Correlation between Epsilon Wave and Late Potentials in Arrhythmogenic Right Ventricular Cardiomyopathy—Do Late Potentials Define the Epsilon Wave?
Abstract
:1. Introduction
2. Methodology
- Study group: ARVC—81 patients with arrhythmogenic right ventricular cardiomyopathy diagnosed on the basis of the International Task Force 2010 Criteria. Late potentials were not taken into account in the diagnosis. This group included 28 women and 53 men, aged 20–78 years.
- Reference group (with two subgroups):
- Ebstein’s Anomaly (EA)—24 patients, including 13 women and 11 men, aged 23–55 years.
- Atrial septal defect (ASD)—29 patients with atrial septal defect scheduled for closure or after closure in adulthood. There were 21 women and 8 men in this group, aged 22–80 years.
Statistical Analysis
3. Results
4. Discussion
5. Limitations of the Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Corrado, D.; Wichter, T.; Link, M.S.; Hauer, R.N.W.; Marchlinski, F.E.; Anastasakis, A.; Bauce, B.; Basso, C.; Brunckhorst, C.; Tsatsopoulou, A.; et al. Treatment of Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia: An International Task Force Consensus Statement. Circulation 2015, 132, 441–453. [Google Scholar] [CrossRef]
- Corrado, D.; Basso, C.; Thiene, G.; McKenna, W.J.; Davies, M.J.; Fontaliran, F.; Nava, A.; Silvestri, F.; Blomstrom-Lundqvist, C.; Wlodarska, E.K.; et al. Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: A multicenter study. J. Am. Coll. Cardiol. 1997, 30, 1512–1520. [Google Scholar] [CrossRef] [PubMed]
- Miles, C.; Finocchiaro, G.; Papadakis, M.; Gray, B.; Westaby, J.; Ensam, B.; Basu, J.; Parry-Williams, G.; Papatheodorou, E.; Paterson, C.; et al. Sudden Death and Left Ventricular Involvement in Arrhythmogenic Cardiomyopathy. Circulation 2019, 139, 1786–1797. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cipriani, A.; Bauce, B.; De Lazzari, M.; Rigato, I.; Bariani, R.; Meneghin, S.; Pilichou, K.; Motta, R.; Aliberti, C.; Thiene, G.; et al. Arrhythmogenic Right Ventricular Cardiomyopathy: Characterization of Left Ventricular Phenotype and Differential Diagnosis with Dilated Cardiomyopathy. J. Am. Heart Assoc. 2020, 9, e014628. [Google Scholar] [CrossRef] [PubMed]
- El Ghannudi, S.; Nghiem, A.; Germain, P.; Jeung, M.Y.; Gangi, A.; Roy, C. Left ventricular involvement in arrhythmogenic right ventricular cardiomyopathy—A cardiac magnetic resonance imaging study. Clin. Med. Insights Cardiol. 2015, 8 (Suppl. 4), 27–36. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- McKenna, W.J.; Thiene, G.; Nava, A.; Fontaliran, F.; Blomstrom-Lundqvist, C.; Fontaine, G.; Camerini, F. Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Task Force of the Working Group Myocardial and Pericardial Disease of the European Society of Cardiology and of the Scientific Council on Cardiomyopathies of the International Society and Federation of Cardiology. Br. Heart J. 1994, 71, 215–218. [Google Scholar] [PubMed]
- Marcus, F.I.; McKenna, W.J.; Sherrill, D.; Basso, C.; Bauce, B.; Bluemke, D.A.; Calkins, H.; Corrado, D.; Cox, M.G.; Daubert, J.P.; et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: Proposed modification of the Task Force Criteria. Eur. Heart J. 2010, 31, 806–814. [Google Scholar] [CrossRef] [PubMed]
- Graziano, F.; Zorzi, A.; Cipriani, A.; De Lazzari, M.; Bauce, B.; Rigato, I.; Brunetti, G.; Pilichou, K.; Basso, C.; Perazzolo Marra, M.; et al. The 2020 “Padua Criteria” for Diagnosis and Phenotype Characterization of Arrhythmogenic Cardiomyopathy in Clinical Practice. J. Clin. Med. 2022, 11, 279. [Google Scholar] [CrossRef]
- Borowiec, K.; Biernacka, E.K. Spectacular terminal activation delay in arrhythmogenic right ventricular cardiomyopathy patient. EP Europace 2019, 21, 1757. [Google Scholar] [CrossRef]
- Li, G.L.; Saguner, A.M.; Akdis, D.; Fontaine, G.H. Value of a novel 16-lead High-Definition ECG machine to detect conduction abnormalities in structural heart disease. Pacing Clin. Electrophysiol. 2018, 41, 643–655. [Google Scholar] [CrossRef] [PubMed]
- Gottschalk, B.; Gysel, M.; Barbosa-Barros, R. The use of fontaine leads in the diagnosis of arrhythmogenic right ventricular dysplasia. Ann. Noninvasive Electrocardiol. 2014, 19, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Nava, A.; Folino, A.F.; Bauce, B.; Turrini, P.; Buja, G.F.; Daliento, L.; Thiene, G. Signal-averaged electrocardiogram in patients with arrhythmogenic right ventricular cardiomyopathy and ventricular arrhythmias. Eur. Heart J. 2000, 21, 58–65. [Google Scholar] [CrossRef]
- Berbari, E.J.; Lazzara, R.; Samet, P.; Scherlag, B.J. Noninvasive technique for detection of electrical activity during the P-R segment. Circulation 1973, 48, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- Breithardt, G.; Cain, M.E.; El-Sherif, N.; Flowers, N.C.; Hombach, V.; Janse, M.; Simson, M.B.; Steinbeck, G. Standards for analysis of ventricular late potentials using high-resolution or signal-averaged electrocardiography: A statement by a task force committee of the European Society of Cardiology, the American Heart Association, and the American College of Cardiology. J. Am. Coll. Cardiol. 1991, 17, 999–1006. [Google Scholar] [PubMed]
- Gupta, R.; Tichnell, C.; Murray, B.; Rizzo, S.; Te Riele, A.; Tandri, H.; Judge, D.P.; Thiene, G.; Basso, C.; Calkins, H.; et al. Comparison of Features of Fatal Versus Nonfatal Cardiac Arrest in Patients with Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy. Am. J. Cardiol. 2017, 120, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Platonov, P.G.; Calkins, H.; Hauer, R.N.; Corrado, D.; Svendsen, J.H.; Wichter, T.; Biernacka, E.K.; Saguner, A.M.; Riele, A.S.J.M.T.; Zareba, W. High interobserver variability in the assessment of epsilon waves: Implications for diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia. Heart Rhythm 2016, 13, 208–216. [Google Scholar] [CrossRef]
- O’Neill, L.; Sim, I.; O’Hare, D.; Whitaker, J.; Mukherjee, R.K.; Razeghi, O.; Niederer, S.; Wright, M.; Chiribiri, A.; Frigiola, A.; et al. CArdiac MagnEtic resonance assessment of bi-Atrial fibrosis in secundum atrial septal defects patients: CAMERA-ASD study. Eur. Heart J. Cardiovasc. Imaging. 2022, 23, 1231–1239. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ciepłucha, A.; Trojnarska, O.; Kociemba, A.; Łanocha, M.; Barczynski, M.; Rozmiarek, S.; Kramer, L.; Pyda, M. Clinical aspects of myocardial fibrosis in adults with Ebstein’s anomaly. Heart Vessel. 2018, 33, 1076–1085. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, D.; Li, X.; Sun, J.Y.; Cheng, W.; Greiser, A.; Zhang, T.J.; Liu, H.; Wan, K.; Luo, Y.; An, Q.; et al. Cardiovascular magnetic resonance evidence of myocardial fibrosis and its clinical significance in adolescent and adult patients with Ebstein’s anomaly. J. Cardiovasc. Magn. Reson. 2018, 20, 69. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aly, S.; Seed, M.; Yoo, S.J.; Lam, C.; Grosse-Wortmann, L. Myocardial Fibrosis in Pediatric Patients with Ebstein’s Anomaly. Circ. Cardiovasc. Imaging 2021, 14, e011136. [Google Scholar] [CrossRef] [PubMed]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; de Boer, R.A.; et al. 2023 ESC Guidelines for the management of cardiomyopathies: Developed by the task force on the management of cardiomyopathies of the European Society of Cardiology (ESC). Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef] [PubMed]
ARVC | ASD + EA | p | ASD | EA | p | |
---|---|---|---|---|---|---|
Gender (female) | 28 (34.6%) | 34 (64.1%) | <0.001 | 21 (72.4%) | 13 (54.2%) | 0.168 |
Mean Age | 47.0 ± 15.8 | 44.5 ± 14.7 | 0.362 | 49.4 ± 13.2 | 38.5 ± 14.5 | 0.006 |
RVOT mm | 40.4 ± 10.5 | 44.2 ± 11.7 | 0.054 | 40.5 ± 8.9 | 49.1 ± 13.3 | 0.013 |
RVIT mm | 47.9 ± 9.2 | 51.8 ± 11.0 | 0.030 | 47.3 ± 8.5 | 57.2 ± 11.5 | <0.001 |
RVEDa cm2 | 33 (26–42) | 29 (24.5–38.5) | 0.196 | 27 (25–30) | 35.0 (24–54) | 0.060 |
TAPSE mm | 18.6 ± 5.7 | 20.2 ± 7.8 | 0.260 | 22.8 ± 7.2 | 16.1 ± 7.0 | 0.010 |
RV S’cm/s | 10.1 ± 3.6 | 11.6 ± 4.1 | 0.054 | 13.3 ± 3.8 | 9.9 ± 3.7 | 0.004 |
LV involvement | 23 (28.4%) | 3 (5.7%) | 0.001 | 1 (3.4%) | 2 (8.3%) | 0.584 |
LVEF % | 60 (50–65) | 60 (57–85) | 0.011 | 65 (60–65) | 59 (55–60) | <0.001 |
Total N = 134 | ARVC N = 81 | ASDE/EA N = 53 | p | Adjusted for * | ||
---|---|---|---|---|---|---|
OR [95% CI] | p | |||||
Echocardiography | ||||||
RVOT > 36 mm * | 81 (63.3%) | 43 (55.8%) | 38 (74.5%) | 0.032 | 0.40 [0.18–0.89] | 0.025 |
RVIT > 41 mm * | 100 (76.3%) | 56 (71.8%) | 44 (83.0%) | 0.138 | 0.42 [0.17–1.05] | 0.065 |
RVEDa > 22 cm2 * | 101 (87.1%) | 58 (90.6%) | 43 (82.7%) | 0.205 | 1.54 [0.49–4.88] | 0.462 |
TAPSE < 16 mm * | 33 (30%) | 23 (31.1%) | 10 (27.8%) | 0.723 | 1.12 [0.45–2.79] | 0.803 |
RV S’ < 9 cm/s * | 36 (30.8%) | 24 (32.4%) | 12 (27.9%) | 0.609 | 1.08 [0.46–2.55] | 0.863 |
ECG | ||||||
Fullfield 2 criteria of LPs | 78 (58.2%) | 52 (64.2%) | 26 (49.1%) | 0.082 | 3.1 [1.2– 8.1] | 0.024 |
Epsilon wave | 31 (23.1%) | 27 (33.3%) | 4 (7.5%) | <0.001 | 15.7 [3.2–77.6] | <0.001 |
Negative T waves (ECG) | 73 (54.5%) | 53 (65.4%) | 20 (37.7%) | 0.002 | 4.9 [1.7–14.6] | 0.004 |
ARVC Group | EW+ n = 27 | EW− n = 54 | OR [95% CI] | p—Wald |
---|---|---|---|---|
Age | 50.4 ± 17.5 | 45.3 ± 14.8 | 1.021 [0.991–1.053] | 0.173 |
Female | 10 (37.0%) | 18 (33.3%) | 1.176 [0.448–3.086] | 0.741 |
ECG examination | ||||
Negative T-waves | 20 (74.1%) | 33 (61.1%) | 1.8 [0.7–5.0] | 0.247 |
Fullfield 2 criteria of LPS | 25 (92.6%) | 27 (50%) | 12.5 [2.691–58.063] | 0.001 |
HF QRS duration | 145.5 ± 30.8 | 105.3 ± 27.6 | 1.042 [1.023–1.061] | <0.001 |
HF_QRS ≥ 114 ms | 22 (81.5%) | 15 (27.8%) | 11.4 [3.7–35.7] | <0.001 |
LAS-40 | 95 (69–116) | 38 (29–56) | 1.041 [1.022–1.060] | <0.001 |
LAS-40 ≥ 38 ms | 25 (92.6%) | 28 (51.8%) | 11.6 [2.5–53.9] | <0.001 |
RMS-40 | 8 (6–14) | 18 (8–28) | 0.924 [0.875–0.976] | 0.004 |
RMS-40 < 20µV | 25 (92.6%) | 28 (51.8%) | 9.3 [2.0–43.2] | 0.004 |
Delta LAS/RMS | 86 (56–114) | 20 [(−2)–48] | 1.031 [1.017–1.046] | <0.001 |
Echocardiographic examination | ||||
RVOT | 48.5 ± 10.4 | 36.2 ± 7.7 | 1.158 [1.080–1.242] | <0001 |
RVIT | 54.8 ± 7.8 | 44.6 ± 8.0 | 1.161 [1.078–1.251] | <0.001 |
RVA | 41 (28–45) | 31 (25–35) | 1.092 [1.027–1.162] | 0.005 |
TAPSE | 16.2 ± 6.4 | 19.7 ± 5.0 | 0.889 [0.808–0.979] | 0.017 |
RVOT | RVIT | RVEDa | TAPSE | RV S’ | ||||||
---|---|---|---|---|---|---|---|---|---|---|
β ± SE | p | β ± SE | p | β ± SE | p | β ± SE | p | β ± SE | p | |
ARVC group | ||||||||||
EW | 8.9 ± 2.2 | <0.001 | 7.2 ± 1.9 | <0.001 | 4.9 ± 2.5 | 0.049 | −2.7 ± 1.2 | 0.030 | −3.1 ± 0.8 | <0.001 |
LP | 7.7 ± 2.1 | <0.001 | 6.2 ± 1.9 | 0.001 | 6.6 ± 2.8 | 0.017 | >0.05 | >0.05 | ||
Negative T | >0.05 | 3.7 ± 1.7 | 0.035 | 6.2 ± 2.4 | 0.011 | −5.3 ± 1.3 | <0.001 | −1.8 ± 0.8 | 0.034 | |
Age | >0.05 | >0.05 | >0.05 | >0.05 | >0.05 | |||||
Male | >0.05 | >0.05 | >0.05 | −3.6 ± 1.2 | 0.005 | −2.1 ± 0.8 | 0.012 | |||
R2 | 0.415 | 0.413 | 0.291 | 0.289 | 0.268 | |||||
ASD + EA group | ||||||||||
RVOT | RVIT | RVEDa | TAPSE | RV S’ | ||||||
β ± SE | p | β ± SE | p | β ± SE | p | β ± SE | p | β ± SE | p | |
EW | 12.7 ±5.4 | 0.025 | >0.05 | >0.05 | >0.05 | >0.05 | ||||
LP | >0.05 | >0.05 | >0.05 | >0.05 | >0.05 | |||||
Negative T | 8.8 ± 3.0 | 0.005 | 9.9 ± 2.8 | 0.001 | 12.2 ± 3.7 | 0.001 | −8.3 ± 2.3 | 0.001 | −4.1 ± 1.0 | <0.001 |
Age | >0.05 | >0.05 | >0.05 | >0.05 | >0.05 | |||||
Male | >0.05 | >0.05 | >0.05 | >0.05 | >0.05 | |||||
R2 | 0.271 | 0.192 | 0.154 | 0.271 | 254 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skrzypczyńska-Banasik, U.; Woźniak, O.; Kowalik, I.; Fronczak-Jakubczyk, A.; Borowiec, K.; Hoffman, P.; Biernacka, E.K. Correlation between Epsilon Wave and Late Potentials in Arrhythmogenic Right Ventricular Cardiomyopathy—Do Late Potentials Define the Epsilon Wave? J. Clin. Med. 2024, 13, 5038. https://doi.org/10.3390/jcm13175038
Skrzypczyńska-Banasik U, Woźniak O, Kowalik I, Fronczak-Jakubczyk A, Borowiec K, Hoffman P, Biernacka EK. Correlation between Epsilon Wave and Late Potentials in Arrhythmogenic Right Ventricular Cardiomyopathy—Do Late Potentials Define the Epsilon Wave? Journal of Clinical Medicine. 2024; 13(17):5038. https://doi.org/10.3390/jcm13175038
Chicago/Turabian StyleSkrzypczyńska-Banasik, Urszula, Olgierd Woźniak, Ilona Kowalik, Aneta Fronczak-Jakubczyk, Karolina Borowiec, Piotr Hoffman, and Elżbieta Katarzyna Biernacka. 2024. "Correlation between Epsilon Wave and Late Potentials in Arrhythmogenic Right Ventricular Cardiomyopathy—Do Late Potentials Define the Epsilon Wave?" Journal of Clinical Medicine 13, no. 17: 5038. https://doi.org/10.3390/jcm13175038
APA StyleSkrzypczyńska-Banasik, U., Woźniak, O., Kowalik, I., Fronczak-Jakubczyk, A., Borowiec, K., Hoffman, P., & Biernacka, E. K. (2024). Correlation between Epsilon Wave and Late Potentials in Arrhythmogenic Right Ventricular Cardiomyopathy—Do Late Potentials Define the Epsilon Wave? Journal of Clinical Medicine, 13(17), 5038. https://doi.org/10.3390/jcm13175038