. J. Clin. Nutr. 2022, 116, 426–434. [Google Scholar] [CrossRef]
  82. Basu, S.; Khanna, P.; Srivastava, R.; Kumar, A. Oral vitamin A supplementation in very low birth weight neonates: A randomized controlled trial. Eur. J. Pediatr. 2019, 178, 1255–1265. [Google Scholar] [CrossRef]
  83. Glasziou, P.P.; Mackerras, D.E. Vitamin A supplementation in infectious diseases: A meta-analysis. BMJ 1993, 306, 366–370. [Google Scholar] [CrossRef]
  84. Wang, W.; Gao, J.; Li, N.; Han, S.; Wu, L.; Zhang, Y.; Han, T.; Shan, R.; Li, Y.; Sun, C.; et al. Dietary iron and vitamins in association with mortality. Clin. Nutr. 2021, 40, 2401–2409. [Google Scholar] [CrossRef] [PubMed]
  85. Sun, Y.; Zhang, H.; Qi, G.; Tian, W. Nutrient deficiency patterns and all-cause and cardiovascular mortality in older adults with hypertension: A latent class analysis. BMC Public Health 2024, 24, 1551. [Google Scholar] [CrossRef] [PubMed]
  86. Beisel, W.R. History of nutritional immunology: Introduction and overview. J. Nutr. 1992, 122 (Suppl. S3), 591–596. [Google Scholar] [CrossRef] [PubMed]
  87. Simon, J. A Physiological Essay on the Thymus Gland. Br. Foreign Med. Rev. 1845, 20, 159–167. [Google Scholar]
  88. Savino, W.; Duraes, J.; Maldonado-Galdeano, C.; Perdigon, G.; Mendes-da-Cruz, D.A.; Cuervo, P. Thymus, undernutrition, and infection: Approaching cellular and molecular interactions. Front. Nutr. 2022, 9, 948488. [Google Scholar] [CrossRef] [PubMed]
  89. Lyra, J.S.; Madi, K.; Maeda, C.T.; Savino, W. Thymic extracellular matrix in human malnutrition. J. Pathol. 1993, 171, 231–236. [Google Scholar] [CrossRef] [PubMed]
  90. Rytter, M.J.; Kolte, L.; Briend, A.; Friis, H.; Christensen, V.B. The immune system in children with malnutrition—A systematic review. PLoS ONE 2014, 9, e105017. [Google Scholar] [CrossRef]
  91. Nabukeera-Barungi, N.; Lanyero, B.; Grenov, B.; Friis, H.; Namusoke, H.; Mupere, E.; Michaelsen, K.F.; Molgaard, C.; Wiese, M.; Nielsen, D.S.; et al. Thymus size and its correlates among children admitted with severe acute malnutrition: A cross-sectional study in Uganda. BMC Pediatr. 2021, 21, 1. [Google Scholar] [CrossRef] [PubMed]
  92. Lunin, S.M.; Khrenov, M.O.; Novoselova, T.V.; Parfenyuk, S.B.; Novoselova, E.G. Thymulin, a thymic peptide, prevents the overproduction of pro-inflammatory cytokines and heat shock protein Hsp70 in inflammation-bearing mice. Immunol. Investig. 2008, 37, 858–870. [Google Scholar] [CrossRef]
  93. Novoselova, E.G.; Lunin, S.M.; Glushkova, O.V.; Khrenov, M.O.; Parfenyuk, S.B.; Zakharova, N.M.; Fesenko, E.E. Thymulin, free or bound to PBCA nanoparticles, protects mice against chronic septic inflammation. PLoS ONE 2018, 13, e0197601. [Google Scholar] [CrossRef]
  94. Chandra, R.K. Protein-energy malnutrition and immunological responses. J. Nutr. 1992, 122, 597–600. [Google Scholar] [CrossRef] [PubMed]
  95. Pallaro, A.N.; Roux, M.E.; Slobodianik, N.H. Nutrition disorders and immunologic parameters: Study of the thymus in growing rats. Nutrition 2001, 17, 724–728. [Google Scholar] [CrossRef] [PubMed]
  96. Mittal, A.; Woodward, B.; Chandra, R.K. Involution of thymic epithelium and low serum thymulin bioactivity in weanling mice subjected to severe food intake restriction or severe protein deficiency. Exp. Mol. Pathol. 1988, 48, 226–235. [Google Scholar] [CrossRef] [PubMed]
  97. de Castro, E.S.; Boyd, E.M. Organ weights and water content of rats fed protein-deficient diets. Bull. World Health Organ. 1968, 38, 971–977. [Google Scholar] [PubMed]
  98. Kuvibidila, S.; Warrier, R.P. Differential effects of iron deficiency and underfeeding on serum levels of interleukin-10, interleukin-12p40, and interferon-gamma in mice. Cytokine 2004, 26, 73–81. [Google Scholar] [CrossRef] [PubMed]
  99. Kuvibidila, S.R.; Porretta, C.; Surendra Baliga, B.; Leiva, L.E. Reduced thymocyte proliferation but not increased apoptosis as a possible cause of thymus atrophy in iron-deficient mice. Br. J. Nutr. 2001, 86, 157–162. [Google Scholar] [CrossRef]
  100. Fraker, P.J.; Jardieu, P.; Cook, J. Zinc deficiency and immune function. Arch. Dermatol. 1987, 123, 1699–1701. [Google Scholar] [CrossRef]
  101. Petrault, I.; Zimowska, W.; Mathieu, J.; Bayle, D.; Rock, E.; Favier, A.; Rayssiguier, Y.; Mazur, A. Changes in gene expression in rat thymocytes identified by cDNA array support the occurrence of oxidative stress in early magnesium deficiency. Biochim. Biophys. Acta 2002, 1586, 92–98. [Google Scholar] [CrossRef] [PubMed]
  102. Malpuech-Brugere, C.; Nowacki, W.; Gueux, E.; Kuryszko, J.; Rock, E.; Rayssiguier, Y.; Mazur, A. Accelerated thymus involution in magnesium-deficient rats is related to enhanced apoptosis and sensitivity to oxidative stress. Br. J. Nutr. 1999, 81, 405–411. [Google Scholar] [CrossRef]
  103. Kubena, K.S.; Cohill, D.T.; McMurray, D.N. Effect of varying levels of magnesium during gestation and lactation on humoral immune response and tissue minerals in rats. Ann. Nutr. Metab. 1989, 33, 7–14. [Google Scholar] [CrossRef]
  104. Uchio, R.; Hirose, Y.; Murosaki, S.; Yamamoto, Y.; Ishigami, A. High dietary intake of vitamin C suppresses age-related thymic atrophy and contributes to the maintenance of immune cells in vitamin C-deficient senescence marker protein-30 knockout mice. Br. J. Nutr. 2015, 113, 603–609. [Google Scholar] [CrossRef] [PubMed]
  105. Stoerk, H.C. Effects of calcium deficiency and pyridoxin deficiency on thymic atrophy (accidental involution). Proc. Soc. Exp. Biol. Med. 1946, 62, 90–96. [Google Scholar] [CrossRef] [PubMed]
  106. Razali, N.; Hohjoh, H.; Inazumi, T.; Maharjan, B.D.; Nakagawa, K.; Konishi, M.; Sugimoto, Y.; Hasegawa, H. Induced Prostanoid Synthesis Regulates the Balance between Th1- and Th2-Producing Inflammatory Cytokines in the Thymus of Diet-Restricted Mice. Biol. Pharm. Bull. 2020, 43, 649–662. [Google Scholar] [CrossRef] [PubMed]
  107. Skeie, E.; Tangvik, R.J.; Nymo, L.S.; Harthug, S.; Lassen, K.; Viste, A. Weight loss and BMI criteria in GLIM’s definition of malnutrition is associated with postoperative complications following abdominal resections–Results from a National Quality Registry. Clin. Nutr. 2020, 39, 1593–1599. [Google Scholar] [CrossRef] [PubMed]
  108. Liu, H.; Zhou, L.; Wang, H.; Wang, X.; Qu, G.; Cai, J.; Zhang, H. Malnutrition is associated with hyperinflammation and immunosuppression in COVID-19 patients: A prospective observational study. Nutr. Clin. Pract. 2021, 36, 863–871. [Google Scholar] [CrossRef]
  109. Pan, Y.P.; Kuo, H.C.; Lin, J.Y.; Chou, W.C.; Chang, P.H.; Ling, H.H.; Yeh, K.Y. Serum Cytokines Correlate with Pretreatment Body Mass Index-adjusted Body Weight Loss Grading and Cancer Progression in Patients with Stage III Esophageal Squamous Cell Carcinoma Undergoing Neoadjuvant Chemoradiotherapy Followed by Surgery. Nutr. Cancer 2024, 76, 486–498. [Google Scholar] [CrossRef] [PubMed]
  110. Takele, Y.; Adem, E.; Getahun, M.; Tajebe, F.; Kiflie, A.; Hailu, A.; Raynes, J.; Mengesha, B.; Ayele, T.A.; Shkedy, Z.; et al. Malnutrition in Healthy Individuals Results in Increased Mixed Cytokine Profiles, Altered Neutrophil Subsets and Function. PLoS ONE 2016, 11, e0157919. [Google Scholar] [CrossRef] [PubMed]
  111. Rodriguez, L.; Gonzalez, C.; Flores, L.; Jimenez-Zamudio, L.; Graniel, J.; Ortiz, R. Assessment by flow cytometry of cytokine production in malnourished children. Clin. Diagn. Lab. Immunol. 2005, 12, 502–507. [Google Scholar] [CrossRef] [PubMed]
  112. Sapartini, G.; Wong, G.W.K.; Indrati, A.R.; Kartasasmita, C.B.; Setiabudiawan, B. Stunting as a Risk Factor for Asthma: The Role of Vitamin D, Leptin, IL-4, and CD23. Medicina 2022, 58, 1236. [Google Scholar] [CrossRef]
  113. Mrimi, E.C.; Palmeirim, M.S.; Minja, E.G.; Long, K.Z.; Keiser, J. Correlation of Cytokines with Parasitic Infections, Undernutrition and Micronutrient Deficiency among Schoolchildren in Rural Tanzania: A Cross-Sectional Study. Nutrients 2023, 15, 1916. [Google Scholar] [CrossRef] [PubMed]
  114. Fock, R.A.; Vinolo, M.A.; Crisma, A.R.; Nakajima, K.; Rogero, M.M.; Borelli, P. Protein-energy malnutrition modifies the production of interleukin-10 in response to lipopolysaccharide (LPS) in a murine model. J. Nutr. Sci. Vitaminol. 2008, 54, 371–377. [Google Scholar] [CrossRef] [PubMed]
  115. Gonzalez-Martinez, H.; Rodriguez, L.; Najera, O.; Cruz, D.; Miliar, A.; Dominguez, A.; Sanchez, F.; Graniel, J.; Gonzalez-Torres, M.C. Expression of cytokine mRNA in lymphocytes of malnourished children. J. Clin. Immunol. 2008, 28, 593–599. [Google Scholar] [CrossRef] [PubMed]
  116. Steevels, T.A.; Hillyer, L.M.; Monk, J.M.; Fisher, M.E.; Woodward, B.D. Effector/memory T cells of the weanling mouse exhibit Type 2 cytokine polarization in vitro and in vivo in the advanced stages of acute energy deficit. J. Nutr. Biochem. 2010, 21, 504–511. [Google Scholar] [CrossRef] [PubMed]
  117. Fraser, D.A.; Thoen, J.; Reseland, J.E.; Forre, O.; Kjeldsen-Kragh, J. Decreased CD4+ lymphocyte activation and increased interleukin-4 production in peripheral blood of rheumatoid arthritis patients after acute starvation. Clin. Rheumatol. 1999, 18, 394–401. [Google Scholar] [CrossRef]
  118. Hagel, I.; Lynch, N.R.; Di Prisco, M.C.; Sanchez, J.; Perez, M. Nutritional status and the IgE response against Ascaris lumbricoides in children from a tropical slum. Trans. R. Soc. Trop. Med. Hyg. 1995, 89, 562–565. [Google Scholar] [CrossRef] [PubMed]
  119. de Melo, J.F.; da Costa, T.B.; da Costa Lima, T.D.; Chaves, M.E.; Vayssade, M.; Nagel, M.D.; de Castro, C.M. Long-term effects of a neonatal low-protein diet in rats on the number of macrophages in culture and the expression/production of fusion proteins. Eur. J. Nutr. 2013, 52, 1475–1482. [Google Scholar] [CrossRef] [PubMed]
  120. Jones, L.A.; Houdijk, J.G.; Sakkas, P.; Bruce, A.D.; Mitchell, M.; Knox, D.P.; Kyriazakis, I. Dissecting the impact of protein versus energy host nutrition on the expression of immunity to gastrointestinal parasites during lactation. Int. J. Parasitol. 2011, 41, 711–719. [Google Scholar] [CrossRef]
  121. Fakhimahmadi, A.; Roth-Walter, F.; Hofstetter, G.; Wiederstein, M.; Jensen, S.A.; Berger, M.; Szepannek, N.; Bianchini, R.; Pali-Scholl, I.; Jensen-Jarolim, E.; et al. Mould allergen Alt a 1 spiked with the micronutrient retinoic acid reduces Th2 response and ameliorates Alternaria allergy in BALB/c mice. Allergy 2024, 79, 2144–2156. [Google Scholar] [CrossRef]
  122. Menezes, J.S.; Mucida, D.S.; Cara, D.C.; Alvarez-Leite, J.I.; Russo, M.; Vaz, N.M.; de Faria, A.M. Stimulation by food proteins plays a critical role in the maturation of the immune system. Int. Immunol. 2003, 15, 447–455. [Google Scholar] [CrossRef]
  123. Pearce, S.C.; Nisley, M.J.; Kerr, B.J.; Sparks, C.; Gabler, N.K. Effects of dietary protein level on intestinal function and inflammation in nursery pigs. J. Anim. Sci. 2024, 102, skae077. [Google Scholar] [CrossRef]
  124. Dewan, P.; Kaur, I.R.; Faridi, M.M.; Agarwal, K.N. Cytokine response to dietary rehabilitation with curd (Indian dahi) & leaf protein concentrate in malnourished children. Indian. J. Med. Res. 2009, 130, 31–36. [Google Scholar] [PubMed]
  125. Wang, L.C.; Chiang, B.L.; Huang, Y.M.; Shen, P.T.; Huang, H.Y.; Lin, B.F. Lower vitamin D levels in the breast milk is associated with atopic dermatitis in early infancy. Pediatr. Allergy Immunol. 2020, 31, 258–264. [Google Scholar] [CrossRef] [PubMed]
  126. Grover, Z.; Ee, L.C. Protein energy malnutrition. Pediatr. Clin. N. Am. 2009, 56, 1055–1068. [Google Scholar] [CrossRef] [PubMed]
  127. Missaoui, K.; Gonzalez-Klein, Z.; Pazos-Castro, D.; Hernandez-Ramirez, G.; Garrido-Arandia, M.; Brini, F.; Diaz-Perales, A.; Tome-Amat, J. Plant non-specific lipid transfer proteins: An overview. Plant Physiol. Biochem. 2022, 171, 115–127. [Google Scholar] [CrossRef]
  128. Shewry, P.R.; Beaudoin, F.; Jenkins, J.; Griffiths-Jones, S.; Mills, E.N. Plant protein families and their relationships to food allergy. Biochem. Soc. Trans. 2002, 30 Pt 6, 906–910. [Google Scholar] [CrossRef]
  129. Vassilopoulou, E.; Zuidmeer, L.; Akkerdaas, J.; Tassios, I.; Rigby, N.R.; Mills, E.N.; van Ree, R.; Saxoni-Papageorgiou, P.; Papadopoulos, N.G. Severe immediate allergic reactions to grapes: Part of a lipid transfer protein-associated clinical syndrome. Int. Arch. Allergy Immunol. 2007, 143, 92–102. [Google Scholar] [CrossRef] [PubMed]
  130. Radauer, C.; Breiteneder, H. Evolutionary biology of plant food allergens. J. Allergy Clin. Immunol. 2007, 120, 518–525. [Google Scholar] [CrossRef] [PubMed]
  131. Afify, S.M.; Regner, A.; Pacios, L.F.; Blokhuis, B.R.; Jensen, S.A.; Redegeld, F.A.; Pali-Scholl, I.; Hufnagl, K.; Bianchini, R.; Guethoff, S.; et al. Micronutritional supplementation with a holoBLG-based FSMP (food for special medical purposes)-lozenge alleviates allergic symptoms in BALB/c mice: Imitating the protective farm effect. Clin. Exp. Allergy 2022, 52, 426–441. [Google Scholar] [CrossRef] [PubMed]
  132. Chruszcz, M.; Chew, F.T.; Hoffmann-Sommergruber, K.; Hurlburt, B.K.; Mueller, G.A.; Pomes, A.; Rouvinen, J.; Villalba, M.; Wohrl, B.M.; Breiteneder, H. Allergens and their associated small molecule ligands-their dual role in sensitization. Allergy 2021, 76, 2367–2382. [Google Scholar] [CrossRef]
  133. Min, J.; Foo, A.C.Y.; Gabel, S.A.; Perera, L.; DeRose, E.F.; Pomes, A.; Pedersen, L.C.; Mueller, G.A. Structural and ligand binding analysis of the pet allergens Can f 1 and Fel d 7. Front. Allergy 2023, 4, 1133412. [Google Scholar] [CrossRef]
  134. Li, M.; Gustchina, A.; Alexandratos, J.; Wlodawer, A.; Wunschmann, S.; Kepley, C.L.; Chapman, M.D.; Pomes, A. Crystal structure of a dimerized cockroach allergen Bla g 2 complexed with a monoclonal antibody. J. Biol. Chem. 2008, 283, 22806–22814. [Google Scholar] [CrossRef] [PubMed]
  135. Stemeseder, T.; Freier, R.; Wildner, S.; Fuchs, J.E.; Briza, P.; Lang, R.; Batanero, E.; Lidholm, J.; Liedl, K.R.; Campo, P.; et al. Crystal structure of Pla l 1 reveals both structural similarity and allergenic divergence within the Ole e 1-like protein family. J. Allergy Clin. Immunol. 2017, 140, 277–280. [Google Scholar] [CrossRef] [PubMed]
  136. Bakan, B.; Hamberg, M.; Larue, V.; Prange, T.; Marion, D.; Lascombe, M.B. The crystal structure of oxylipin-conjugated barley LTP1 highlights the unique plasticity of the hydrophobic cavity of these plant lipid-binding proteins. Biochem. Biophys. Res. Commun. 2009, 390, 780–785. [Google Scholar] [CrossRef] [PubMed]
  137. Mogensen, J.E.; Wimmer, R.; Larsen, J.N.; Spangfort, M.D.; Otzen, D.E. The major birch allergen, Bet v 1, shows affinity for a broad spectrum of physiological ligands. J. Biol. Chem. 2002, 277, 23684–23692. [Google Scholar] [CrossRef]
  138. Han, G.W.; Lee, J.Y.; Song, H.K.; Chang, C.; Min, K.; Moon, J.; Shin, D.H.; Kopka, M.L.; Sawaya, M.R.; Yuan, H.S.; et al. Structural basis of non-specific lipid binding in maize lipid-transfer protein complexes revealed by high-resolution X-ray crystallography1 1Edited by D. Rees. J. Mol. Biol. 2001, 308, 263–278. [Google Scholar] [CrossRef]
  139. Seutter von Loetzen, C.; Hoffmann, T.; Hartl, M.J.; Schweimer, K.; Schwab, W.; Rosch, P.; Hartl-Spiegelhauer, O. Secret of the major birch pollen allergen Bet v 1: Identification of the physiological ligand. Biochem. J. 2014, 457, 379–390. [Google Scholar] [CrossRef]
  140. Jacob, T.; von Loetzen, C.S.; Reuter, A.; Lacher, U.; Schiller, D.; Schobert, R.; Mahler, V.; Vieths, S.; Rosch, P.; Schweimer, K.; et al. Identification of a natural ligand of the hazel allergen Cor a 1. Sci. Rep. 2019, 9, 8714. [Google Scholar] [CrossRef] [PubMed]
  141. Casanal, A.; Zander, U.; Dupeux, F.; Valpuesta, V.; Marquez, J.A. Purification, crystallization and preliminary X-ray analysis of the strawberry allergens Fra a 1E and Fra a 3 in the presence of catechin. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2013, 69 Pt 5, 510–2514. [Google Scholar] [CrossRef]
  142. Vesic, J.; Stambolic, I.; Apostolovic, D.; Milcic, M.; Stanic-Vucinic, D.; Cirkovic Velickovic, T. Complexes of green tea polyphenol, epigalocatechin-3-gallate, and 2S albumins of peanut. Food Chem. 2015, 185, 309–317. [Google Scholar] [CrossRef]
  143. Structure of PR 10 Allergen Ara h 8.01 with Quercetin [Internet]. RCSB PDB. 2022. Available online: https://www.ebi.ac.uk/pdbe/entry/pdb/6aws (accessed on 19 January 2022).
  144. Hurlburt, B.K.; Offermann, L.R.; McBride, J.K.; Majorek, K.A.; Maleki, S.J.; Chruszcz, M. Structure and function of the peanut panallergen Ara h 8. J. Biol. Chem. 2013, 288, 36890–36901. [Google Scholar] [CrossRef]
  145. van Boxtel, E.L.; van den Broek, L.A.; Koppelman, S.J.; Vincken, J.P.; Gruppen, H. Peanut allergen Ara h 1 interacts with proanthocyanidins into higher molecular weight complexes. J. Agric. Food Chem. 2007, 55, 8772–8778. [Google Scholar] [CrossRef] [PubMed]
  146. Geng, Q.; Zhang, Y.; McClements, D.J.; Zhou, W.; Dai, T.; Wu, Z.; Chen, H. Investigation of peanut allergen-procyanidin non-covalent interactions: Impact on protein structure and in vitro allergenicity. Int. J. Biol. Macromol. 2024, 258 Pt 1, 128340. [Google Scholar] [CrossRef]
  147. Tong, P.; Gao, L.; Gao, J.; Li, X.; Wu, Z.; Yang, A.; Chen, H. Iron-induced chelation alleviates the potential allergenicity of ovotransferrin in a BALB/c mouse model. Nutr. Res. 2017, 47, 81–89. [Google Scholar] [CrossRef] [PubMed]
  148. Song, C.Y.; Chen, W.L.; Yang, M.C.; Huang, J.P.; Mao, S.J. Epitope mapping of a monoclonal antibody specific to bovine dry milk: Involvement of residues 66-76 of strand D in thermal denatured beta-lactoglobulin. J. Biol. Chem. 2005, 280, 3574–3582. [Google Scholar] [CrossRef] [PubMed]
  149. Zurera-Cosano, G.; Moreno-Rojas, R.; Amaro-Lopez, M. Effect of processing on contents and relationships of mineral elements of milk. Food Chem. 1994, 51, 75–78. [Google Scholar] [CrossRef]
  150. Roth-Walter, F.; Gomez-Casado, C.; Jensen-Jarolim, E.; Diaz Perales, A.; Pacios, L.F.; Singer, J. Method and Means for Diagnosing and Treating Allergy Using Lipocalin Levels. EP2894478A1, 13 January 2014. [Google Scholar]
  151. Buhot, N.; Douliez, J.P.; Jacquemard, A.; Marion, D.; Tran, V.; Maume, B.F.; Milat, M.L.; Ponchet, M.; Mikes, V.; Kader, J.C.; et al. A lipid transfer protein binds to a receptor involved in the control of plant defence responses. FEBS Lett. 2001, 509, 27–30. [Google Scholar] [CrossRef] [PubMed]
  152. Gabriel, M.F.; Uriel, N.; Teifoori, F.; Postigo, I.; Sunen, E.; Martinez, J. The major Alternaria alternata allergen, Alt a 1: A reliable and specific marker of fungal contamination in citrus fruits. Int. J. Food Microbiol. 2017, 257, 26–30. [Google Scholar] [CrossRef] [PubMed]
  153. Roth-Walter, F.; Schmutz, R.; Mothes-Luksch, N.; Lemell, P.; Zieglmayer, P.; Zieglmayer, R.; Jensen-Jarolim, E. Clinical efficacy of sublingual immunotherapy is associated with restoration of steady-state serum lipocalin 2 after SLIT: A pilot study. World Allergy Organ. J. 2018, 11, 21. [Google Scholar] [CrossRef] [PubMed]
  154. Liu, F.; Zhang, X.; Lu, C.; Zeng, X.; Li, Y.; Fu, D.; Wu, G. Non-specific lipid transfer proteins in plants: Presenting new advances and an integrated functional analysis. J. Exp. Bot. 2015, 66, 5663–5681. [Google Scholar] [CrossRef]
  155. Zehra, A.; Raytekar, N.A.; Meena, M.; Swapnil, P. Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: A review. Curr. Res. Microb. Sci. 2021, 2, 100054. [Google Scholar] [CrossRef]
  156. Liu, G.; Greenshields, D.L.; Sammynaiken, R.; Hirji, R.N.; Selvaraj, G.; Wei, Y. Targeted alterations in iron homeostasis underlie plant defense responses. J. Cell Sci. 2007, 120 Pt 4, 596–605. [Google Scholar] [CrossRef]
  157. Aglas, L.; Soh, W.T.; Kraiem, A.; Wenger, M.; Brandstetter, H.; Ferreira, F. Ligand Binding of PR-10 Proteins with a Particular Focus on the Bet v 1 Allergen Family. Curr. Allergy Asthma Rep. 2020, 20, 25. [Google Scholar] [CrossRef] [PubMed]
  158. Casañal, A.; Zander, U.; Muñoz, C.; Dupeux, F.; Luque, I.; Botella, M.A.; Schwab, W.; Valpuesta, V.; Marquez, J.A. The Strawberry Pathogenesis-related 10 (PR-10) Fra a Proteins Control Flavonoid Biosynthesis by Binding to Metabolic Intermediates. J. Biol. Chem. 2013, 288, 35322–35332. [Google Scholar] [CrossRef]
  159. Montejano-Ramírez, V.; Valencia-Cantero, E. Cross-Talk between Iron Deficiency Response and Defense Establishment in Plants. Int. J. Mol. Sci. 2023, 24, 6236. [Google Scholar] [CrossRef]
  160. Longsaward, R.; Viboonjun, U. Genome-wide identification of rubber tree pathogenesis-related 10 (PR-10) proteins with biological relevance to plant defense. Sci. Rep. 2024, 14, 1072. [Google Scholar] [CrossRef]
  161. Gasser, M.; Alloisio, N.; Fournier, P.; Balmand, S.; Kharrat, O.; Tulumello, J.; Carro, L.; Heddi, A.; Da Silva, P.; Normand, P.; et al. A Nonspecific Lipid Transfer Protein with Potential Functions in Infection and Nodulation. Mol. Plant Microbe Interact. 2022, 35, 1096–1108. [Google Scholar] [CrossRef] [PubMed]
  162. McLaughlin, J.E.; Darwish, N.I.; Garcia-Sanchez, J.; Tyagi, N.; Trick, H.N.; McCormick, S.; Dill-Macky, R.; Tumer, N.E. A Lipid Transfer Protein has Antifungal and Antioxidant Activity and Suppresses Fusarium Head Blight Disease and DON Accumulation in Transgenic Wheat. Phytopathology 2021, 111, 671–683. [Google Scholar] [CrossRef]
  163. Dervisi, I.; Petropoulos, O.; Agalou, A.; Podia, V.; Papandreou, N.; Iconomidou, V.A.; Haralampidis, K.; Roussis, A. The SAH7 Homologue of the Allergen Ole e 1 Interacts with the Putative Stress Sensor SBP1 (Selenium-Binding Protein 1) in Arabidopsis thaliana. Int. J. Mol. Sci. 2023, 24, 3580. [Google Scholar] [CrossRef] [PubMed]
  164. Fernandez-Gonzalez, M.; Gonzalez-Fernandez, E.; Fernandez-Gonzalez, D.; Rodriguez-Rajo, F.J. Secondary Outcomes of the Ole e 1 Proteins Involved in Pollen Tube Development: Impact on Allergies. Front. Plant Sci. 2020, 11, 974. [Google Scholar] [CrossRef]
  165. Jain, A. Seed Storage Protein, Functional Diversity and Association with Allergy. Allergies 2023, 3, 25–38. [Google Scholar] [CrossRef]
  166. Souza, P.F.N. The forgotten 2S albumin proteins: Importance, structure, and biotechnological application in agriculture and human health. Int. J. Biol. Macromol. 2020, 164, 4638–4649. [Google Scholar] [CrossRef] [PubMed]
  167. Gaur, V.; Qureshi, I.A.; Singh, A.; Chanana, V.; Salunke, D.M. Crystal Structure and Functional Insights of Hemopexin Fold Protein from Grass Pea. Plant Physiol. 2010, 152, 1842–1850. [Google Scholar] [CrossRef]
  168. Sharma, S.C.; Kumar, A.; Vashisht, S.; Salunke, D.M. High resolution structural and functional analysis of a hemopexin motif protein from Dolichos. Sci. Rep. 2019, 9, 19828. [Google Scholar] [CrossRef] [PubMed]
  169. Scarafoni, A.; Gualtieri, E.; Barbiroli, A.; Carpen, A.; Negri, A.; Duranti, M. Biochemical and Functional Characterization of an Albumin Protein Belonging to the Hemopexin Superfamily from Lens culinaris Seeds. J. Agric. Food Chem. 2011, 59, 9637–9644. [Google Scholar] [CrossRef] [PubMed]
  170. Phakela, K.; van Biljon, A.; Wentzel, B.; Guzman, C.; Labuschagne, M.T. Gluten protein response to heat and drought stress in durum wheat as measured by reverse phase-High performance liquid chromatography. J. Cereal Sci. 2021, 100, 103267. [Google Scholar] [CrossRef]
  171. Pastorello, E.A.; Farioli, L.; Conti, A.; Pravettoni, V.; Bonomi, S.; Iametti, S.; Fortunato, D.; Scibilia, J.; Bindslev-Jensen, C.; Ballmer-Weber, B.; et al. Wheat IgE-mediated food allergy in European patients: Alpha-amylase inhibitors, lipid transfer proteins and low-molecular-weight glutenins. Allergenic molecules recognized by double-blind, placebo-controlled food challenge. Int. Arch. Allergy Immunol. 2007, 144, 10–22. [Google Scholar] [CrossRef] [PubMed]
  172. El-latif, A.O.A.; Mohieldeen, N.; Salman, A.M.A.; Elpidina, E.N. Isolation and purification of α-amylase inhibitors and their in vitro and in vivo effects on Tribolium castaneum (Herbst) and Callosobruchus maculatus (F.). J. Plant Prot. Res. 2020, 60, 377–387. [Google Scholar] [CrossRef]
  173. Huang, S.W.; Lim, S.K.; Yu, Y.A.; Pan, Y.C.; Lien, W.J.; Mou, C.Y.; Hu, C.J.; Mou, K.Y. Overcoming the nutritional immunity by engineering iron-scavenging bacteria for cancer therapy. Elife 2024, 12, RP90798. [Google Scholar] [CrossRef]
  174. Roth-Walter, F.; Pacios, L.F.; Bianchini, R.; Jensen-Jarolim, E. Linking iron-deficiency with allergy: Role of molecular allergens and the microbiome. Metallomics 2017, 9, 1676–1692. [Google Scholar] [CrossRef] [PubMed]
  175. Bal, W.; Sokołowska, M.; Kurowska, E.; Faller, P. Binding of transition metal ions to albumin: Sites, affinities and rates. Biochim. Biophys. Acta (BBA)-General. Subj. 2013, 1830, 5444–5455. [Google Scholar] [CrossRef]
  176. Nira, N.H.; Hoque, M.R.; Khan, S.R.; Ferdausee, M.; Momo, F.R. Status of C-reactive protein, Serum Albumin and Serum Zinc in Hospital Admitted Patients with Chronic Kidney Disease. Mymensingh Med. J. 2024, 33, 1–8. [Google Scholar] [PubMed]
  177. Gremese, E.; Bruno, D.; Varriano, V.; Perniola, S.; Petricca, L.; Ferraccioli, G. Serum Albumin Levels: A Biomarker to Be Repurposed in Different Disease Settings in Clinical Practice. J. Clin. Med. 2023, 12, 6017. [Google Scholar] [CrossRef] [PubMed]
  178. Permyakov, E.A.; Uversky, V.N. What Is Parvalbumin for? Biomolecules 2022, 12, 656. [Google Scholar] [CrossRef] [PubMed]
  179. Permyakov, E.A.; Kreimer, D.I.; Kalinichenko, L.P.; Orlova, A.A.; Shnyrov, V.L. Interactions of parvalbumins with model phospholipid vesicles. Cell Calcium. 1989, 10, 71–79. [Google Scholar] [CrossRef] [PubMed]
  180. Ehsan, M.; Haseeb, M.; Hu, R.; Ali, H.; Memon, M.A.; Yan, R.; Xu, L.; Song, X.; Zhu, X.; Li, X. Tropomyosin: An Excretory/Secretory Protein from Haemonchus contortus Mediates the Immuno-Suppressive Potential of Goat Peripheral Blood Mononuclear Cells In Vitro. Vaccines 2020, 8, 109. [Google Scholar] [CrossRef]
  181. Gateva, G.; Kremneva, E.; Reindl, T.; Kotila, T.; Kogan, K.; Gressin, L.; Gunning, P.W.; Manstein, D.J.; Michelot, A.; Lappalainen, P. Tropomyosin Isoforms Specify Functionally Distinct Actin Filament Populations In Vitro. Curr. Biol. 2017, 27, 705–713. [Google Scholar] [CrossRef] [PubMed]
  182. Incorvaia, C.; Rapetti, A.; Aliani, M.; Castagneto, C.; Corso, N.; Landi, M.; Lietti, D.; Murante, N.; Muratore, L.; Russello, M.; et al. Food allergy as defined by component resolved diagnosis. Recent Pat. Inflamm. Allergy Drug Discov. 2014, 8, 59–73. [Google Scholar] [CrossRef]
  183. Uhlen, M.; Karlsson, M.J.; Hober, A.; Svensson, A.S.; Scheffel, J.; Kotol, D.; Zhong, W.; Tebani, A.; Strandberg, L.; Edfors, F.; et al. The human secretome. Sci. Signal 2019, 12, eaaz0274. [Google Scholar] [CrossRef]
  184. SCGB1A1 [Internet]. The Human Protein Atlas. Available online: https://www.proteinatlas.org/ENSG00000149021-SCGB1A1 (accessed on 6 July 2024).
  185. Qiu, Y.; Yang, X.; Wang, L.; Gao, K.; Jiang, Z. L-Arginine Inhibited Inflammatory Response and Oxidative Stress Induced by Lipopolysaccharide via Arginase-1 Signaling in IPEC-J2 Cells. Int. J. Mol. Sci. 2019, 20, 1800. [Google Scholar] [CrossRef]
  186. Gomez-Yanes, A.C.; Moreno-Cordova, E.N.; Garcia-Orozco, K.D.; Laino, A.; Islas-Osuna, M.A.; Lopez-Zavala, A.A.; Valenzuela, J.G.; Sotelo-Mundo, R.R. The Arginine Kinase from the Tick Rhipicephalus sanguineus Is an Efficient Biocatalyst. Catalysts 2022, 12, 1178. [Google Scholar] [CrossRef]
  187. Xu, Y.; Xu, Z.; Gu, X.; Xie, Y.; He, R.; Xu, J.; Jing, B.; Peng, X.; Yang, G. Immunomodulatory effects of two recombinant arginine kinases in Sarcoptes Scabiei on host peripheral blood mononuclear cells. Front. Immunol. 2022, 13, 1035729. [Google Scholar] [CrossRef]
  188. Otero, G.A.; Pliego-Rivero, F.B.; Porcayo-Mercado, R.; Mendieta-Alcantara, G. Working memory impairment and recovery in iron deficient children. Clin. Neurophysiol. 2008, 119, 1739–1746. [Google Scholar] [CrossRef] [PubMed]
  189. West, K.P., Jr.; Shamim, A.A.; Mehra, S.; Labrique, A.B.; Ali, H.; Shaikh, S.; Klemm, R.D.; Wu, L.S.; Mitra, M.; Haque, R.; et al. Effect of maternal multiple micronutrient vs iron-folic acid supplementation on infant mortality and adverse birth outcomes in rural Bangladesh: The JiVitA-3 randomized trial. JAMA 2014, 312, 2649–2658. [Google Scholar] [CrossRef] [PubMed]
  190. Tada, A.; Nagai, T.; Koya, T.; Nakao, M.; Ishizaka, S.; Mizuguchi, Y.; Aoyagi, H.; Imagawa, S.; Tokuda, Y.; Takahashi, M.; et al. Applicability of new proposed criteria for iron deficiency in Japanese patients with heart failure. ESC Heart Fail. 2023, 10, 985–994. [Google Scholar] [CrossRef] [PubMed]
  191. Wieczorek, M.; Schwarz, F.; Sadlon, A.; Abderhalden, L.A.; de Godoi Rezende Costa Molino, C.; Spahn, D.R.; Schaer, D.J.; Orav, E.J.; Egli, A.; Bischoff-Ferrari, H.A.; et al. Iron deficiency and biomarkers of inflammation: A 3-year prospective analysis of the DO-HEALTH trial. Aging Clin. Exp. Res. 2021, 34, 515–525. [Google Scholar] [CrossRef] [PubMed]
  192. Gong, W.; Huang, J.; Zhu, T.; Lin, S.; Hao, C.; Zhang, M. Functional iron deficiency anemia was associated with higher mortality in chronic kidney disease patients: The NHANES III follow-up study. Ren. Fail. 2023, 45, 2290926. [Google Scholar] [CrossRef] [PubMed]
  193. Papadopoulou, C.; Reinhold, J.; Gruner-Hegge, N.; Kydd, A.; Bhagra, S.; Parameshwar, K.J.; Lewis, C.; Martinez, L.; Pettit, S.J. Prognostic value of three iron deficiency definitions in patients with advanced heart failure. Eur. J. Heart Fail. 2023, 25, 2067–2074. [Google Scholar] [CrossRef] [PubMed]
  194. Schrage, B.; Rubsamen, N.; Schulz, A.; Munzel, T.; Pfeiffer, N.; Wild, P.S.; Beutel, M.; Schmidtmann, I.; Lott, R.; Blankenberg, S.; et al. Iron deficiency is a common disorder in general population and independently predicts all-cause mortality: Results from the Gutenberg Health Study. Clin. Res. Cardiol. 2020, 109, 1352–1357. [Google Scholar] [CrossRef] [PubMed]
  195. Kulik-Rechberger, B.; Dubel, M. Iron deficiency, iron deficiency anaemia and anaemia of inflammation—An overview. Ann. Agric. Environ. Med. 2024, 31, 151–157. [Google Scholar] [CrossRef]
  196. Gedfie, S.; Getawa, S.; Melku, M. Prevalence and Associated Factors of Iron Deficiency and Iron Deficiency Anemia Among Under-5 Children: A Systematic Review and Meta-Analysis. Glob. Pediatr. Health 2022, 9, 2333794X221110860. [Google Scholar] [CrossRef]
  197. Baum, P.; Toyka, K.V.; Bluher, M.; Kosacka, J.; Nowicki, M. Inflammatory Mechanisms in the Pathophysiology of Diabetic Peripheral Neuropathy (DN)-New Aspects. Int. J. Mol. Sci. 2021, 22, 10835. [Google Scholar] [CrossRef] [PubMed]
  198. Nyakeriga, A.M.; Williams, T.N.; Marsh, K.; Wambua, S.; Perlmann, H.; Perlmann, P.; Grandien, A.; Troye-Blomberg, M. Cytokine mRNA expression and iron status in children living in a malaria endemic area. Scand. J. Immunol. 2005, 61, 370–375. [Google Scholar] [CrossRef] [PubMed]
  199. Helmby, H.; Kullberg, M.; Troye-Blomberg, M. Expansion of IL-3-responsive IL-4-producing non-B non-T cells correlates with anemia and IL-3 production in mice infected with blood-stage Plasmodium chabaudi malaria. Eur. J. Immunol. 1998, 28, 2559–2570. [Google Scholar] [CrossRef]
  200. Jason, J.; Archibald, L.K.; Nwanyanwu, O.C.; Bell, M.; Jensen, R.J.; Gunter, E.; Buchanan, I.; Larned, J.; Kazembe, P.N.; Dobbie, H.; et al. The effects of iron deficiency on lymphocyte cytokine production and activation: Preservation of hepatic iron but not at all cost. Clin. Exp. Immunol. 2001, 126, 466–473. [Google Scholar] [CrossRef] [PubMed]
  201. Pita-Rodriguez, G.M.; Chavez-Chong, C.; Lambert-Lamazares, B.; Montero-Diaz, M.; Selgas-Lizano, R.; Basabe-Tuero, B.; Alfonso-Sague, K.; Diaz-Sanchez, M.E. Influence of Inflammation on Assessing Iron-Deficiency Anemia in Cuban Preschool Children. MEDICC Rev. 2021, 23, 37–45. [Google Scholar] [CrossRef] [PubMed]
  202. Dhankar, N.; Gupta, R.; Jain, S.L.; Mandal, S.; Sarkar, B. Perturbation of monocyte subsets in iron-deficient children-a shift to a pro-inflammatory state? Allergol. Immunopathol. 2021, 49, 42–47. [Google Scholar] [CrossRef] [PubMed]
  203. Munoz, C.; Olivares, M.; Schlesinger, L.; Lopez, M.; Letelier, A. Increased in vitro tumour necrosis factor-alpha production in iron deficiency anemia. Eur. Cytokine Netw. 1994, 5, 401–404. [Google Scholar] [PubMed]
  204. Thorson, J.A.; Smith, K.M.; Gomez, F.; Naumann, P.W.; Kemp, J.D. Role of iron in T cell activation: TH1 clones differ from TH2 clones in their sensitivity to inhibition of DNA synthesis caused by IgG Mabs against the transferrin receptor and the iron chelator deferoxamine. Cell. Immunol. 1991, 134, 126–137. [Google Scholar] [CrossRef] [PubMed]
  205. Naderi, N.; Etaati, Z.; Rezvani Joibari, M.; Sobhani, S.A.; Hosseni Tashnizi, S. Immune deviation in recurrent vulvovaginal candidiasis: Correlation with iron deficiency anemia. Iran. J. Immunol. 2013, 10, 118–126. [Google Scholar]
  206. Winn, N.C.; Volk, K.M.; Hasty, A.H. Regulation of tissue iron homeostasis: The macrophage “ferrostat”. JCI Insight 2020, 5, e132964. [Google Scholar] [CrossRef]
  207. Corna, G.; Campana, L.; Pignatti, E.; Castiglioni, A.; Tagliafico, E.; Bosurgi, L.; Campanella, A.; Brunelli, S.; Manfredi, A.A.; Apostoli, P.; et al. Polarization dictates iron handling by inflammatory and alternatively activated macrophages. Haematologica 2010, 95, 1814–1822. [Google Scholar] [CrossRef] [PubMed]
  208. Lanser, L.; Plaikner, M.; Schroll, A.; Burkert, F.R.; Seiwald, S.; Fauser, J.; Petzer, V.; Bellmann-Weiler, R.; Fritsche, G.; Tancevski, I.; et al. Tissue iron distribution in patients with anemia of inflammation: Results of a pilot study. Am. J. Hematol. 2023, 98, 890–899. [Google Scholar] [CrossRef] [PubMed]
  209. Lanser, L.; Plaikner, M.; Fauser, J.; Petzer, V.; Denicolo, S.; Haschka, D.; Neuwirt, H.; Stefanow, K.; Rudnicki, M.; Kremser, C.; et al. Tissue Iron Distribution in Anemic Patients with End-Stage Kidney Disease: Results of a Pilot Study. J. Clin. Med. 2024, 13, 3487. [Google Scholar] [CrossRef]
  210. Denz, H.; Huber, P.; Landmann, R.; Orth, B.; Wachter, H.; Fuchs, D. Association between the activation of macrophages, changes of iron metabolism and the degree of anaemia in patients with malignant disorders. Eur. J. Haematol. 1992, 48, 244–248. [Google Scholar] [CrossRef]
  211. Oexle, H.; Gnaiger, E.; Weiss, G. Iron-dependent changes in cellular energy metabolism: Influence on citric acid cycle and oxidative phosphorylation. Biochim. Biophys. Acta 1999, 1413, 99–107. [Google Scholar] [CrossRef] [PubMed]
  212. Beard, J.L. Iron biology in immune function, muscle metabolism and neuronal functioning. J. Nutr. 2001, 131, 568S–579S, discussion 580S. [Google Scholar] [CrossRef] [PubMed]
  213. Hallquist, N.A.; McNeil, L.K.; Lockwood, J.F.; Sherman, A.R. Maternal-iron-deficiency effects on peritoneal macrophage and peritoneal natural-killer-cell cytotoxicity in rat pups. Am. J. Clin. Nutr. 1992, 55, 741–746. [Google Scholar] [CrossRef] [PubMed]
  214. Littwitz-Salomon, E.; Moreira, D.; Frost, J.N.; Choi, C.; Liou, K.T.; Ahern, D.K.; O’Shaughnessy, S.; Wagner, B.; Biron, C.A.; Drakesmith, H.; et al. Metabolic requirements of NK cells during the acute response against retroviral infection. Nat. Commun. 2021, 12, 5376. [Google Scholar] [CrossRef] [PubMed]
  215. Dickson, K.B.; Zhou, J. Role of reactive oxygen species and iron in host defense against infection. FBL 2020, 25, 1600–1616. [Google Scholar] [CrossRef]
  216. Roth-Walter, F.; Adcock, I.M.; Benito-Villalvilla, C.; Bianchini, R.; Bjermer, L.; Caramori, G.; Cari, L.; Chung, K.F.; Diamant, Z.; Eguiluz-Gracia, I.; et al. Metabolic pathways in immune senescence and inflammaging: Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology. Allergy 2024, 79, 1089–1122. [Google Scholar] [CrossRef]
  217. Aly, S.S.; Fayed, H.M.; Ismail, A.M.; Abdel Hakeem, G.L. Assessment of peripheral blood lymphocyte subsets in children with iron deficiency anemia. BMC Pediatr. 2018, 18, 49. [Google Scholar] [CrossRef] [PubMed]
  218. Das, I.; Saha, K.; Mukhopadhyay, D.; Roy, S.; Raychaudhuri, G.; Chatterjee, M.; Mitra, P.K. Impact of iron deficiency anemia on cell-mediated and humoral immunity in children: A case control study. J. Nat. Sci. Biol. Med. 2014, 5, 158–163. [Google Scholar] [CrossRef] [PubMed]
  219. Hileti, D.; Panayiotidis, P.; Hoffbrand, A.V. Iron chelators induce apoptosis in proliferating cells. Br. J. Haematol. 1995, 89, 181–187. [Google Scholar] [CrossRef]
  220. Ni, S.; Yuan, Y.; Kuang, Y.; Li, X. Iron Metabolism and Immune Regulation. Front. Immunol. 2022, 13, 816282. [Google Scholar] [CrossRef] [PubMed]
  221. Pinto, J.P.; Arezes, J.; Dias, V.; Oliveira, S.; Vieira, I.; Costa, M.; Vos, M.; Carlsson, A.; Rikers, Y.; Rangel, M.; et al. Physiological implications of NTBI uptake by T lymphocytes. Front. Pharmacol. 2014, 5, 24. [Google Scholar] [CrossRef] [PubMed]
  222. Regis, G.; Bosticardo, M.; Conti, L.; De Angelis, S.; Boselli, D.; Tomaino, B.; Bernabei, P.; Giovarelli, M.; Novelli, F. Iron regulates T-lymphocyte sensitivity to the IFN-gamma/STAT1 signaling pathway in vitro and in vivo. Blood 2005, 105, 3214–3221. [Google Scholar] [CrossRef] [PubMed]
  223. Li, G.; Pone, E.J.; Tran, D.C.; Patel, P.J.; Dao, L.; Xu, Z.; Casali, P. Iron inhibits activation-induced cytidine deaminase enzymatic activity and modulates immunoglobulin class switch DNA recombination. J. Biol. Chem. 2012, 287, 21520–21529. [Google Scholar] [CrossRef] [PubMed]
  224. Jang, K.J.; Mano, H.; Aoki, K.; Hayashi, T.; Muto, A.; Nambu, Y.; Takahashi, K.; Itoh, K.; Taketani, S.; Nutt, S.L.; et al. Mitochondrial function provides instructive signals for activation-induced B-cell fates. Nat. Commun. 2015, 6, 6750. [Google Scholar] [CrossRef] [PubMed]
  225. Le Huong, T.; Brouwer, I.D.; Nguyen, K.C.; Burema, J.; Kok, F.J. The effect of iron fortification and de-worming on anaemia and iron status of Vietnamese schoolchildren. Br. J. Nutr. 2007, 97, 955–962. [Google Scholar] [CrossRef]
  226. Rizwan Ahmad, A.M.; Ahmed, W.; Iqbal, S.; Mushtaq, M.H.; Anis, R.A. Iron and prebiotic fortified flour improves the immune function of iron deficient women of childbearing age. Pak. J. Pharm. Sci. 2020, 33, 253–261. [Google Scholar]
  227. An, P.; Barron-Casella, E.A.; Strunk, R.C.; Hamilton, R.G.; Casella, J.F.; DeBaun, M.R. Elevation of IgE in children with sickle cell disease is associated with doctor diagnosis of asthma and increased morbidity. J. Allergy Clin. Immunol. 2011, 127, 1440–1446. [Google Scholar] [CrossRef] [PubMed]
  228. Duan, N.; Zhao, M.; Wang, Y.; Qu, Y.; Liu, H.; Wang, H.; Xing, L.; Shao, Z. Expression of BTK/p-BTK is different between CD5(+) and CD5(−) B lymphocytes from Autoimmune Hemolytic Anemia/Evans syndromes. Hematology 2019, 24, 588–595. [Google Scholar] [CrossRef] [PubMed]
  229. Noureldin, M.S.; Shaltout, A.A. Anti-schistosomal IgE and its relation to gastrointestinal allergy in breast-fed infants of Schistosoma mansoni infected mothers. J. Egypt. Soc. Parasitol. 1998, 28, 539–550. [Google Scholar]
  230. Seka-Seka, J.; Brouh, Y.; Yapo-Crezoit, A.C.; Atseye, N.H. The role of serum immunoglobulin E in the pathogenesis of Plasmodium falciparum malaria in Ivorian children. Scand. J. Immunol. 2004, 59, 228–230. [Google Scholar] [CrossRef] [PubMed]
  231. MohanKumar, K.; Namachivayam, K.; Sivakumar, N.; Alves, N.G.; Sidhaye, V.; Das, J.K.; Chung, Y.; Breslin, J.W.; Maheshwari, A. Severe neonatal anemia increases intestinal permeability by disrupting epithelial adherens junctions. Am. J. Physiol. Gastrointest. Liver Physiol. 2020, 318, G705–G716. [Google Scholar] [CrossRef] [PubMed]
  232. Du, X.; She, E.; Gelbart, T.; Truksa, J.; Lee, P.; Xia, Y.; Khovananth, K.; Mudd, S.; Mann, N.; Moresco, E.M.; et al. The serine protease TMPRSS6 is required to sense iron deficiency. Science 2008, 320, 1088–1092. [Google Scholar] [CrossRef] [PubMed]
  233. Vanderford, D.A.; Greer, P.K.; Sharp, J.M.; Chichlowski, M.; Rouse, D.C.; Selim, M.A.; Hale, L.P. Alopecia in IL-10-deficient mouse pups is c-kit-dependent and can be triggered by iron deficiency. Exp. Dermatol. 2010, 19, 518–526. [Google Scholar] [CrossRef] [PubMed]
  234. St Pierre, S.A.; Vercellotti, G.M.; Donovan, J.C.; Hordinsky, M.K. Iron deficiency and diffuse nonscarring scalp alopecia in women: More pieces to the puzzle. J. Am. Acad. Dermatol. 2010, 63, 1070–1076. [Google Scholar] [CrossRef] [PubMed]
  235. Hughes, E.C.; Syed, H.A.; Saleh, D. Telogen Effluvium. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
  236. Lin, C.S.; Chan, L.Y.; Wang, J.H.; Chang, C.H. Diagnosis and treatment of female alopecia: Focusing on the iron deficiency-related alopecia. Tzu Chi Med. J. 2023, 35, 322–328. [Google Scholar] [CrossRef]
  237. Shalit, M.; Tedeschi, A.; Miadonna, A.; Levi-Schaffer, F. Desferal (desferrioxamine)--A novel activator of connective tissue-type mast cells. J. Allergy Clin. Immunol. 1991, 88, 854–860. [Google Scholar] [CrossRef]
  238. Mecheri, S.; Peltre, G.; Lapeyre, J.; David, B. Biological effect of transferrin on mast cell mediator release during the passive cutaneous anaphylaxis reaction: A possible inhibition mechanism involving iron. Ann. Inst. Pasteur Immunol. 1987, 138, 213–221. [Google Scholar] [CrossRef] [PubMed]
  239. Theobald, K.; Gross-Weege, W.; Keymling, J.; Konig, W. Inhibition of histamine release in vitro by a blocking factor from human serum: Comparison with the iron binding proteins transferrin and lactoferrin. Agents Actions 1987, 20, 10–16. [Google Scholar] [CrossRef] [PubMed]
  240. Theobald, K.; Gross-Weege, W.; Keymling, J.; Konig, W. Purification of serum proteins with inhibitory activity on the histamine release in vitro and/or in vivo. Int. Arch. Allergy Appl. Immunol. 1987, 82, 295–297. [Google Scholar] [CrossRef] [PubMed]
  241. He, S.; McEuen, A.R.; Blewett, S.A.; Li, P.; Buckley, M.G.; Leufkens, P.; Walls, A.F. The inhibition of mast cell activation by neutrophil lactoferrin: Uptake by mast cells and interaction with tryptase, chymase and cathepsin G. Biochem. Pharmacol. 2003, 65, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
  242. Nakashima, K.; Takeuchi, T.; Shirakawa, T. Differentiation, distribution, and chemical state of intracellular trace elements in LAD2 mast cell line. Biol. Trace Elem. Res. 2005, 108, 105–114. [Google Scholar] [CrossRef] [PubMed]
  243. Saini, S.; Jain, A.K.; Agarwal, S.; Yadav, D. Iron Deficiency and Pruritus: A Cross-Sectional Analysis to Assess Its Association and Relationship. Indian J. Dermatol. 2021, 66, 705. [Google Scholar] [CrossRef]
  244. Guarneri, F.; Guarneri, C.; Cannavo, S.P. Oral iron therapy and chronic idiopathic urticaria: Sideropenic urticaria? Dermatol. Ther. 2014, 27, 223–226. [Google Scholar] [CrossRef]
  245. Maazi, H.; Shirinbak, S.; Bloksma, N.; Nawijn, M.C.; van Oosterhout, A.J. Iron administration reduces airway hyperreactivity and eosinophilia in a mouse model of allergic asthma. Clin. Exp. Immunol. 2011, 166, 80–86. [Google Scholar] [CrossRef]
  246. Wen, J.; Wang, C.; Xia, J.; Giri, M.; Guo, S. Relationship between serum iron and blood eosinophil counts in asthmatic adults: Data from NHANES 2011–2018. Front. Immunol. 2023, 14, 1201160. [Google Scholar] [CrossRef]
  247. Weigert, R.; Dosch, N.C.; Bacsik-Campbell, M.E.; Guilbert, T.W.; Coe, C.L.; Kling, P.J. Maternal pregnancy weight gain and cord blood iron status are associated with eosinophilia in infancy. J. Perinatol. 2015, 35, 621–626. [Google Scholar] [CrossRef] [PubMed]
  248. Tam, E.; Keats, E.C.; Rind, F.; Das, J.K.; Bhutta, A.Z.A. Micronutrient Supplementation and Fortification Interventions on Health and Development Outcomes among Children Under-Five in Low- and Middle-Income Countries: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 289. [Google Scholar] [CrossRef] [PubMed]
  249. Centers for Disease Control and Prevention (CDC). Vitamin A deficiency among children—Federated States of Micronesia, 2000. MMWR Morb. Mortal. Wkly. Rep. 2001, 50, 509–512.
  250. Jimenez, C.; Leets, I.; Puche, R.; Anzola, E.; Montilla, R.; Parra, C.; Aguilera, A.; Garcia-Casal, M.N. A single dose of vitamin A improves haemoglobin concentration, retinol status and phagocytic function of neutrophils in preschool children. Br. J. Nutr. 2010, 103, 798–802. [Google Scholar] [CrossRef] [PubMed]
  251. Mora, J.R.; Iwata, M.; von Andrian, U.H. Vitamin effects on the immune system: Vitamins A and D take centre stage. Nat. Rev. Immunol. 2008, 8, 685–698. [Google Scholar] [CrossRef] [PubMed]
  252. Allen, L.; de Benoist, B.; Dary, O.; Hurrell, R. Guidelines on Food Fortification with Micronutrients; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
  253. Reifen, R.; Nur, T.; Ghebermeskel, K.; Zaiger, G.; Urizky, R.; Pines, M. Vitamin A deficiency exacerbates inflammation in a rat model of colitis through activation of nuclear factor-kappaB and collagen formation. J. Nutr. 2002, 132, 2743–2747. [Google Scholar] [CrossRef] [PubMed]
  254. Green, M.H.; Ford, J.L.; Green, J.B. Development of a Compartmental Model to Investigate the Influence of Inflammation on Predictions of Vitamin A Total Body Stores by Retinol Isotope Dilution in Theoretical Humans. J. Nutr. 2021, 151, 731–741. [Google Scholar] [CrossRef] [PubMed]
  255. Mayland, C.; Allen, K.R.; Degg, T.J.; Bennet, M. Micronutrient concentrations in patients with malignant disease: Effect of the inflammatory response. Ann. Clin. Biochem. 2004, 41 Pt 2, 138–141. [Google Scholar] [CrossRef]
  256. de Dios, O.; Navarro, P.; Ortega-Senovilla, H.; Herrero, L.; Gavela-Perez, T.; Soriano-Guillen, L.; Lasuncion, M.A.; Garces, C. Plasma Retinol Levels and High-Sensitivity C-Reactive Protein in Prepubertal Children. Nutrients 2018, 10, 1257. [Google Scholar] [CrossRef] [PubMed]
  257. Rabbani, E.; Golgiri, F.; Janani, L.; Moradi, N.; Fallah, S.; Abiri, B.; Vafa, M. Randomized Study of the Effects of Zinc, Vitamin A, and Magnesium Co-supplementation on Thyroid Function, Oxidative Stress, and hs-CRP in Patients with Hypothyroidism. Biol. Trace Elem. Res. 2021, 199, 4074–4083. [Google Scholar] [CrossRef]
  258. Liu, N.; Kawahira, N.; Nakashima, Y.; Nakano, H.; Iwase, A.; Uchijima, Y.; Wang, M.; Wu, S.M.; Minamisawa, S.; Kurihara, H.; et al. Notch and retinoic acid signals regulate macrophage formation from endocardium downstream of Nkx2-5. Nat. Commun. 2023, 14, 5398. [Google Scholar] [CrossRef]
  259. Hiraga, H.; Chinda, D.; Maeda, T.; Murai, Y.; Ogasawara, K.; Muramoto, R.; Ota, S.; Hasui, K.; Sakuraba, H.; Ishiguro, Y.; et al. Vitamin A Promotes the Fusion of Autophagolysosomes and Prevents Excessive Inflammasome Activation in Dextran Sulfate Sodium-Induced Colitis. Int. J. Mol. Sci. 2023, 24, 8684. [Google Scholar] [CrossRef] [PubMed]
  260. Nurrahmah, Q.I.; Madhyastha, R.; Madhyastha, H.; Purbasari, B.; Maruyama, M.; Nakajima, Y. Retinoic acid abrogates LPS-induced inflammatory response via negative regulation of NF-kappa B/miR-21 signaling. Immunopharmacol. Immunotoxicol. 2021, 43, 299–308. [Google Scholar] [CrossRef] [PubMed]
  261. Penkert, R.R.; Jones, B.G.; Hacker, H.; Partridge, J.F.; Hurwitz, J.L. Vitamin A differentially regulates cytokine expression in respiratory epithelial and macrophage cell lines. Cytokine 2017, 91, 1–5. [Google Scholar] [CrossRef]
  262. Zhu, Y.N.; Gu, X.L.; Wang, L.Y.; Guan, N.; Li, C.G. All-Trans Retinoic Acid Promotes M2 Macrophage Polarization in Vitro by Activating the p38MAPK/STAT6 Signaling Pathway. Immunol. Investig. 2023, 52, 298–318. [Google Scholar] [CrossRef] [PubMed]
  263. Pinos, I.; Yu, J.; Pilli, N.; Kane, M.A.; Amengual, J. Functional characterization of interleukin 4 and retinoic acid signaling crosstalk during alternative macrophage activation. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2023, 1868, 159291. [Google Scholar] [CrossRef] [PubMed]
  264. Carman, J.A.; Hayes, C.E. Abnormal regulation of IFN-gamma secretion in vitamin A deficiency. J. Immunol. 1991, 147, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
  265. Cantorna, M.T.; Nashold, F.E.; Hayes, C.E. Vitamin A deficiency results in a priming environment conducive for Th1 cell development. Eur. J. Immunol. 1995, 25, 1673–1679. [Google Scholar] [CrossRef] [PubMed]
  266. Seo, G.Y.; Lee, J.M.; Jang, Y.S.; Kang, S.G.; Yoon, S.I.; Ko, H.J.; Lee, G.S.; Park, S.R.; Nagler, C.R.; Kim, P.H. Mechanism underlying the suppressor activity of retinoic acid on IL4-induced IgE synthesis and its physiological implication. Cell. Immunol. 2017, 322, 49–55. [Google Scholar] [CrossRef]
  267. Ruhl, R.; Garcia, A.; Schweigert, F.J.; Worm, M. Modulation of cytokine production by low and high retinoid diets in ovalbumin-sensitized mice. Int. J. Vitam. Nutr. Res. 2004, 74, 279–284. [Google Scholar] [CrossRef]
  268. Sun, C.M.; Hall, J.A.; Blank, R.B.; Bouladoux, N.; Oukka, M.; Mora, J.R.; Belkaid, Y. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 2007, 204, 1775–1785. [Google Scholar] [CrossRef]
  269. Spencer, S.P.; Wilhelm, C.; Yang, Q.; Hall, J.A.; Bouladoux, N.; Boyd, A.; Nutman, T.B.; Urban, J.F., Jr.; Wang, J.; Ramalingam, T.R.; et al. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science 2014, 343, 432–437. [Google Scholar] [CrossRef]
  270. Mellody, K.T.; Bradley, E.J.; Mambwe, B.; Cotterell, L.F.; Kiss, O.; Halai, P.; Loftus, Z.; Bell, M.; Griffiths, T.W.; Griffiths, C.E.M.; et al. Multifaceted amelioration of cutaneous photoageing by (0.3%) retinol. Int. J. Cosmet. Sci. 2022, 44, 625–635. [Google Scholar] [CrossRef] [PubMed]
  271. Li, Y.; Gao, Y.; Cui, T.; Yang, T.; Liu, L.; Li, T.; Chen, J. Retinoic Acid Facilitates Toll-Like Receptor 4 Expression to Improve Intestinal Barrier Function through Retinoic Acid Receptor Beta. Cell. Physiol. Biochem. 2017, 42, 1390–1406. [Google Scholar] [CrossRef] [PubMed]
  272. De Luca, L.M.; Roop, D.; Huang, F.L. Vitamin A: A key nutrient for the maintenance of epithelial differentiation. Acta Vitaminol. Enzymol. 1985, 7, 13–20. [Google Scholar] [PubMed]
  273. Lotan, R. Squamous cell differentiation markers in normal, premalignant, and malignant epithelium: Effects of retinoids. J. Cell Biochem. Suppl. 1993, 17F, 167–174. [Google Scholar] [CrossRef] [PubMed]
  274. Sundelin, J.; Busch, C.; Das, K.; Das, S.; Eriksson, U.; Jonsson, K.H.; Kampe, O.; Laurent, B.; Liljas, A.; Newcomer, M.; et al. Structure and tissue distribution of some retinoid-binding proteins. J. Investig. Dermatol. 1983, 81, 59s–63s. [Google Scholar] [CrossRef] [PubMed]
  275. Chopra, D.P.; Cooney, R.A.; Taylor, G.W. Effects of vitamin A deficiency on cell proliferation and morphology of trachea of the hamster. Cell Tissue Kinet. 1990, 23, 575–586. [Google Scholar] [CrossRef] [PubMed]
  276. Ng-Blichfeldt, J.P.; Schrik, A.; Kortekaas, R.K.; Noordhoek, J.A.; Heijink, I.H.; Hiemstra, P.S.; Stolk, J.; Konigshoff, M.; Gosens, R. Retinoic acid signaling balances adult distal lung epithelial progenitor cell growth and differentiation. EBioMedicine 2018, 36, 461–474. [Google Scholar] [CrossRef] [PubMed]
  277. Yang, H.; Chen, J.S.; Zou, W.J.; Tan, Q.; Xiao, Y.Z.; Luo, X.Y.; Gao, P.; Fu, Z.; Wang, H. Vitamin A deficiency exacerbates extrinsic atopic dermatitis development by potentiating type 2 helper T cell-type inflammation and mast cell activation. Clin. Exp. Allergy 2020, 50, 942–953. [Google Scholar] [CrossRef]
  278. Qi, C.; Tu, H.; Zhao, Y.; Zhou, J.; Chen, J.; Hu, H.; Yu, R.; Sun, J. Breast Milk-Derived Limosilactobacillus reuteri Prevents Atopic Dermatitis in Mice via Activating Retinol Absorption and Metabolism in Peyer’s Patches. Mol. Nutr. Food Res. 2023, 67, e2200444. [Google Scholar] [CrossRef]
  279. Cantwell, M.E.; Foreman, J.C. The actions of retinal and retinoic acid on histamine release from rat peritoneal mast cells. Eur. J. Pharmacol. 1989, 160, 43–51. [Google Scholar] [CrossRef]
  280. Larange, A.; Cheroutre, H. Retinoic Acid and Retinoic Acid Receptors as Pleiotropic Modulators of the Immune System. Annu. Rev. Immunol. 2016, 34, 369–394. [Google Scholar] [CrossRef]
  281. Shi, Z.; Ohno, H.; Satoh-Takayama, N. Dietary Derived Micronutrients Modulate Immune Responses Through Innate Lymphoid Cells. Front. Immunol. 2021, 12, 670632. [Google Scholar] [CrossRef] [PubMed]
  282. Shin, Y.H.; Hwang, J.; Kwon, R.; Lee, S.W.; Kim, M.S.; GBD 2019 Allergic Disorders Collaborators; Shin, J.I.; Yon, D.K. Global, regional, and national burden of allergic disorders and their risk factors in 204 countries and territories, from 1990 to 2019: A systematic analysis for the Global Burden of Disease Study 2019. Allergy 2023, 78, 2232–2254. [Google Scholar] [CrossRef]
  283. Miethe, S.; Guarino, M.; Alhamdan, F.; Simon, H.U.; Renz, H.; Dufour, J.F.; Potaczek, D.P.; Garn, H. Effects of obesity on asthma: Immunometabolic links. Pol. Arch. Intern. Med. 2018, 128, 469–477. [Google Scholar] [CrossRef] [PubMed]
  284. Sung, W.H.; Yeh, K.W.; Huang, J.L.; Su, K.W.; Chen, K.F.; Wu, C.C.; Tsai, M.H.; Hua, M.C.; Liao, S.L.; Lai, S.H.; et al. Longitudinal changes in body mass index Z-scores during infancy and risk of childhood allergies. J. Microbiol. Immunol. Infect. 2022, 55, 956–964. [Google Scholar] [CrossRef] [PubMed]
  285. Lazarevic, V.V.; Skypala, I.J. Nutritional disorders prevalence among adults with immunoglobin E-mediated food allergy. Clin. Exp. Allergy 2024. [Google Scholar] [CrossRef] [PubMed]
  286. Dziechciarz, P.; Strozyk, A.; Horvath, A.; Cudowska, B.; Jedynak-Wasowicz, U.; Mol, N.; Jarocka-Cyrta, E.; Zawadzka-Krajewska, A.; Krauze, A. Nutritional status and feeding difficulties in children up to 2 years of age with cow’s milk allergy. J. Pediatr. Gastroenterol. Nutr. 2024, 79, 131–139. [Google Scholar] [CrossRef]
  287. Jasielska, M.; Buczynska, A.; Adamczyk, P.; Grzybowska-Chlebowczyk, U. Nutritional Status of Children with Newly Diagnosed Food Allergies. Children 2023, 10, 1687. [Google Scholar] [CrossRef]
  288. Calle, C.G.; Diaz-Vasquez, C.; Cordova-Calderon, W.; Gomez de la Torre, J.; Matos-Benavides, E.; Toribio-Dionicio, C. Clinical characteristics, laboratory findings, and tolerance acquisition in infants with cow’s milk protein allergy in a private center in Lima, Peru for the period 2021–2022. Immun. Inflamm. Dis. 2024, 12, e1246. [Google Scholar] [CrossRef]
  289. Chang, C.L.; Ali, G.B.; Lodge, C.J.; Abramson, M.J.; Erbas, B.; Tang, M.L.K.; Svanes, C.; Bui, D.S.; Dharmage, S.C.; Lowe, A.J. Associations between Body Mass Index Trajectories in the first two years of life and Allergic Rhinitis, Eczema and Food Allergy outcomes up to early adulthood. Pediatr. Allergy Immunol. 2022, 33, e13765. [Google Scholar] [CrossRef] [PubMed]
  290. Vassilopoulou, E.; Christoforou, C.; Andreou, E.; Heraclides, A. Effects of food allergy on the dietary habits and intake of primary schools’ Cypriot children. Eur. Ann. Allergy Clin. Immunol. 2017, 49, 181–185. [Google Scholar] [CrossRef]
  291. Meyer, R. Nutritional disorders resulting from food allergy in children. Pediatr. Allergy Immunol. 2018, 29, 689–704. [Google Scholar] [CrossRef]
  292. Mehta, H.; Ramesh, M.; Feuille, E.; Groetch, M.; Wang, J. Growth comparison in children with and without food allergies in 2 different demographic populations. J. Pediatr. 2014, 165, 842–848. [Google Scholar] [CrossRef]
  293. Low, D.W.; Jamil, A.; Md Nor, N.; Kader Ibrahim, S.B.; Poh, B.K. Food restriction, nutrition status, and growth in toddlers with atopic dermatitis. Pediatr. Dermatol. 2020, 37, 69–77. [Google Scholar] [CrossRef]
  294. Leung, T.F.; Wang, S.S.; Kwok, F.Y.; Leung, L.W.; Chow, C.M.; Hon, K.L. Assessment of dietary food and nutrient intake and bone density in children with eczema. Hong Kong Med. J. 2017, 23, 470–479. [Google Scholar] [CrossRef]
  295. Drury, K.E.; Schaeffer, M.; Silverberg, J.I. Association Between Atopic Disease and Anemia in US Children. JAMA Pediatr. 2016, 170, 29–34. [Google Scholar] [CrossRef]
  296. Rhew, K.; Oh, J.M. Association between atopic disease and anemia in pediatrics: A cross-sectional study. BMC Pediatr. 2019, 19, 455. [Google Scholar] [CrossRef] [PubMed]
  297. Rhew, K.; Brown, J.D.; Oh, J.M. Atopic Disease and Anemia in Korean Patients: Cross-Sectional Study with Propensity Score Analysis. Int. J. Environ. Res. Public Health 2020, 17, 1978. [Google Scholar] [CrossRef] [PubMed]
  298. Yang, L.; Sato, M.; Saito-Abe, M.; Miyaji, Y.; Shimada, M.; Sato, C.; Nishizato, M.; Kumasaka, N.; Mezawa, H.; Yamamoto-Hanada, K.; et al. Allergic Disorders and Risk of Anemia in Japanese Children: Findings from the Japan Environment and Children’s Study. Nutrients 2022, 14, 4335. [Google Scholar] [CrossRef] [PubMed]
  299. Oh, S.Y.; Chung, J.; Kim, M.K.; Kwon, S.O.; Cho, B.H. Antioxidant nutrient intakes and corresponding biomarkers associated with the risk of atopic dermatitis in young children. Eur. J. Clin. Nutr. 2010, 64, 245–252. [Google Scholar] [CrossRef] [PubMed]
  300. De Luca, L.; Vacca, C.; Pace, E.; Vuillemier, P.L.; Del Vecchio, L.; Berni Canani, R. Immunological and trace element study in 50 children with various diseases caused by food allergens and aeroallergens. Pediatr. Med. Chir. 1987, 9, 589–591. [Google Scholar]
  301. Ha, E.K.; Kim, J.H.; Lee, E.; Sung, M.; Jee, H.M.; Baek, H.S.; Shin, Y.H.; Lee, N.H.; Han, M.Y. Abnormal iron status is independently associated with reduced oscillometric lung function in schoolchildren. Clin. Respir. J. 2021, 15, 870–877. [Google Scholar] [CrossRef]
  302. Jardim-Botelho, A.; Martins, T.G.; Motta-Franco, J.; Meyer, R.; Fontes Vieira, S.C.; Protasio, B.F.; Santos Silva, M.L.; Pontes, R.S.; de Oliveira, M.B.B.; de Carvalho Barreto, I.D.; et al. Growth and Nutritional Biomarkers in Brazilian Infants with Cow’s Milk Allergy at Diagnosis and 18-Month Follow-Up: A Prospective Cohort Study. Pediatr. Gastroenterol. Hepatol. Nutr. 2023, 26, 355–369. [Google Scholar] [CrossRef]
  303. Nowak, S.; Wang, H.; Schmidt, B.; Jarvinen, K.M. Vitamin D and iron status in children with food allergy. Ann. Allergy Asthma Immunol. 2021, 127, 57–63. [Google Scholar] [CrossRef]
  304. Kvammen, J.A.; Thomassen, R.A.; Eskerud, M.B.; Rugtveit, J.; Henriksen, C. Micronutrient Status and Nutritional Intake in 0- to 2-Year-old Children Consuming a Cows’ Milk Exclusion Diet. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 831–837. [Google Scholar] [CrossRef]
  305. Lai, F.P.; Yang, Y.J. The prevalence and characteristics of cow’s milk protein allergy in infants and young children with iron deficiency anemia. Pediatr. Neonatol. 2018, 59, 48–52. [Google Scholar] [CrossRef]
  306. Nwaru, B.I.; Hayes, H.; Gambling, L.; Craig, L.C.; Allan, K.; Prabhu, N.; Turner, S.W.; McNeill, G.; Erkkola, M.; Seaton, A.; et al. An exploratory study of the associations between maternal iron status in pregnancy and childhood wheeze and atopy. Br. J. Nutr. 2014, 112, 2018–2027. [Google Scholar] [CrossRef]
  307. Shaheen, S.O.; Macdonald-Wallis, C.; Lawlor, D.A.; Henderson, A.J. Haemoglobin concentrations in pregnancy and respiratory and allergic outcomes in childhood: Birth cohort study. Clin. Exp. Allergy 2017, 47, 1615–1624. [Google Scholar] [CrossRef]
  308. Quezada-Pinedo, H.G.; Mensink-Bout, S.M.; Reiss, I.K.; Jaddoe, V.W.V.; Vermeulen, M.J.; Duijts, L. Maternal iron status during early pregnancy and school-age, lung function, asthma, and allergy: The Generation R Study. Pediatr. Pulmonol. 2021, 56, 1771–1778. [Google Scholar] [CrossRef]
  309. Bedard, A.; Lewis, S.J.; Burgess, S.; Henderson, A.J.; Shaheen, S.O. Maternal iron status during pregnancy and respiratory and atopic outcomes in the offspring: A Mendelian randomisation study. BMJ Open Respir. Res. 2018, 5, e000275. [Google Scholar] [CrossRef]
  310. Fortes, C.; Mastroeni, S.; Mannooranparampil, T.J.; Di Lallo, D. Pre-natal folic acid and iron supplementation and atopic dermatitis in the first 6 years of life. Arch. Dermatol. Res. 2019, 311, 361–367. [Google Scholar] [CrossRef] [PubMed]
  311. Shaheen, S.O.; Newson, R.B.; Henderson, A.J.; Emmett, P.M.; Sherriff, A.; Cooke, M.; Team, A.S. Umbilical cord trace elements and minerals and risk of early childhood wheezing and eczema. Eur. Respir. J. 2004, 24, 292–297. [Google Scholar] [CrossRef] [PubMed]
  312. Brigham, E.P.; McCormack, M.C.; Takemoto, C.M.; Matsui, E.C. Iron status is associated with asthma and lung function in US women. PLoS ONE 2015, 10, e0117545. [Google Scholar] [CrossRef] [PubMed]
  313. Patel, A.P.; Krupani, S.; Stark, J.M.; Mosquera, R.A.; Waller, D.K.; Gonzales, T.; Brown, D.L.; Nguyen, T.T.; Jon, C.K.; Yadav, A. Validation of the breathmobile case identification survey for asthma screening in children with sickle cell disease. J. Asthma 2021, 58, 782–790. [Google Scholar] [CrossRef] [PubMed]
  314. Vierucci, A.; De Martino, M.; Di Palma, A.; Novembre, E.; Rossi, M.E.; Resti, M.; Azzari, C. The multitransfused beta-thalassemic child: A model for the study of IgE response. Ann. Allergy 1986, 56, 158–161. [Google Scholar] [PubMed]
  315. De, A.; Agrawal, S.; Morrone, K.; Zhang, J.; Bjorklund, N.L.; Manwani, D.; Rastogi, D. Airway Inflammation and Lung Function in Sickle Cell Disease. Pediatr. Allergy Immunol. Pulmonol. 2019, 32, 92–102. [Google Scholar] [CrossRef] [PubMed]
  316. Hsieh, H.Y.; Huang, L.C.; Yu, H.R.; Kuo, K.C.; Chen, W.H.; Su, C.H.; Lee, C.P.; Chen, K.J.; Yang, Y.H.; Sheen, J.M. Pediatric thalassemic patients have higher incidence of asthma: A nationwide population-based retrospective cohort study. PLoS ONE 2021, 16, e0258727. [Google Scholar] [CrossRef] [PubMed]
  317. Pardalos, G.; Kanakoudi-Tsakalidis, F.; Malaka-Zafiriu, M.; Tsantali, H.; Athanasiou-Metaxa, M.; Kallinikos, G.; Papaevangelou, G. Iron-related disturbances of cell-mediated immunity in multitransfused children with thalassemia major. Clin. Exp. Immunol. 1987, 68, 138–145. [Google Scholar]
  318. Pandher, K.; Ghamrawi, R.I.; Heron, C.E.; Feldman, S.R. Controversial cardiovascular and hematologic comorbidities in atopic dermatitis. Arch. Dermatol. Res. 2021, 314, 317–324. [Google Scholar] [CrossRef]
  319. Rhew, K.; Choi, J.; Kim, K.; Choi, K.H.; Lee, S.H.; Park, H.W. Increased Risk of Anemia in Patients with Asthma. Clin. Epidemiol. 2023, 15, 31–38. [Google Scholar] [CrossRef]
  320. Krishna, M.T.; Subramanian, A.; Adderley, N.J.; Zemedikun, D.T.; Gkoutos, G.V.; Nirantharakumar, K. Allergic diseases and long-term risk of autoimmune disorders: Longitudinal cohort study and cluster analysis. Eur. Respir. J. 2019, 54, 1900476. [Google Scholar] [CrossRef]
  321. Shaheen, S.O.; Gissler, M.; Devereux, G.; Erkkola, M.; Kinnunen, T.I.; McArdle, H.; Sheikh, A.; Hemminki, E.; Nwaru, B.I. Maternal iron supplementation in pregnancy and asthma in the offspring: Follow-up of a randomised trial in Finland. Eur. Respir. J. 2020, 55, 1902335. [Google Scholar] [CrossRef] [PubMed]
  322. DellaValle, D.M.; Glahn, R.P.; Shaff, J.E.; O’Brien, K.O. Iron Absorption from an Intrinsically Labeled Lentil Meal Is Low but Upregulated in Women with Poor Iron Status. J. Nutr. 2015, 145, 2253–2257. [Google Scholar] [CrossRef]
  323. Gaitan, D.; Olivares, M.; Lonnerdal, B.; Brito, A.; Pizarro, F. Non-heme iron as ferrous sulfate does not interact with heme iron absorption in humans. Biol. Trace Elem. Res. 2012, 150, 68–73. [Google Scholar] [CrossRef]
  324. Walczyk, T.; Muthayya, S.; Wegmuller, R.; Thankachan, P.; Sierksma, A.; Frenken, L.G.; Thomas, T.; Kurpad, A.; Hurrell, R.F. Inhibition of iron absorption by calcium is modest in an iron-fortified, casein- and whey-based drink in Indian children and is easily compensated for by addition of ascorbic acid. J. Nutr. 2014, 144, 1703–1709. [Google Scholar] [CrossRef] [PubMed]
  325. Hertrampf, E.; Olivares, M.; Walter, T.; Pizarro, F.; Heresi, G.; Llaguno, S.; Vega, V.; Cayazzo, M.; Chadud, P. [Iron-deficiency anemia in the nursing infant: Its elimination with iron-fortified milk]. Rev. Med. Chil. 1990, 118, 1330–1337. [Google Scholar] [PubMed]
  326. Berseth, C.L.; Van Aerde, J.E.; Gross, S.; Stolz, S.I.; Harris, C.L.; Hansen, J.W. Growth, efficacy, and safety of feeding an iron-fortified human milk fortifier. Pediatrics 2004, 114, e699–e706. [Google Scholar] [CrossRef] [PubMed]
  327. Chinnappan, A.; Sharma, A.; Agarwal, R.; Thukral, A.; Deorari, A.; Sankar, M.J. Fortification of Breast Milk With Preterm Formula Powder vs Human Milk Fortifier in Preterm Neonates: A Randomized Noninferiority Trial. JAMA Pediatr. 2021, 175, 790–796. [Google Scholar] [CrossRef] [PubMed]
  328. Begin, F.; Santizo, M.C.; Peerson, J.M.; Torun, B.; Brown, K.H. Effects of bovine serum concentrate, with or without supplemental micronutrients, on the growth, morbidity, and micronutrient status of young children in a low-income, peri-urban Guatemalan community. Eur. J. Clin. Nutr. 2008, 62, 39–50. [Google Scholar] [CrossRef]
  329. Htet, M.K.; Fahmida, U.; Dillon, D.; Akib, A.; Utomo, B.; Thurnham, D.I. Is Iron Supplementation Influenced by Sub-Clinical Inflammation?: A Randomized Controlled Trial Among Adolescent Schoolgirls in Myanmar. Nutrients 2019, 11, 918. [Google Scholar] [CrossRef]
  330. Hoa, P.T.; Khan, N.C.; van Beusekom, C.; Gross, R.; Conde, W.L.; Khoi, H.D. Milk fortified with iron or iron supplementation to improve nutritional status of pregnant women: An intervention trial from rural Vietnam. Food Nutr. Bull. 2005, 26, 32–38. [Google Scholar] [CrossRef] [PubMed]
  331. Tetens, I.; Larsen, T.M.; Kristensen, M.B.; Hels, O.; Jensen, M.; Morberg, C.M.; Thomsen, A.D.; Hojgaard, L.; Henriksen, M. The importance of dietary composition for efficacy of iron absorption measured in a whole diet that includes rye bread fortified with ferrous fumerate: A radioisotope study in young women. Br. J. Nutr. 2005, 94, 720–726. [Google Scholar] [CrossRef] [PubMed]
  332. Giliberti, A.; Curcio, A.; Marchitto, N.; Di Lullo, L.; Paolozzi, F.; Nano, F.; Pironti, M.; Raimondi, G. Comparison of Ferric Sodium EDTA in Combination with Vitamin C, Folic Acid, Copper Gluconate, Zinc Gluconate, and Selenomethionine as Therapeutic Option for Chronic Kidney Disease Patients with Improvement in Inflammatory Status. Nutrients 2022, 14, 2116. [Google Scholar] [CrossRef] [PubMed]
  333. Smuts, C.M.; Matsungo, T.M.; Malan, L.; Kruger, H.S.; Rothman, M.; Kvalsvig, J.D.; Covic, N.; Joosten, K.; Osendarp, S.J.M.; Bruins, M.J.; et al. Effect of small-quantity lipid-based nutrient supplements on growth, psychomotor development, iron status, and morbidity among 6- to 12-mo-old infants in South Africa: A randomized controlled trial. Am. J. Clin. Nutr. 2019, 109, 55–68. [Google Scholar] [CrossRef] [PubMed]
  334. Mutumba, R.; Pesu, H.; Mbabazi, J.; Greibe, E.; Nexo, E.; Olsen, M.F.; Briend, A.; Molgaard, C.; Michaelsen, K.F.; Ritz, C.; et al. Effect of lipid-based nutrient supplements on micronutrient status and hemoglobin among children with stunting: Secondary analysis of a randomized controlled trial in Uganda. Am. J. Clin. Nutr. 2024, 119, 829–837. [Google Scholar] [CrossRef] [PubMed]
  335. Pesonen, M.; Kallio, M.J.; Siimes, M.A.; Ranki, A. Retinol concentrations after birth are inversely associated with atopic manifestations in children and young adults. Clin. Exp. Allergy 2007, 37, 54–61. [Google Scholar] [CrossRef] [PubMed]
  336. Biswas, R.; Chakraborti, G.; Mukherjee, K.; Bhattacharjee, D.; Mallick, S.; Biswas, T. Retinol Levels in Serum and Chronic Skin Lesions of Atopic Dermatitis. Indian J. Dermatol. 2018, 63, 251–254. [Google Scholar] [CrossRef] [PubMed]
  337. Daniluk, U.; Filimoniuk, A.; Kowalczuk-Kryston, M.; Alifier, M.; Karpinska, J.; Kaczmarski, M.G.; Lebensztejn, D.M. Association of antioxidants and vitamin D level with inflammation in children with atopic dermatitis. Int. J. Dermatol. 2019, 58, 1056–1061. [Google Scholar] [CrossRef] [PubMed]
  338. Al Senaidy, A.M. Serum vitamin A and beta-carotene levels in children with asthma. J. Asthma 2009, 46, 699–702. [Google Scholar] [CrossRef]
  339. Wood, L.G.; Garg, M.L.; Smart, J.M.; Scott, H.A.; Barker, D.; Gibson, P.G. Manipulating antioxidant intake in asthma: A randomized controlled trial. Am. J. Clin. Nutr. 2012, 96, 534–543. [Google Scholar] [CrossRef]
  340. Allen, S.; Britton, J.R.; Leonardi-Bee, J.A. Association between antioxidant vitamins and asthma outcome measures: Systematic review and meta-analysis. Thorax 2009, 64, 610–619. [Google Scholar] [CrossRef]
  341. Defnet, A.E.; Shah, S.D.; Huang, W.; Shapiro, P.; Deshpande, D.A.; Kane, M.A. Dysregulated retinoic acid signaling in airway smooth muscle cells in asthma. FASEB J. 2021, 35, e22016. [Google Scholar] [CrossRef] [PubMed]
  342. Golebski, K.; Layhadi, J.A.; Sahiner, U.; Steveling-Klein, E.H.; Lenormand, M.M.; Li, R.C.Y.; Bal, S.M.; Heesters, B.A.; Vila-Nadal, G.; Hunewald, O.; et al. Induction of IL-10-producing type 2 innate lymphoid cells by allergen immunotherapy is associated with clinical response. Immunity 2021, 54, 291–307.e7. [Google Scholar] [CrossRef]
  343. Xiang, J.; Wang, H.; Li, T. Comorbidity of Vitamin A and Vitamin D Deficiency Exacerbates the Severity of Atopic Dermatitis in Children. Dermatology 2019, 235, 196–204. [Google Scholar] [CrossRef] [PubMed]
  344. Kiraly, N.; Balde, A.; Lisse, I.M.; Eriksen, H.B.; Aaby, P.; Benn, C.S. Vitamin A supplementation and risk of atopy: Long-term follow-up of a randomized trial of vitamin A supplementation at six and nine months of age. BMC Pediatr. 2013, 13, 190. [Google Scholar] [CrossRef]
  345. McKeever, T.M.; Lewis, S.A.; Smit, H.; Burney, P.; Britton, J.; Cassano, P.A. Serum nutrient markers and skin prick testing using data from the Third National Health and Nutrition Examination Survey. J. Allergy Clin. Immunol. 2004, 114, 1398–1402. [Google Scholar] [CrossRef]
  346. Hathcock, J.N.; Hattan, D.G.; Jenkins, M.Y.; McDonald, J.T.; Sundaresan, P.R.; Wilkening, V.L. Evaluation of vitamin A toxicity. Am. J. Clin. Nutr. 1990, 52, 183–202. [Google Scholar] [CrossRef]
  347. Parr, C.L.; Magnus, M.C.; Karlstad, O.; Holvik, K.; Lund-Blix, N.A.; Haugen, M.; Page, C.M.; Nafstad, P.; Ueland, P.M.; London, S.J.; et al. Vitamin A and D intake in pregnancy, infant supplementation, and asthma development: The Norwegian Mother and Child Cohort. Am. J. Clin. Nutr. 2018, 107, 789–798. [Google Scholar] [CrossRef]
  348. Harrison, E.H. Mechanisms involved in the intestinal absorption of dietary vitamin A and provitamin A carotenoids. Biochim. Biophys. Acta 2012, 1821, 70–77. [Google Scholar] [CrossRef]
  349. Meza-Meza, M.R.; Ruiz-Ballesteros, A.I.; de la Cruz-Mosso, U. Functional effects of vitamin D: From nutrient to immunomodulator. Crit. Rev. Food Sci. Nutr. 2022, 62, 3042–3062. [Google Scholar] [CrossRef]
  350. Micronutrients IoMUPo. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
  351. World Health, O. Vitamin and Mineral Requirements in Human Nutrition, 2nd ed.; World Health Organization: Geneva, Switzerland, 2005. [Google Scholar]
  352. Castenmiller, J.J.; West, C.E. Bioavailability and bioconversion of carotenoids. Annu. Rev. Nutr. 1998, 18, 19–38. [Google Scholar] [CrossRef]
  353. Kull, I.; Bergstrom, A.; Melen, E.; Lilja, G.; van Hage, M.; Pershagen, G.; Wickman, M. Early-life supplementation of vitamins A and D, in water-soluble form or in peanut oil, and allergic diseases during childhood. J. Allergy Clin. Immunol. 2006, 118, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
  354. Talaei, M.; Hughes, D.A.; Mahmoud, O.; Emmett, P.M.; Granell, R.; Guerra, S.; Shaheen, S.O. Dietary intake of vitamin A, lung function and incident asthma in childhood. Eur. Respir. J. 2021, 58, 2004407. [Google Scholar] [CrossRef] [PubMed]
  355. Patel, S.; Murray, C.S.; Woodcock, A.; Simpson, A.; Custovic, A. Dietary antioxidant intake, allergic sensitization and allergic diseases in young children. Allergy 2009, 64, 1766–1772. [Google Scholar] [CrossRef] [PubMed]
  356. Miyake, Y.; Sasaki, S.; Ohya, Y.; Miyamoto, S.; Matsunaga, I.; Yoshida, T.; Hirota, Y.; Oda, H.; Osaka, M.; Child Health Study Group. Dietary intake of seaweed and minerals and prevalence of allergic rhinitis in Japanese pregnant females: Baseline data from the Osaka Maternal and Child Health Study. Ann. Epidemiol. 2006, 16, 614–621. [Google Scholar] [CrossRef]
  357. Nagel, G.; Nieters, A.; Becker, N.; Linseisen, J. The influence of the dietary intake of fatty acids and antioxidants on hay fever in adults. Allergy 2003, 58, 1277–1284. [Google Scholar] [CrossRef]
  358. Yang, A.R.; Kim, Y.N.; Lee, B.H. Dietary intakes and lifestyle patterns of Korean children and adolescents with atopic dermatitis: Using the fourth and fifth Korean National Health and Nutrition Examination Survey (KNHANES IV,V), 2007–2011. Ecol. Food Nutr. 2016, 55, 50–64. [Google Scholar] [CrossRef] [PubMed]
  359. Toyran, M.; Kaymak, M.; Vezir, E.; Harmanci, K.; Kaya, A.; Ginis, T.; Kose, G.; Kocabas, C.N. Trace element levels in children with atopic dermatitis. J. Investig. Allergol. Clin. Immunol. 2012, 22, 341–344. [Google Scholar]
  360. Pereira de Jesus, S.; den Dekker, H.T.; de Jongste, J.C.; Reiss, I.K.; Steegers, E.A.; Jaddoe, V.W.V.; Duijts, L. Maternal hemoglobin and hematocrit levels during pregnancy and childhood lung function and asthma. The Generation R Study. Pediatr. Pulmonol. 2018, 53, 130–137. [Google Scholar] [CrossRef]
  361. Triche, E.W.; Lundsberg, L.S.; Wickner, P.G.; Belanger, K.; Leaderer, B.P.; Bracken, M.B. Association of maternal anemia with increased wheeze and asthma in children. Ann. Allergy Asthma Immunol. 2011, 106, 131–139.e1. [Google Scholar] [CrossRef]
  362. Rosenlund, H.; Magnusson, J.; Kull, I.; Hakansson, N.; Wolk, A.; Pershagen, G.; Wickman, M.; Bergstrom, A. Antioxidant intake and allergic disease in children. Clin. Exp. Allergy 2012, 42, 1491–1500. [Google Scholar] [CrossRef]
  363. Magdelijns, F.J.; Mommers, M.; Penders, J.; Smits, L.; Thijs, C. Folic acid use in pregnancy and the development of atopy, asthma, and lung function in childhood. Pediatrics 2011, 128, e135–e144. [Google Scholar] [CrossRef] [PubMed]
  364. Liu, X.; Yang, G.; Luo, M.; Lan, Q.; Shi, X.; Deng, H.; Wang, N.; Xu, X.; Zhang, C. Serum vitamin E levels and chronic inflammatory skin diseases: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0261259. [Google Scholar] [CrossRef] [PubMed]
  365. Petriashvili, M. Impact of Maternal Vitamin D Status on the Formation of Atopic Dermatitis in Young Children. Glob. Pediatr. Health 2021, 8, 2333794X211022916. [Google Scholar] [CrossRef]
  366. Lara-Corrales, I.; Huang, C.M.; Parkin, P.C.; Rubio-Gomez, G.A.; Posso-De Los Rios, C.J.; Maguire, J.; Pope, E. Vitamin D Level and Supplementation in Pediatric Atopic Dermatitis: A Randomized Controlled Trial. J. Cutan. Med. Surg. 2019, 23, 44–49. [Google Scholar] [CrossRef]
  367. Riccioni, G.; Bucciarelli, T.; Mancini, B.; Di Ilio, C.; Della Vecchia, R.; D’Orazio, N. Plasma lycopene and antioxidant vitamins in asthma: The PLAVA study. J. Asthma 2007, 44, 429–432. [Google Scholar] [CrossRef]
  368. Mills, K.; Lay, J.; Wu, W.; Robinette, C.; Kesic, M.J.; Dreskin, S.C.; Peden, D.B.; Hernandez, M. Vitamin E, gamma-tocopherol, diminishes ex vivo basophil response to dust mite allergen. Allergy 2014, 69, 541–544. [Google Scholar] [CrossRef] [PubMed]
  369. Feketea, G.; Vassilopoulou, E.; Andreescu, O.; Berghea, E.C.; Pop, R.M.; Sabin, O.; Zdrenghea, M.; Bocsan, I.C. Vitamin D Level and Immune Modulation in Children with Recurrent Wheezing. Children 2024, 11, 219. [Google Scholar] [CrossRef]
  370. Petrov, V.I.; Shishimorov, I.N.; Perminov, A.A.; Nefedov, I.V. Influence of magnesium deficiency correction on the effectiveness of bronchial asthma pharmacotherapy in children. Eksp. Klin. Farmakol. 2014, 77, 23–27. [Google Scholar]
  371. Lipkin, G.; March, C.; Gowdey, J. Magnesium in Epidermis, Dermis, and Whole Skin of Normal and Atopic Subjects. J. Investig. Dermatol. 1964, 42, 293–304. [Google Scholar] [CrossRef] [PubMed]
  372. Galland, L. Magnesium and immune function: An overview. Magnesium 1988, 7, 290–299. [Google Scholar]
  373. Yu, Z.; Xu, C.; Fang, C.; Zhang, F. Causal effect of iron status on lung function: A Mendelian randomization study. Front. Nutr. 2022, 9, 1025212. [Google Scholar] [CrossRef]
  374. Gomez, H.M.; Pillar, A.L.; Brown, A.C.; Kim, R.Y.; Ali, M.K.; Essilfie, A.T.; Vanders, R.L.; Frazer, D.M.; Anderson, G.J.; Hansbro, P.M.; et al. Investigating the Links between Lower Iron Status in Pregnancy and Respiratory Disease in Offspring Using Murine Models. Nutrients 2021, 13, 4461. [Google Scholar] [CrossRef]
  375. Esenboga, S.; Cetinkaya, P.G.; Sahiner, N.; Birben, E.; Soyer, O.; Sekerel, B.E.; Sahiner, U.M. Infantile atopic dermatitis: Serum vitamin D, zinc and TARC levels and their relationship with disease phenotype and severity. Allergol. Immunopathol. 2021, 49, 162–168. [Google Scholar] [CrossRef] [PubMed]
  376. Cui, H.S.; Ahn, I.S.; Byun, Y.S.; Yang, Y.S.; Kim, J.H.; Chung, B.Y.; Kim, H.O.; Park, C.W. Dietary pattern and nutrient intake of korean children with atopic dermatitis. Ann. Dermatol. 2014, 26, 570–575. [Google Scholar] [CrossRef]
  377. Kim, S.H.; Lee, J.H.; Ly, S.Y. Children with atopic dermatitis in Daejeon, Korea: Individualized nutrition intervention for disease severity and nutritional status. Asia Pac. J. Clin. Nutr. 2016, 25, 716–728. [Google Scholar] [CrossRef]
  378. Popescu, F.D. Cross-reactivity between aeroallergens and food allergens. World J. Methodol. 2015, 5, 31–50. [Google Scholar] [CrossRef]
  379. Worm, M.; Jappe, U.; Kleine-Tebbe, J.; Schäfer, C.; Reese, I.; Saloga, J.; Treudler, R.; Zuberbier, T.; Waßmann, A.; Fuchs, T.; et al. Food allergies resulting from immunological cross-reactivity with inhalant allergens: Guidelines from the German Society for Allergology and Clinical Immunology (DGAKI), the German Dermatology Society (DDG), the Association of German Allergologists (AeDA) and the Society for Pediatric Allergology and Environmental Medicine (GPA). Allergo J. Int. 2014, 23, 1–16. [Google Scholar] [CrossRef] [PubMed]
  380. Krikeerati, T.; Rodsaward, P.; Nawiboonwong, J.; Pinyopornpanish, K.; Phusawang, S.; Sompornrattanaphan, M. Revisiting Fruit Allergy: Prevalence across the Globe, Diagnosis, and Current Management. Foods 2023, 12, 4083. [Google Scholar] [CrossRef]
  381. Venter, C.; Agostoni, C.; Arshad, S.H.; Ben-Abdallah, M.; Du Toit, G.; Fleischer, D.M.; Greenhawt, M.; Glueck, D.H.; Groetch, M.; Lunjani, N.; et al. Dietary factors during pregnancy and atopic outcomes in childhood: A systematic review from the European Academy of Allergy and Clinical Immunology. Pediatr. Allergy Immunol. 2020, 31, 889–912. [Google Scholar] [CrossRef]
  382. Bunyavanich, S.; Rifas-Shiman, S.L.; Platts-Mills, T.A.; Workman, L.; Sordillo, J.E.; Camargo, C.A., Jr.; Gillman, M.W.; Gold, D.R.; Litonjua, A.A. Peanut, milk, and wheat intake during pregnancy is associated with reduced allergy and asthma in children. J. Allergy Clin. Immunol. 2014, 133, 1373–1382. [Google Scholar] [CrossRef] [PubMed]
  383. Willers, S.M.; Devereux, G.; Craig, L.C.; McNeill, G.; Wijga, A.H.; Abou El-Magd, W.; Turner, S.W.; Helms, P.J.; Seaton, A. Maternal food consumption during pregnancy and asthma, respiratory and atopic symptoms in 5-year-old children. Thorax 2007, 62, 773–779. [Google Scholar] [CrossRef] [PubMed]
  384. Maslova, E.; Granstrom, C.; Hansen, S.; Petersen, S.B.; Strom, M.; Willett, W.C.; Olsen, S.F. Peanut and tree nut consumption during pregnancy and allergic disease in children-should mothers decrease their intake? Longitudinal evidence from the Danish National Birth Cohort. J. Allergy Clin. Immunol. 2012, 130, 724–732. [Google Scholar] [CrossRef] [PubMed]
  385. Maslova, E.; Strom, M.; Oken, E.; Campos, H.; Lange, C.; Gold, D.; Olsen, S.F. Fish intake during pregnancy and the risk of child asthma and allergic rhinitis-longitudinal evidence from the Danish National Birth Cohort. Br. J. Nutr. 2013, 110, 1313–1325. [Google Scholar] [CrossRef] [PubMed]
  386. Best, K.P.; Sullivan, T.; Palmer, D.; Gold, M.; Kennedy, D.J.; Martin, J.; Makrides, M. Prenatal Fish Oil Supplementation and Allergy: 6-Year Follow-up of a Randomized Controlled Trial. Pediatrics 2016, 137, e20154443. [Google Scholar] [CrossRef] [PubMed]
  387. Best, K.P.; Sullivan, T.R.; Palmer, D.J.; Gold, M.; Martin, J.; Kennedy, D.; Makrides, M. Prenatal omega-3 LCPUFA and symptoms of allergic disease and sensitization throughout early childhood-a longitudinal analysis of long-term follow-up of a randomized controlled trial. World Allergy Organ. J. 2018, 11, 10. [Google Scholar] [CrossRef]
  388. Palmer, D.J.; Sullivan, T.; Gold, M.S.; Prescott, S.L.; Heddle, R.; Gibson, R.A.; Makrides, M. Randomized controlled trial of fish oil supplementation in pregnancy on childhood allergies. Allergy 2013, 68, 1370–1376. [Google Scholar] [CrossRef]
  389. Hansen, S.; Strom, M.; Maslova, E.; Dahl, R.; Hoffmann, H.J.; Rytter, D.; Bech, B.H.; Henriksen, T.B.; Granstrom, C.; Halldorsson, T.I.; et al. Fish oil supplementation during pregnancy and allergic respiratory disease in the adult offspring. J. Allergy Clin. Immunol. 2017, 139, 104–111 e104. [Google Scholar] [CrossRef]
  390. Venter, C.; Palumbo, M.P.; Glueck, D.H.; Sauder, K.A.; O’Mahony, L.; Fleischer, D.M.; Ben-Abdallah, M.; Ringham, B.M.; Dabelea, D. The maternal diet index in pregnancy is associated with offspring allergic diseases: The Healthy Start study. Allergy 2022, 77, 162–172. [Google Scholar] [CrossRef]
  391. Milewska-Wrobel, D.; Lis-Swiety, A. Does maternal diet during pregnancy influence clinical and laboratory characteristics of infantile-onset atopic dermatitis? Eur. Ann. Allergy Clin. Immunol. 2020, 52, 277–279. [Google Scholar] [CrossRef]
  392. Garcia-Larsen, V.; Ierodiakonou, D.; Jarrold, K.; Cunha, S.; Chivinge, J.; Robinson, Z.; Geoghegan, N.; Ruparelia, A.; Devani, P.; Trivella, M.; et al. Diet during pregnancy and infancy and risk of allergic or autoimmune disease: A systematic review and meta-analysis. PLoS Med. 2018, 15, e1002507. [Google Scholar] [CrossRef]
  393. Halken, S.; Muraro, A.; de Silva, D.; Khaleva, E.; Angier, E.; Arasi, S.; Arshad, H.; Bahnson, H.T.; Beyer, K.; Boyle, R.; et al. EAACI guideline: Preventing the development of food allergy in infants and young children (2020 update). Pediatr. Allergy Immunol. 2021, 32, 843–858. [Google Scholar] [CrossRef] [PubMed]
  394. Levy, M.L.; Bacharier, L.B.; Bateman, E.; Boulet, L.P.; Brightling, C.; Buhl, R.; Brusselle, G.; Cruz, A.A.; Drazen, J.M.; Duijts, L.; et al. Key recommendations for primary care from the 2022 Global Initiative for Asthma (GINA) update. NPJ Prim. Care Respir. Med. 2023, 33, 7. [Google Scholar] [CrossRef]
  395. Fleischer, D.M.; Chan, E.S.; Venter, C.; Spergel, J.M.; Abrams, E.M.; Stukus, D.; Groetch, M.; Shaker, M.; Greenhawt, M. A Consensus Approach to the Primary Prevention of Food Allergy Through Nutrition: Guidance from the American Academy of Allergy, Asthma, and Immunology; American College of Allergy, Asthma, and Immunology; and the Canadian Society for Allergy and Clinical Immunology. J. Allergy Clin. Immunol. Pract. 2021, 9, 22–43 e24. [Google Scholar] [CrossRef]
  396. van Esch, B.; Porbahaie, M.; Abbring, S.; Garssen, J.; Potaczek, D.P.; Savelkoul, H.F.J.; van Neerven, R.J.J. The Impact of Milk and Its Components on Epigenetic Programming of Immune Function in Early Life and Beyond: Implications for Allergy and Asthma. Front. Immunol. 2020, 11, 2141. [Google Scholar] [CrossRef]
  397. Acevedo, N.; Alashkar Alhamwe, B.; Caraballo, L.; Ding, M.; Ferrante, A.; Garn, H.; Garssen, J.; Hii, C.S.; Irvine, J.; Llinas-Caballero, K.; et al. Perinatal and Early-Life Nutrition, Epigenetics, and Allergy. Nutrients 2021, 13, 724. [Google Scholar] [CrossRef]
  398. Suarez-Varela, M.M.; Alvarez, L.G.; Kogan, M.D.; Ferreira, J.C.; Martinez Gimeno, A.; Aguinaga Ontoso, I.; Gonzalez Diaz, C.; Arnedo Pena, A.; Dominguez Aurrecoechea, B.; Busquets Monge, R.M.; et al. Diet and prevalence of atopic eczema in 6 to 7-year-old schoolchildren in Spain: ISAAC phase III. J. Investig. Allergol. Clin. Immunol. 2010, 20, 469–475. [Google Scholar]
  399. Andrusaityte, S.; Grazuleviciene, R.; Petraviciene, I. Effect of diet and maternal education on allergies among preschool children: A case-control study. Environ. Res. 2017, 159, 374–380. [Google Scholar] [CrossRef]
  400. Loss, G.; Apprich, S.; Waser, M.; Kneifel, W.; Genuneit, J.; Buchele, G.; Weber, J.; Sozanska, B.; Danielewicz, H.; Horak, E.; et al. The protective effect of farm milk consumption on childhood asthma and atopy: The GABRIELA study. J. Allergy Clin. Immunol. 2011, 128, 766–773 e764. [Google Scholar] [CrossRef]
  401. Wijga, A.H.; Smit, H.A.; Kerkhof, M.; de Jongste, J.C.; Gerritsen, J.; Neijens, H.J.; Boshuizen, H.C.; Brunekreef, B. Association of consumption of products containing milk fat with reduced asthma risk in pre-school children: The PIAMA birth cohort study. Thorax 2003, 58, 567–572. [Google Scholar] [CrossRef]
  402. Miyake, Y.; Sasaki, S.; Tanaka, K.; Hirota, Y. Consumption of vegetables, fruit, and antioxidants during pregnancy and wheeze and eczema in infants. Allergy 2010, 65, 758–765. [Google Scholar] [CrossRef]
  403. Norback, D.; Zhao, Z.H.; Wang, Z.H.; Wieslander, G.; Mi, Y.H.; Zhang, Z. Asthma, eczema, and reports on pollen and cat allergy among pupils in Shanxi province, China. Int. Arch. Occup. Environ. Health 2007, 80, 207–216. [Google Scholar] [CrossRef] [PubMed]
  404. Saadeh, D.; Salameh, P.; Caillaud, D.; Charpin, D.; De Blay, F.; Kopferschmitt, C.; Lavaud, F.; Annesi-Maesano, I.; Baldi, I.; Raherison, C. Prevalence and association of asthma and allergic sensitization with dietary factors in schoolchildren: Data from the french six cities study. BMC Public Health 2015, 15, 993. [Google Scholar] [CrossRef] [PubMed]
  405. Hodge, L.; Salome, C.M.; Peat, J.K.; Haby, M.M.; Xuan, W.; Woolcock, A.J. Consumption of oily fish and childhood asthma risk. Med. J. Aust. 1996, 164, 137–140. [Google Scholar] [CrossRef] [PubMed]
  406. Oien, T.; Storro, O.; Johnsen, R. Do early intake of fish and fish oil protect against eczema and doctor-diagnosed asthma at 2 years of age? A cohort study. J. Epidemiol. Community Health 2010, 64, 124–129. [Google Scholar] [CrossRef] [PubMed]
  407. Arvaniti, F.; Priftis, K.N.; Papadimitriou, A.; Papadopoulos, M.; Roma, E.; Kapsokefalou, M.; Anthracopoulos, M.B.; Panagiotakos, D.B. Adherence to the Mediterranean type of diet is associated with lower prevalence of asthma symptoms, among 10-12 years old children: The PANACEA study. Pediatr. Allergy Immunol. 2011, 22, 283–289. [Google Scholar] [CrossRef]
  408. Vassilopoulou, E.; Comotti, A.; Douladiris, N.; Konstantinou, G.; Zuberbier, T.; Alberti, I.; Agostoni, C.; Berni Canani, R.; Bocsan, I.C.; Corsello, A.; et al. A systematic review and meta-analysis of nutritional and dietary interventions in randomized controlled trials for skin symptoms in children with atopic dermatitis and without food allergy: An EAACI task force report. Allergy 2024, 79, 1708–1724. [Google Scholar] [CrossRef] [PubMed]
  409. Lothian, J.B.; Grey, V.; Lands, L.C. Effect of whey protein to modulate immune response in children with atopic asthma. Int. J. Food Sci. Nutr. 2006, 57, 204–211. [Google Scholar] [CrossRef]
  410. Pontes, M.V.; Ribeiro, T.C.; Ribeiro, H.; de Mattos, A.P.; Almeida, I.R.; Leal, V.M.; Cabral, G.N.; Stolz, S.; Zhuang, W.; Scalabrin, D.M. Cow’s milk-based beverage consumption in 1- to 4-year-olds and allergic manifestations: An RCT. Nutr. J. 2016, 15, 19. [Google Scholar] [CrossRef]
  411. Bergmann, K.-C.; Raab, J.; Krause, L.; Becker, S.; Kugler, S.; Zuberbier, T.; Roth-Walter, F.; Jensen-Jaroli, E.; Kramer, M.F.; Graessel, A. Long-term benefits of targeted micronutrition with the holoBLG lozenge in house dust mite allergic patients. Allergo J. Int. 2022, 31, 161–171. [Google Scholar] [CrossRef]
  412. Bergmann, K.C.; Graessel, A.; Raab, J.; Banghard, W.; Krause, L.; Becker, S.; Kugler, S.; Zuberbier, T.; Ott, V.B.; Kramer, M.F.; et al. Targeted micronutrition via holo-BLG based on the farm effect in house dust mite allergic rhinoconjunctivitis patients–first evaluation in a standardized allergen exposure chamber. Allergo J. Int. 2021, 30, 141–191. [Google Scholar] [CrossRef]
  413. Abbring, S.; Kusche, D.; Roos, T.C.; Diks, M.A.P.; Hols, G.; Garssen, J.; Baars, T.; van Esch, B. Milk processing increases the allergenicity of cow’s milk-Preclinical evidence supported by a human proof-of-concept provocation pilot. Clin. Exp. Allergy 2019, 49, 1013–1025. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Risk factors for malnutrition.
Figure 1. Risk factors for malnutrition.
Jcm 13 04713 g001
Figure 2. Nutritional Immunity promotes malabsorption. While in the normal steady state, water-and fat-soluble compounds cross the epithelial barrier and enter the body via the blood system and/or the lacteals, inflammation will trigger nutritional immunity. This results in impaired absorption of minerals and vitamins, particularly in those following the blood route. In contrast the “lymph route” remains accessible as it still allows monitoring of nutrients for potential pathogens.
Figure 2. Nutritional Immunity promotes malabsorption. While in the normal steady state, water-and fat-soluble compounds cross the epithelial barrier and enter the body via the blood system and/or the lacteals, inflammation will trigger nutritional immunity. This results in impaired absorption of minerals and vitamins, particularly in those following the blood route. In contrast the “lymph route” remains accessible as it still allows monitoring of nutrients for potential pathogens.
Jcm 13 04713 g002
Figure 3. Protein- and micronutrient-poor conditions promote type 2 inflammation. Micronutrientrich conditions foster a regulatory and anti-inflammatory phenotype in lymphocytes, macrophages, and mast cells, while nutrient-poor conditions prime the immune system. A lack of micronutrients, particularly of iron and vitamin A, initially mounts a Th1/Th17-dominated immune response, which results in B cells transforming into plasma cells and secreting IgG-antibodies. When nutrient-poor conditions persevere for longer time periods, the immune response shifts toward Th2 (due to the more nutrient-sensitive nature of Th1 cells) and promotes eosinophils, as well as class switch toward IgE antibodies. M2: regulatory macrophage, Treg: regulatory T cells, B: naïve B-cells, EOS: eosinophils, MC: mast cells, PC: plasma cells.
Figure 3. Protein- and micronutrient-poor conditions promote type 2 inflammation. Micronutrientrich conditions foster a regulatory and anti-inflammatory phenotype in lymphocytes, macrophages, and mast cells, while nutrient-poor conditions prime the immune system. A lack of micronutrients, particularly of iron and vitamin A, initially mounts a Th1/Th17-dominated immune response, which results in B cells transforming into plasma cells and secreting IgG-antibodies. When nutrient-poor conditions persevere for longer time periods, the immune response shifts toward Th2 (due to the more nutrient-sensitive nature of Th1 cells) and promotes eosinophils, as well as class switch toward IgE antibodies. M2: regulatory macrophage, Treg: regulatory T cells, B: naïve B-cells, EOS: eosinophils, MC: mast cells, PC: plasma cells.
Jcm 13 04713 g003
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Vassilopoulou, E.; Venter, C.; Roth-Walter, F. Malnutrition and Allergies: Tipping the Immune Balance towards Health. J. Clin. Med. 2024, 13, 4713. https://doi.org/10.3390/jcm13164713

AMA Style

Vassilopoulou E, Venter C, Roth-Walter F. Malnutrition and Allergies: Tipping the Immune Balance towards Health. Journal of Clinical Medicine. 2024; 13(16):4713. https://doi.org/10.3390/jcm13164713

Chicago/Turabian Style

Vassilopoulou, Emilia, Carina Venter, and Franziska Roth-Walter. 2024. "Malnutrition and Allergies: Tipping the Immune Balance towards Health" Journal of Clinical Medicine 13, no. 16: 4713. https://doi.org/10.3390/jcm13164713

APA Style

Vassilopoulou, E., Venter, C., & Roth-Walter, F. (2024). Malnutrition and Allergies: Tipping the Immune Balance towards Health. Journal of Clinical Medicine, 13(16), 4713. https://doi.org/10.3390/jcm13164713

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop