Exploring TSLP and IL-33 Serum Levels and Genetic Variants: Unveiling Their Limited Potential as Biomarkers for Mild Asthma in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Blood Sample Collection, Storage, and Preparation
2.3. Genotyping
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Participants
3.2. Results of Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chung, K.F.; Wenzel, S.E.; Brozek, J.L.; Bush, A.; Castro, M.; Sterk, P.J.; Adcock, I.M.; Bateman, E.D.; Bel, E.H.; Bleecker, E.R.; et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur. Respir. J. 2014, 43, 343–373. [Google Scholar] [CrossRef] [PubMed]
- Dusser, D.; Montani, D.; Chanez, P.; De Blic, J.; Delacourt, C.; Deschildre, A.; Devillier, P.; Didier, A.; Leroyer, C.; Marguet, C.; et al. Mild asthma: An expert review on epidemiology, clinical characteristics and treatment recommendations. Allergy 2007, 62, 591–604. [Google Scholar] [CrossRef] [PubMed]
- Mohan, A.; Ludwig, A.; Brehm, C.; Lugogo, N.L.; Sumino, K.; Hanania, N.A. Revisiting Mild Asthma: Current Knowledge and Future Needs. Chest 2022, 161, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Reddel, H.K.; Bacharier, L.B.; Bateman, E.D.; Brightling, C.E.; Brusselle, G.G.; Buhl, R.; Cruz, A.A.; Duijts, L.; Drazen, J.M.; FitzGerald, J.M.; et al. Global Initiative for Asthma Strategy 2021: Executive Summary and Rationale for Key Changes. Am. J. Respir. Crit. Care Med. 2022, 205, 17–35. [Google Scholar] [CrossRef] [PubMed]
- Stanbery, A.G.; Smita, S.; von Moltke, J.; Tait Wojno, E.D.; Ziegler, S.F. TSLP, IL-33, and IL-25: Not just for allergy and helminth infection. J. Allergy Clin. Immunol. 2022, 150, 1302–1313. [Google Scholar] [CrossRef] [PubMed]
- Cayrol, C.; Girard, J.P. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol. Rev. 2018, 281, 154–168. [Google Scholar] [CrossRef] [PubMed]
- Toki, S.; Goleniewska, K.; Zhang, J.; Zhou, W.; Newcomb, D.C.; Zhou, B.; Kita, H.; Boyd, K.L.; Peebles, R.S. TSLP and IL-33 reciprocally promote each other’s lung protein expression and ILC2 receptor expression to enhance innate type-2 airway inflammation. Allergy 2020, 75, 1606–1617. [Google Scholar] [CrossRef]
- Murrison, L.B.; Ren, X.; Preusse, K.; He, H.; Kroner, J.; Chen, X.; Jenkins, S.; Johansson, E.; Biagini, J.M.; Weirauch, M.T.; et al. TSLP disease-associated genetic variants combined with airway TSLP expression influence asthma risk. J. Allergy Clin. Immunol. 2022, 149, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Heijink, I.H.; Kuchibhotla, V.N.S.; Roffel, M.P.; Maes, T.; Knight, D.A.; Sayers, I.; Nawijn, M.C. Epithelial cell dysfunction, a major driver of asthma development. Allergy 2020, 75, 1902–1917. [Google Scholar] [CrossRef] [PubMed]
- Ketelaar, M.E.; Portelli, M.A.; Dijk, F.N.; Shrine, N.; Faiz, A.; Vermeulen, C.J.; Xu, C.J.; Hankinson, J.; Bhaker, S.; Henry, A.P.; et al. Phenotypic and functional translation of IL33 genetics in asthma. J. Allergy Clin. Immunol. 2021, 147, 144–157. [Google Scholar] [CrossRef]
- Aneas, I.; Decker, D.C.; Howard, C.L.; Sobreira, D.R.; Sakabe, N.J.; Blaine, K.M.; Stein, M.M.; Hrusch, C.L.; Montefiori, L.E.; Tena, J.; et al. Asthma-associated genetic variants induce IL33 differential expression through an enhancer-blocking regulatory region. Nat. Commun. 2021, 12, 6115. [Google Scholar] [CrossRef] [PubMed]
- Harada, M.; Hirota, T.; Jodo, A.I.; Hitomi, Y.; Sakashita, M.; Tsunoda, T.; Miyagawa, T.; Doi, S.; Kameda, M.; Fujita, K.; et al. Thymic stromal lymphopoietin gene promoter polymorphisms are associated with susceptibility to bronchial asthma. Am. J. Respir. Cell Mol. Biol. 2011, 44, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Cianferoni, A.; Spergel, J. The importance of TSLP in allergic disease and its role as a potential therapeutic target. Expert. Rev. Clin. Immunol. 2014, 10, 1463–1474. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Yang, G.; Yang, R.; Peng, X.; Li, J. Interleukin-33 and receptor ST2 as indicators in patients with asthma: A meta-analysis. Int. J. Clin. Exp. Med. 2015, 8, 14935–14943. [Google Scholar]
- Mahneh, S.B.; Movahedi, M.; Aryan, Z.; Bahar, M.A.; Rezaei, A.; Sadr, M.; Rezaei, N.; Universal Scientific Education and Research Network (USERN). Serum IL-33 Is Elevated in Children with Asthma and Is Associated with Disease Severity. Int. Arch. Allergy Immunol. 2015, 168, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Charrad, R.; Kaabachi, W.; Berraies, A.; Hamzaoui, K.; Hamzaoui, A. IL-33 gene variants and protein expression in pediatric Tunisian asthmatic patients. Cytokine 2018, 104, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Douros, K.; Thanopoulou, M.I.; Boutopoulou, B.; Papadopoulou, A.; Papadimitriou, A.; Fretzayas, A.; Priftis, K.N. Adherence to the Mediterranean diet and inflammatory markers in children with asthma. Allergol. Immunopathol. 2019, 47, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Jafarzadeh, A.; Mahdavi, R.; Jamali, M.; Hajghani, H.; Nemati, M.; Ebrahimi, H.A. Increased Concentrations of Interleukin-33 in the Serum and Cerebrospinal Fluid of Patients with Multiple Sclerosis. Oman Med. J. 2016, 31, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Kalinauskaite-Zukauske, V.; Janulaityte, I.; Januskevicius, A.; Malakauskas, K. Serum levels of epithelial-derived mediators and interleukin-4/interleukin-13 signaling after bronchial challenge with Dermatophagoides pteronyssinus in patients with allergic asthma. Scand. J. Immunol. 2019, 90, e12820. [Google Scholar] [CrossRef] [PubMed]
- Zoltowska Nilsson, A.M.; Lei, Y.; Adner, M.; Nilsson, G.P. Mast cell-dependent IL-33/ST2 signaling is protective against the development of airway hyperresponsiveness in a house dust mite mouse model of asthma. Am. J. Physiol. Lung Cell Mol. Physiol. 2018, 314, L484–L492. [Google Scholar] [CrossRef]
- Akdis, M.; Aab, A.; Altunbulakli, C.; Azkur, K.; Costa, R.A.; Crameri, R.; Duan, S.; Eiwegger, T.; Eljaszewicz, A.; Ferstl, R.; et al. Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases. J. Allergy Clin. Immunol. 2016, 138, 984–1010. [Google Scholar] [CrossRef]
- Andreasson, L.M.; Dyhre-Petersen, N.; Hvidtfeldt, M.; Jørgensen, G.; Von Bülow, A.; Klein, D.K.; Uller, L.; Erjefält, J.; Porsbjerg, C.; Sverrild, A. Airway hyperresponsiveness correlates with airway TSLP in asthma independent of eosinophilic inflammation. J. Allergy Clin. Immunol. 2024, 153, 988–997.e11. [Google Scholar] [CrossRef] [PubMed]
- Vrsalović, R.; Korošec, P.; Štefanović, I.M.; Bidovec-Stojkovič, U.; Čičak, B.; Harjaček, M.; Škrgat, S. Value of thymic stromal lymphopoietin as a biomarker in children with asthma. Respir. Med. 2022, 193, 106757. [Google Scholar] [CrossRef]
- Górska, K.; Nejman-Gryz, P.; Paplińska-Goryca, M.; Proboszcz, M.; Krenke, R. Comparison of Thymic Stromal Lymphopoietin Concentration in Various Human Bio-specimens from Asthma and COPD Patients Measured with Two Different ELISA Kits. Adv. Exp. Med. Biol. 2017, 955, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Glück, J.; Rymarczyk, B.; Kasprzak, M.; Rogala, B. Increased Levels of Interleukin-33 and Thymic Stromal Lymphopoietin in Exhaled Breath Condensate in Chronic Bronchial Asthma. Int. Arch. Allergy Immunol. 2016, 169, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Préfontaine, D.; Nadigel, J.; Chouiali, F.; Audusseau, S.; Semlali, A.; Chakir, J.; Martin, J.G.; Hamid, Q. Increased IL-33 expression by epithelial cells in bronchial asthma. J. Allergy Clin. Immunol. 2010, 125, 752–754. [Google Scholar] [CrossRef]
- Fux, M.; Pecaric-Petkovic, T.; Odermatt, A.; Hausmann, O.V.; Lorentz, A.; Bischoff, S.C.; Virchow, J.C.; Dahinden, C.A. IL-33 is a mediator rather than a trigger of the acute allergic response in humans. Allergy 2014, 69, 216–222. [Google Scholar] [CrossRef]
- Ibrahim, B.; Achour, D.; Zerimech, F.; de Nadai, P.; Siroux, V.; Tsicopoulos, A.; Matran, R.; Granger, V.; Nadif, R. Plasma thymic stromal lymphopoietin (TSLP) in adults with non-severe asthma: The EGEA study. Thorax 2023, 78, 207–210. [Google Scholar] [CrossRef]
- Myers, J.M.B.; Martin, L.J.; Kovacic, M.B.; Mersha, T.B.; He, H.; Pilipenko, V.; Lindsey, M.A.; Ericksen, M.B.; Bernstein, D.I.; LeMasters, G.K.; et al. Epistasis between serine protease inhibitor Kazal-type 5 (SPINK5) and thymic stromal lymphopoietin (TSLP) genes contributes to childhood asthma. J. Allergy Clin. Immunol. 2014, 134, 891–899.e3. [Google Scholar] [CrossRef]
- Moffatt, M.F.; Gut, I.G.; Demenais, F.; Strachan, D.P.; Bouzigon, E.; Heath, S.; von Mutius, E.; Farrall, M.; Lathrop, M.; Cookson, W.O. A large-scale, consortium-based genomewide association study of asthma. N. Engl. J. Med. 2010, 363, 1211–1221. [Google Scholar] [CrossRef]
- Ober, C.; Mexico City Childhood Asthma Study (MCAAS); Nicolae, D.L.; Children’s Health Study (CHS) and HARBORS Study; Childhood Asthma Research and Education (CARE) Network; Childhood Asthma Management Program (CAMP); Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-Ethnicity (SAPPHIRE); Genetic Research on Asthma in the African Diaspora (GRAAD) Study. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat. Genet. 2011, 43, 887–892. [Google Scholar] [CrossRef]
- Smolinska, S.; Antolín-Amérigo, D.; Popescu, F.D.; Jutel, M. Thymic Stromal Lymphopoietin (TSLP), Its Isoforms and the Interplay with the Epithelium in Allergy and Asthma. Int. J. Mol. Sci. 2023, 24, 12725. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hastie, A.T.; Hawkins, G.A.; Moore, W.C.; Ampleford, E.J.; Milosevic, J.; Li, H.; Busse, W.W.; Erzurum, S.C.; Kaminski, N.; et al. eQTL of bronchial epithelial cells and bronchial alveolar lavage deciphers GWAS-identified asthma genes. Allergy 2015, 70, 1309–1318. [Google Scholar] [CrossRef] [PubMed]
- Grammatikopoulou, M.G.; Maraki, M.I.; Giannopoulou, D.; Poulimeneas, D.; Sidossis, L.S.; Tsigga, M. Similar Mediterranean diet adherence but greater central adiposity is observed among Greek diaspora adolescents living in Istanbul, compared to Athens. Ethn. Health 2018, 23, 221–232. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Study Group n = 52 | Control Group n = 26 | p |
---|---|---|---|
Gender, n (%): | 0.246 | ||
Girls | 17 (32.69%) | 12 (46.15%) | |
Boys | 35 (67.31%) | 14 (53.85%) | |
Age at the time of recruitment (years): | 0.019 | ||
M ± SD | 11.2 ± 3.10 | 12.69 ± 2.60 | |
Me [Q1; Q3] | 11 [8; 13] | 13 [7; 17] | |
Min–Max | 6–17 | 7–17 | |
Age groups, n (%): | 0.002 | ||
6–11 years | 31 (59.62%) | 6 (23.08%) | |
12–17 years | 21 (40.38%) | 20 (76.92%) | |
Residential area: | 0.380 | ||
Rural | 14 (26.92%) | 10 (38.46%) | |
<15,000 residents | 6 (11.54%) | 1 (3.85%) | |
>15,000 residents | 32 (61.54%) | 15 (57.69%) | |
BMI (kg/m2): | 0.004 | ||
M ± SD | 18.30 ± 3.39 | 12.27 ± 3.47 | |
Me [Q1; Q3] | 17.67 [16.01; 20.44] | 20.06 [18.67; 22.83] | |
Min–Max | 11.90–27.87 | 14.88–29.65 | |
Number of siblings: | 0.685 | ||
M ± SD | 1.12 ± 1.10 | 1.34 ± 1.67 | |
Me [Q1; Q3] | 1 [0; 2] | 1 [1; 1] | |
Min–Max | 0–5 | 0–9 | |
Contact with an animal in the home environment: | 0.068 | ||
Dog | 15 (28.85%) | 8 (30.77%) | |
Cat | 14 (26.92%) | 10 (38.46%) |
Characteristic | Results |
---|---|
Atopy | 36/52 (69.23%) |
Other atopic diseases of the child | 37/52 (71.15%) |
Positive family history of atopic diseases | 33/52 (63.46%) |
Specific SNP | Study Group n = 52 | Control Group n = 26 | adj. p |
---|---|---|---|
TSLP rs11466750 | >0.05 | ||
AG | 16 (30.77%) | 14 (53.85%) | |
GG | 36 (69.23%) | 12 (46.15%) | |
AA | 0 (0.00%) | 0 (0.00%) | |
TSLP rs2289277 | >0.05 | ||
CC | 19 (36.54%) | 6 (23.08%) | |
CG | 22 (42.31%) | 14 (53.85%) | |
GG | 11 (21.15%) | 6 (23.08%) | |
IL-33 rs992969 | >0.05 | ||
AA | 7 (13.46%) | 0 (0.00%) | |
GA | 19 (36.54%) | 7 (26.92%) | |
GG | 26 (50.00%) | 19 (73.08%) | |
IL-33 rs1888909 | >0.05 | ||
CC | 25 (48.07%) | 19 (73.08%) | |
CT | 20 (38.46%) | 7 (26.92%) | |
TT | 7 (13.46%) | 0 (0.00%) |
Specific Single-Nucleotide Polymorphism | Risk Allele | Allele (Frequencies) | |
---|---|---|---|
Study Group | Control Group | ||
TSLP rs11466750 | A | G (84.62%) A (15.38%) | G (73.08%) A (26.92%) |
TSLP rs2289277 | C | G (42.31%) C (57.69%) | G (50.0%) C (50.0%) |
IL-33 rs992969 | G | A (31.73%) G (68.27%) | A (13.46%) G (86.54%) |
IL-33 rs1888909 | C | T (32.69%) C (67.31%) | T (13.46%) C (86.54%) |
TSLP (pg/mL) | Study Group n = 52 | Control Group n = 26 | p |
---|---|---|---|
M ± SD | 13.35 ±10.94 | 20.86 ± 10.87 | 0.008 |
Me [Q1; Q3] | 14.02 [2.63; 20.96] | 19.57 [13.84; 27.36] | |
Min–Max | 0.39–42.29 | 3.08–45.33 |
IL-33 (pg/mL) | Study Group n = 52 | Control Group n = 26 | p |
---|---|---|---|
M ± SD | 398.99 ± 190.87 | 448.94 ± 155.45 | 0.069 |
Me [Q1; Q3] | 384.09 [262.76; 489.99] | 463.90 [381.71; 495.21] | |
Min–Max | 69.33–1000 | 34.85–889.73 |
Phenotype | Total n (%) | Genotype Status | |||
---|---|---|---|---|---|
IL-33 rs992969 A vs. G p-Value OR (95%CI) | IL-33 rs1888909 T vs. C p-Value OR (95%CI) | TSLP rs11466750 G vs. A p-Value OR (95%CI) | TSLP rs2289277 G vs. C p-Value OR (95%CI) | ||
Asthma | 52/78 (66.7%) | p = 0.019 0.33 (0.14 ÷ 0.82) | p = 0.012 0.32 (0.13 ÷ 0.78) | p = 0.090 0.49 (0.22 ÷ 1.11) | p = 0.369 1.36 (0.69 ÷ 2.66) |
Atopic asthma | 36/62 (58.1%) | p = 0.021 0.31 (0.12 ÷ 0.79) | p = 0.021 0.31 (0.12 ÷ 0.79) | p = 0.185 0.54 (0.23 ÷ 1.30) | p = 0.717 1.18 (0.58 ÷ 2.41) |
Non-atopic asthma | 16/42 (38.1%) | p = 0.151 0.60 (0.37 ÷ 1.22) | p = 0.057 0.56 (0.35 ÷ 1.09) | p = 0.172 0.39 (0.11 ÷ 1.30) | p = 0.182 1.90 (0.76 ÷ 4.74) |
Atopic asthma vs. non-atopic asthma | 36/52 (69.2%) | p = 0.654 0.93 (0.72 ÷ 1.28) | p = 1.000 0.91 (0.37 ÷ 2.22) | p = 0.771 1.40 (0.41 ÷ 4.73) | p = 0.292 0.62 (0.26 ÷ 1.47) |
Atopy/allergic sensitization | 36/78 (46.1%) | p = 0.045 0.69 (0.50 ÷ 1.02) | p = 0.000 0.23 (0.10 ÷ 0.51) | p = 0.543 0.73 (0.33 ÷ 1.65) | p = 0.872 0.93 (0.49 ÷ 1.75) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Połomska, J.; Sikorska-Szaflik, H.; Drabik-Chamerska, A.; Sozańska, B.; Dębińska, A. Exploring TSLP and IL-33 Serum Levels and Genetic Variants: Unveiling Their Limited Potential as Biomarkers for Mild Asthma in Children. J. Clin. Med. 2024, 13, 2542. https://doi.org/10.3390/jcm13092542
Połomska J, Sikorska-Szaflik H, Drabik-Chamerska A, Sozańska B, Dębińska A. Exploring TSLP and IL-33 Serum Levels and Genetic Variants: Unveiling Their Limited Potential as Biomarkers for Mild Asthma in Children. Journal of Clinical Medicine. 2024; 13(9):2542. https://doi.org/10.3390/jcm13092542
Chicago/Turabian StylePołomska, Joanna, Hanna Sikorska-Szaflik, Anna Drabik-Chamerska, Barbara Sozańska, and Anna Dębińska. 2024. "Exploring TSLP and IL-33 Serum Levels and Genetic Variants: Unveiling Their Limited Potential as Biomarkers for Mild Asthma in Children" Journal of Clinical Medicine 13, no. 9: 2542. https://doi.org/10.3390/jcm13092542
APA StylePołomska, J., Sikorska-Szaflik, H., Drabik-Chamerska, A., Sozańska, B., & Dębińska, A. (2024). Exploring TSLP and IL-33 Serum Levels and Genetic Variants: Unveiling Their Limited Potential as Biomarkers for Mild Asthma in Children. Journal of Clinical Medicine, 13(9), 2542. https://doi.org/10.3390/jcm13092542