Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors in Patients Following Acute Coronary Syndromes: From Lipid Lowering and Plaque Stabilization to Improved Outcomes
Abstract
:1. Introduction
2. Rationale for Post-ACS Lipid Lowering
3. Studies of PCSK9 after ACS
4. PCSK9 Inhibitors Immediately after an Acute Coronary Syndrome
Study | Study Type, Year | PCSK9 Inhibitor | Participants (n) | Setting | Follow-Up | LDL-C Reduction from Baseline | LDL-C Difference at Follow-Up between Groups | Adverse Outcomes | Other Outcomes | |
---|---|---|---|---|---|---|---|---|---|---|
PCSK9i (mg/dL) | Control (mg/dL) | |||||||||
EVOPACS [51] | RCT, 2019 | Evolocumab—420 mg (in-hospital and week 4) | 308 ACS patients (1:1) | ACS, suboptimal LDL-C | 8 weeks | 139.6 to 30.55 | 132.25 to 79.66 | −40.7% (95% CI: −45.2 to −36.2; p < 0.001) | No difference between groups | LDL-C < 70 mg/dL; PCSK9i: 95.7% control: 37.6% |
VCU-AlirocRT [52] | RCT, 2019 | Alirocumab—150 mg (in-hospital) | 20 ACS patients (1:1) | NSTEMI, LDL-C > 70 mg/dL on statin | 14 days | 91 to 28 | 98 to 90 | NR | None related to treatment | No difference in hs-CRP |
EVACS I [53] | RCT, 2020 | Evolocumab—420 mg (in-hospital) | 57 ACS patients | NSTEMI | 30 days | 91.5 to 35.9 | 89.6 to 64.5 | Evolocumab arm LDL-C a mean of 28.6 mg/dL lower than placebo (p < 0.001) | None related to treatment | LDL-C at targets: PCSK9i: 65.4–80.8% control: 23.8–38.1% (p = 0.01) |
Vavuranakis et al. [54] | RCT, 2022 | Evolocumab—420 mg (in-hospital) | 74 ACS patients | NSTEMI | 30 days | NR | NR | NR | None related to treatment | Lp(a): PCSK9i: 49 to 44 nmol/L (p = NS) control: 64 to 82 nmol/L (p < 0.01) |
EPIC-STEMI [56] | RCT, 2022 | Alirocumab—150 mg (pre-PCI, 2 weeks, 4 weeks) | 68 ACS patients | STEMI | 6 weeks | 114.85 to 29 | 110.98 to 50.27 | −22.3% (95% CI: −31.1 to −13.5; p < 0.001). | None related to treatment | LDL-C at targets: PCSK9i: 92.1% control: 56.7% |
Xu et al. [57] | Prospective, 2021 | Evolocumab—140 mg (in-hospital and every 2 weeks) | 334 ACS patients (96 PCSK9i vs. 238 control) | NSTEMI, suboptimal LDL-C | 12 weeks | 143 to 27 | 127.6 to 77.4 | −41.8% (95% CI −45.0 to −38.5%; p < 0.001) | No significant differences | LDL-C <55 mg/dL PCSK9i: 90.6% control: 7.1% |
Zhang et al. [58] | Retrospective, 2022 | Evolocumab—140 mg (in-hospital and every 2 weeks | 1654 ACS patients (414 PCSK9; 1150 Control) | ACS, suboptimal LDL-C | 18 months | 129.2 to 28.6 | 126 to 78.1 | −42.48 (−40.51 to −44.45; p < 0.001) | Composite of ischemic events and mortality: PCSK9i: 8.2% vs. control: 12.4%; HR: 0.65; 95% CI, 0.45–0.95) No safety events | LDL-C < 55 mg/dL PCSK9i: 91.6% control: 10.7% |
Hao et al. [59] | RCT, 2022 | Evolocumab—140 mg (in-hospital and every 2 weeks | 136 ACS patients | High-risk ACS, suboptimal LDL-C | 3 months | 136.9 to 22.4 | 136.2 to 49.1 | −83.9% vs. −63.9% | MACE: PCSK9i: 88% vs. control: 24.6%; p = 0.015 | LDL-C at targets: PCSK9i: 82.4% control: 22% |
5. PCSK9 Inhibitors in Acute Coronary Syndromes: More than Lipid Lowering
5.1. PCSK9 and Plaque Modification
5.2. PCSK9 Inhibition and Microcirculation
5.3. PCSK9 Inhibition and Platelet Function
6. Future Directions
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pirillo, A.; Casula, M.; Olmastroni, E.; Norata, G.D.; Catapano, A.L. Global Epidemiology of Dyslipidaemias. Nat. Rev. Cardiol. 2021, 18, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, T.; Takahashi, M.; Okazaki, H.; Okazaki, S.; Yokote, K.; Tada, H.; Ogura, M.; Ishigaki, Y.; Yamashita, S.; Harada-Shiba, M.; et al. Current Diagnosis and Management of Familial Hypobetalipoproteinemia 1. J. Atheroscler. Thromb. 2024, 31, 1005–1023. [Google Scholar] [CrossRef] [PubMed]
- Yanai, H.; Yoshida, H. Secondary Dyslipidemia: Its Treatments and Association with Atherosclerosis. Glob. Health Med. 2021, 3, 15–23. [Google Scholar] [CrossRef]
- Dimitriadis, K.; Theofilis, P.; Iliakis, P.; Pyrpyris, N.; Dri, E.; Sakalidis, A.; Soulaidopoulos, S.; Tsioufis, P.; Fragkoulis, C.; Chrysohoou, C.; et al. Management of Dyslipidemia in Coronary Artery Disease: The Present and the Future. Coron. Artery Dis. 2024, 35, 516–524. [Google Scholar] [CrossRef]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on Cardiovascular Disease Prevention in Clinical Practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Ray, K.K.; Haq, I.; Bilitou, A.; Manu, M.C.; Burden, A.; Aguiar, C.; Arca, M.; Connolly, D.L.; Eriksson, M.; Ferrières, J.; et al. Treatment Gaps in the Implementation of LDL Cholesterol Control among High- and Very High-Risk Patients in Europe between 2020 and 2021: The Multinational Observational SANTORINI Study. Lancet Reg. Health Eur. 2023, 29, 100624. [Google Scholar] [CrossRef]
- Kong, X.; He, G.; Quan, X.; Tan, Z.; Yan, F.; Chen, X. The Impact of the 2019 ESC/EAS Dyslipidaemia Guidelines on Real-World Initial Lipid-Lowering Therapy in Patients with Acute Myocardial Infarction. Medicine 2024, 103, e37637. [Google Scholar] [CrossRef]
- Gavina, C.; Seabra-Carvalho, D.; Aguiar, C.; Anastassopoulou, A.; Teixeira, C.; Ruivo, J.A.; Almeida, É.; Luz-Duarte, L.; Corte-Real, A.; Canelas-Pais, M.; et al. Characterization and LDL-C Management in a Cohort of High and Very High Cardiovascular Risk Patients: The PORTRAIT-DYS Study. Clin. Cardiol. 2024, 47, e24183. [Google Scholar] [CrossRef]
- Ciliberti, G.; Guerra, F.; Pizzi, C.; Merlo, M.; Zilio, F.; Bianco, F.; Mancone, M.; Zaffalon, D.; Gioscia, R.; Bergamaschi, L.; et al. Characteristics of Patients with Recurrent Acute Myocardial Infarction after MINOCA. Prog. Cardiovasc. Dis. 2023, 81, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Lagace, T.A. PCSK9 and LDLR Degradation. Curr. Opin. Lipidol. 2014, 25, 387–393. [Google Scholar] [CrossRef]
- Sullivan, D.; Olsson, A.G.; Scott, R.; Kim, J.B.; Xue, A.; Gebski, V.; Wasserman, S.M.; Stein, E.A. Effect of a Monoclonal Antibody to PCSK9 on Low-Density Lipoprotein Cholesterol Levels in Statin-Intolerant Patients. JAMA 2012, 308, 2497–2506. [Google Scholar] [CrossRef]
- Blom, D.J.; Hala, T.; Bolognese, M.; Lillestol, M.J.; Toth, P.D.; Burgess, L.; Ceska, R.; Roth, E.; Koren, M.J.; Ballantyne, C.M.; et al. A 52-Week Placebo-Controlled Trial of Evolocumab in Hyperlipidemia. N. Engl. J. Med. 2014, 370, 1809–1819. [Google Scholar] [CrossRef] [PubMed]
- Kopp, K.; Motloch, L.; Berezin, A.; Maringgele, V.; Ostapenko, H.; Mirna, M.; Schmutzler, L.; Dieplinger, A.; Hoppe, U.C.; Lichtenauer, M. Missed Opportunities in Implementation and Optimization of Lipid-Lowering Therapies in Very-High-Risk Patients Presenting with ST-Segment Elevation Myocardial Infarction. J. Clin. Med. 2023, 12, 5685. [Google Scholar] [CrossRef] [PubMed]
- Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; et al. Low-Density Lipoproteins Cause Atherosclerotic Cardiovascular Disease. 1. Evidence from Genetic, Epidemiologic, and Clinical Studies. A Consensus Statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef] [PubMed]
- Stancu, C.; Sima, A. Statins: Mechanism of Action and Effects. J. Cell. Mol. Med. 2001, 5, 378–387. [Google Scholar] [CrossRef]
- Schwartz, G.G. Effects of Atorvastatin on Early Recurrent Ischemic Events in Acute Coronary Syndromes: The MIRACL Study: A Randomized Controlled Trial. JAMA 2001, 285, 1711–1718. [Google Scholar] [CrossRef]
- Cannon, C.P.; Braunwald, E.; McCabe, C.H.; Rader, D.J.; Rouleau, J.L.; Belder, R.; Joyal, S.V.; Hill, K.A.; Pfeffer, M.A.; Skene, A.M. Intensive versus Moderate Lipid Lowering with Statins after Acute Coronary Syndromes. N. Engl. J. Med. 2004, 350, 1495–1504. [Google Scholar] [CrossRef]
- LaRosa, J.C.; Grundy, S.M.; Waters, D.D.; Shear, C.; Barter, P.; Fruchart, J.-C.; Gotto, A.M.; Greten, H.; Kastelein, J.J.P.; Shepherd, J.; et al. Intensive Lipid Lowering with Atorvastatin in Patients with Stable Coronary Disease. N. Engl. J. Med. 2005, 352, 1425–1435. [Google Scholar] [CrossRef]
- Cholesterol Treatment Trialists’ (CTT) Collaboration. Efficacy and Safety of More Intensive Lowering of LDL Cholesterol: A Meta-Analysis of Data from 170,000 Participants in 26 Randomised Trials. Lancet 2010, 376, 1670–1681. [Google Scholar] [CrossRef] [PubMed]
- Navarese, E.P.; Kowalewski, M.; Andreotti, F.; van Wely, M.; Camaro, C.; Kolodziejczak, M.; Gorny, B.; Wirianta, J.; Kubica, J.; Kelm, M.; et al. Meta-Analysis of Time-Related Benefits of Statin Therapy in Patients With Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. Am. J. Cardiol. 2014, 113, 1753–1764. [Google Scholar] [CrossRef] [PubMed]
- Cannon, C.P.; Blazing, M.A.; Giugliano, R.P.; McCagg, A.; White, J.A.; Theroux, P.; Darius, H.; Lewis, B.S.; Ophuis, T.O.; Jukema, J.W.; et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N. Engl. J. Med. 2015, 372, 2387–2397. [Google Scholar] [CrossRef]
- Chen, C.; Wei, F.-F.; Dong, Y.; Liu, C. Early Management of Blood Lipid Levels with Non-Statin Lipid-Lowering Drugs in Acute Coronary Syndrome: A Mini Review. Cardiovasc. Drugs Ther. 2024. [Google Scholar] [CrossRef] [PubMed]
- Nissen, S.E.; Stroes, E.; Dent-Acosta, R.E.; Rosenson, R.S.; Lehman, S.J.; Sattar, N.; Preiss, D.; Bruckert, E.; Ceška, R.; Lepor, N.; et al. Efficacy and Tolerability of Evolocumab vs Ezetimibe in Patients With Muscle-Related Statin Intolerance. JAMA 2016, 315, 1580–1590. [Google Scholar] [CrossRef] [PubMed]
- Hao, Q.; Aertgeerts, B.; Guyatt, G.; Bekkering, G.E.; Vandvik, P.O.; Khan, S.U.; Rodondi, N.; Jackson, R.; Reny, J.-L.; Al Ansary, L.; et al. PCSK9 Inhibitors and Ezetimibe for the Reduction of Cardiovascular Events: A Clinical Practice Guideline with Risk-Stratified Recommendations. BMJ 2022, 377, e069066. [Google Scholar] [CrossRef]
- Khan, S.U.; Yedlapati, S.H.; Lone, A.N.; Hao, Q.; Guyatt, G.; Delvaux, N.; Bekkering, G.E.; Vandvik, P.O.; Riaz, I.B.; Li, S.; et al. PCSK9 Inhibitors and Ezetimibe with or without Statin Therapy for Cardiovascular Risk Reduction: A Systematic Review and Network Meta-Analysis. BMJ 2022, 377, e069116. [Google Scholar] [CrossRef]
- Sarraju, A.; Nissen, S.E. Atherosclerotic Plaque Stabilization and Regression: A Review of Clinical Evidence. Nat. Rev. Cardiol. 2024, 21, 487–497. [Google Scholar] [CrossRef]
- Minami, Y.; Ako, J.; Tsujita, K.; Yokoi, H.; Ikari, Y.; Morino, Y.; Kobayashi, Y.; Kozuma, K. Drug Intervention as an Emerging Concept for Secondary Prevention in Patients with Coronary Disease. Cardiovasc. Interv. Ther. 2024, 39, 223–233. [Google Scholar] [CrossRef]
- Okazaki, S.; Yokoyama, T.; Miyauchi, K.; Shimada, K.; Kurata, T.; Sato, H.; Daida, H. Early Statin Treatment in Patients With Acute Coronary Syndrome. Circulation 2004, 110, 1061–1068. [Google Scholar] [CrossRef]
- Hiro, T.; Kimura, T.; Morimoto, T.; Miyauchi, K.; Nakagawa, Y.; Yamagishi, M.; Ozaki, Y.; Kimura, K.; Saito, S.; Yamaguchi, T.; et al. Effect of Intensive Statin Therapy on Regression of Coronary Atherosclerosis in Patients With Acute Coronary Syndrome. J. Am. Coll. Cardiol. 2009, 54, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.J.; Ballantyne, C.M.; Barter, P.J.; Chapman, M.J.; Erbel, R.M.; Libby, P.; Raichlen, J.S.; Uno, K.; Borgman, M.; Wolski, K.; et al. Effect of Two Intensive Statin Regimens on Progression of Coronary Disease. N. Engl. J. Med. 2011, 365, 2078–2087. [Google Scholar] [CrossRef]
- Tsujita, K.; Sugiyama, S.; Sumida, H.; Shimomura, H.; Yamashita, T.; Yamanaga, K.; Komura, N.; Sakamoto, K.; Oka, H.; Nakao, K.; et al. Impact of Dual Lipid-Lowering Strategy With Ezetimibe and Atorvastatin on Coronary Plaque Regression in Patients With Percutaneous Coronary Intervention. J. Am. Coll. Cardiol. 2015, 66, 495–507. [Google Scholar] [CrossRef]
- Komukai, K.; Kubo, T.; Kitabata, H.; Matsuo, Y.; Ozaki, Y.; Takarada, S.; Okumoto, Y.; Shiono, Y.; Orii, M.; Shimamura, K.; et al. Effect of Atorvastatin Therapy on Fibrous Cap Thickness in Coronary Atherosclerotic Plaque as Assessed by Optical Coherence Tomography. J. Am. Coll. Cardiol. 2014, 64, 2207–2217. [Google Scholar] [CrossRef] [PubMed]
- Nishiguchi, T.; Kubo, T.; Tanimoto, T.; Ino, Y.; Matsuo, Y.; Yamano, T.; Terada, K.; Emori, H.; Katayama, Y.; Taruya, A.; et al. Effect of Early Pitavastatin Therapy on Coronary Fibrous-Cap Thickness Assessed by Optical Coherence Tomography in Patients With Acute Coronary Syndrome. JACC Cardiovasc. Imaging 2018, 11, 829–838. [Google Scholar] [CrossRef]
- Habara, M.; Nasu, K.; Terashima, M.; Ko, E.; Yokota, D.; Ito, T.; Kurita, T.; Teramoto, T.; Kimura, M.; Kinoshita, Y.; et al. Impact on Optical Coherence Tomographic Coronary Findings of Fluvastatin Alone Versus Fluvastatin + Ezetimibe. Am. J. Cardiol. 2014, 113, 580–587. [Google Scholar] [CrossRef]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef]
- Gencer, B.; Mach, F.; Murphy, S.A.; De Ferrari, G.M.; Huber, K.; Lewis, B.S.; Ferreira, J.; Kurtz, C.E.; Wang, H.; Honarpour, N.; et al. Efficacy of Evolocumab on Cardiovascular Outcomes in Patients With Recent Myocardial Infarction. JAMA Cardiol. 2020, 5, 952–957. [Google Scholar] [CrossRef]
- Wiviott, S.D.; Giugliano, R.P.; Morrow, D.A.; De Ferrari, G.M.; Lewis, B.S.; Huber, K.; Kuder, J.F.; Murphy, S.A.; Forni, D.M.; Kurtz, C.E.; et al. Effect of Evolocumab on Type and Size of Subsequent Myocardial Infarction: A Prespecified Analysis of the FOURIER Randomized Clinical Trial. JAMA Cardiol. 2020, 5, 787–793. [Google Scholar] [CrossRef]
- Giugliano, R.P.; Pedersen, T.R.; Park, J.-G.; De Ferrari, G.M.; Gaciong, Z.A.; Ceska, R.; Toth, K.; Gouni-Berthold, I.; Lopez-Miranda, J.; Schiele, F.; et al. Clinical Efficacy and Safety of Achieving Very Low LDL-Cholesterol Concentrations with the PCSK9 Inhibitor Evolocumab: A Prespecified Secondary Analysis of the FOURIER Trial. Lancet 2017, 390, 1962–1971. [Google Scholar] [CrossRef] [PubMed]
- Charytan, D.M.; Sabatine, M.S.; Pedersen, T.R.; Im, K.; Park, J.-G.; Pineda, A.L.; Wasserman, S.M.; Deedwania, P.; Olsson, A.G.; Sever, P.S.; et al. Efficacy and Safety of Evolocumab in Chronic Kidney Disease in the FOURIER Trial. J. Am. Coll. Cardiol. 2019, 73, 2961–2970. [Google Scholar] [CrossRef] [PubMed]
- Oyama, K.; Giugliano, R.P.; Tang, M.; Bonaca, M.P.; Saver, J.L.; Murphy, S.A.; Ruzza, A.; Keech, A.C.; Sever, P.S.; Sabatine, M.S.; et al. Effect of Evolocumab on Acute Arterial Events across All Vascular Territories: Results from the FOURIER Trial. Eur. Heart J. 2021, 42, 4821–4829. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.-E.; Schwartz, G.G.; Elbez, Y.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Erglis, A.; Goodman, S.G.; Hagström, E.; et al. Alirocumab and Cardiovascular Outcomes in Patients With Previous Myocardial Infarction: Prespecified Subanalysis From ODYSSEY OUTCOMES. Can. J. Cardiol. 2022, 38, 1542–1549. [Google Scholar] [CrossRef]
- Landmesser, U.; McGinniss, J.; Steg, P.G.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Dilic, M.; Goodman, S.G.; Jukema, J.W.; Loy, M.; et al. Achievement of ESC/EAS LDL-C Treatment Goals after an Acute Coronary Syndrome with Statin and Alirocumab. Eur. J. Prev. Cardiol. 2022, 29, 1842–1851. [Google Scholar] [CrossRef]
- Jukema, J.W.; Szarek, M.; Zijlstra, L.E.; de Silva, H.A.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; et al. Alirocumab in Patients With Polyvascular Disease and Recent Acute Coronary Syndrome: ODYSSEY OUTCOMES Trial. J. Am. Coll. Cardiol. 2019, 74, 1167–1176. [Google Scholar] [CrossRef]
- Bittner, V.A.; Schwartz, G.G.; Bhatt, D.L.; Chua, T.; De Silva, H.A.; Diaz, R.; Goodman, S.G.; Harrington, R.A.; Jukema, J.W.; McGinniss, J.; et al. Alirocumab and Cardiovascular Outcomes According to Sex and Lipoprotein(a) after Acute Coronary Syndrome: A Report from the ODYSSEY OUTCOMES Study. J. Clin. Lipidol. 2024; in press. [Google Scholar] [CrossRef]
- Koh, K.K.; Nam, C.W.; Chao, T.-H.; Liu, M.-E.; Wu, C.-J.; Kim, D.-S.; Kim, C.-J.; Li, I.; Li, J.; Baccara-Dinet, M.T.; et al. A Randomized Trial Evaluating the Efficacy and Safety of Alirocumab in South Korea and Taiwan (ODYSSEY KT). J. Clin. Lipidol. 2018, 12, 162–172.e6. [Google Scholar] [CrossRef]
- Keech, A.C.; Oyama, K.; Sever, P.S.; Tang, M.; Murphy, S.A.; Hirayama, A.; Lu, C.; Tay, L.; Deedwania, P.C.; Siu, C.-W.; et al. Efficacy and Safety of Long-Term Evolocumab Use Among Asian Subjects—A Subgroup Analysis of the Further Cardiovascular Outcomes Research With PCSK9 Inhibition in Subjects With Elevated Risk (FOURIER) Trial―. Circ. J. 2021, 85, 2063–2070. [Google Scholar] [CrossRef]
- Okada, T.; Miyoshi, T.; Doi, M.; Nosaka, K.; Tsushima, R.; Ugawa, S.; Takagi, W.; Sogo, M.; Takahashi, M.; Ito, H. Effect of Early Initiation of Evolocumab on Lipoprotein(a) in Patients with Acute Myocardial Infarction: Sub-Analysis of a Randomized Controlled Trial. J. Cardiovasc. Dev. Dis. 2022, 9, 153. [Google Scholar] [CrossRef]
- Koskinas, K.C.; Windecker, S.; Pedrazzini, G.; Mueller, C.; Cook, S.; Matter, C.M.; Muller, O.; Häner, J.; Gencer, B.; Crljenica, C.; et al. Evolocumab for Early Reduction of LDL Cholesterol Levels in Patients With Acute Coronary Syndromes (EVOPACS). J. Am. Coll. Cardiol. 2019, 74, 2452–2462. [Google Scholar] [CrossRef]
- Trankle, C.R.; Wohlford, G.; Buckley, L.F.; Kadariya, D.; Ravindra, K.; Markley, R.; Park, T.S.; Potere, N.; Van Tassell, B.W.; Abbate, A. Alirocumab in Acute Myocardial Infarction: Results From the Virginia Commonwealth University Alirocumab Response Trial (VCU-AlirocRT). J. Cardiovasc. Pharmacol. 2019, 74, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Leucker, T.M.; Blaha, M.J.; Jones, S.R.; Vavuranakis, M.A.; Williams, M.S.; Lai, H.; Schindler, T.H.; Latina, J.; Schulman, S.P.; Gerstenblith, G. Effect of Evolocumab on Atherogenic Lipoproteins During the Peri- and Early Postinfarction Period. Circulation 2020, 142, 419–421. [Google Scholar] [CrossRef] [PubMed]
- Vavuranakis, M.A.; Jones, S.R.; Ziogos, E.; Blaha, M.J.; Williams, M.S.; Foran, P.; Schindler, T.H.; Lai, S.; Schulman, S.P.; Gerstenblith, G.; et al. The Trajectory of Lipoprotein(a) During the Peri- and Early Postinfarction Period and the Impact of Proprotein Convertase Subtilisin/Kexin Type 9 Inhibition. Am. J. Cardiol. 2022, 171, 1–6. [Google Scholar] [CrossRef]
- Nakamura, A.; Kanazawa, M.; Kagaya, Y.; Kondo, M.; Sato, K.; Endo, H.; Nozaki, E. Plasma Kinetics of Mature PCSK9, Furin-Cleaved PCSK9, and Lp(a) with or without Administration of PCSK9 Inhibitors in Acute Myocardial Infarction. J. Cardiol. 2020, 76, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.R.; Pare, G.; Lonn, E.M.; Jolly, S.S.; Natarajan, M.K.; Pinilla-Echeverri, N.; Schwalm, J.-D.; Sheth, T.N.; Sibbald, M.; Tsang, M.; et al. Effects of Routine Early Treatment with PCSK9 Inhibitors in Patients Undergoing Primary Percutaneous Coronary Intervention for ST-Segment Elevation Myocardial Infarction: A Randomised, Double-Blind, Sham-Controlled Trial. EuroIntervention 2022, 18, e888–e896. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chai, M.; Cheng, Y.; Peng, P.; Liu, X.; Yan, Z.; Guo, Y.; Zhao, Y.; Zhou, Y. Efficacy and Safety of Evolocumab in Reducing Low-Density Lipoprotein Cholesterol Levels in Chinese Patients with Non-ST-Segment Elevation Acute Coronary Syndrome. Curr. Vasc. Pharmacol. 2021, 19, 429–437. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Zhang, B.; Chen, Z.; Wei, Y.; Chen, P.; Chang, C.; Liu, G.; Chen, K.; Ding, J.; et al. Early Initiation of Evolocumab Treatment in Chinese Patients with Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. Clin. Ther. 2022, 44, 901–912. [Google Scholar] [CrossRef]
- Hao, Y.; Yang, Y.; Wang, Y.; Li, J. Effect of the Early Application of Evolocumab on Blood Lipid Profile and Cardiovascular Prognosis in Patients with Extremely High-Risk Acute Coronary Syndrome. Int. Heart J. 2022, 63, 22–052. [Google Scholar] [CrossRef]
- Justino, G.B.; Justino, L.B.; Müller, M.E.; Rocha, A.V.; Mazetto, A.; Cardoso, R.; Leucker, T.M. Early Initiation of PCSK9 Inhibitor Therapy Versus Placebo in Patients With Acute Coronary Syndrome: A Systematic Review and Meta-Analysis. Am. J. Cardiol. 2024, 213, 110–118. [Google Scholar] [CrossRef]
- Gargiulo, P.; Basile, C.; Galasso, G.; Bellino, M.; D’Elia, D.; Patti, G.; Bosco, M.; Prinetti, M.; Andò, G.; Campanella, F.; et al. Strike Early–Strike Strong Lipid-Lowering Strategy with Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors in Acute Coronary Syndrome Patients: Real-World Evidence from the AT-TARGET-IT Registry. Eur. J. Prev. Cardiol. 2024. [Google Scholar] [CrossRef]
- Gargiulo, P.; Basile, C.; Cesaro, A.; Marzano, F.; Buonocore, D.; Asile, G.; Abbate, V.; Vicidomini, F.; Paolillo, S.; Spaccarotella, C.A.M.; et al. Efficacy, Safety, Adherence and Persistence of PCSK9 Inhibitors in Clinical Practice: A Single Country, Multicenter, Observational Study (AT-TARGET-IT). Atherosclerosis 2023, 366, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.-A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the Management of Acute Coronary Syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef] [PubMed]
- Krychtiuk, K.A.; Ahrens, I.; Drexel, H.; Halvorsen, S.; Hassager, C.; Huber, K.; Kurpas, D.; Niessner, A.; Schiele, F.; Semb, A.G.; et al. Acute LDL-C Reduction Post ACS: Strike Early and Strike Strong: From Evidence to Clinical Practice. A Clinical Consensus Statement of the Association for Acute CardioVascular Care (ACVC), in Collaboration with the European Association of Preventive Cardiology (EAPC) and the European Society of Cardiology Working Group on Cardiovascular Pharmacotherapy. Eur. Heart J. Acute Cardiovasc. Care 2022, 11, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Attipoe-Dorcoo, S.; Yang, P.; Sperling, L.; Loustalot, F.; Thompson-Paul, A.M.; Gray, E.B.; Park, S.; Ritchey, M.D. Characteristics and Trends of PCSK9 Inhibitor Prescription Fills in the United States. J. Clin. Lipidol. 2021, 15, 332–338. [Google Scholar] [CrossRef]
- Smith, A.; Johnson, D.; Banks, J.; Keith, S.W.; Karalis, D.G. Trends in PCSK9 Inhibitor Prescriptions before and after the Price Reduction in Patients with Atherosclerotic Cardiovascular Disease. J. Clin. Med. 2021, 10, 3828. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Puri, R.; Anderson, T.; Ballantyne, C.M.; Cho, L.; Kastelein, J.J.P.; Koenig, W.; Somaratne, R.; Kassahun, H.; Yang, J.; et al. Effect of Evolocumab on Progression of Coronary Disease in Statin-Treated Patients. JAMA 2016, 316, 2373. [Google Scholar] [CrossRef]
- Ota, H.; Omori, H.; Kawasaki, M.; Hirakawa, A.; Matsuo, H. Clinical Impact of PCSK9 Inhibitor on Stabilization and Regression of Lipid-Rich Coronary Plaques: A near-Infrared Spectroscopy Study. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 217–228. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Kataoka, Y.; Nissen, S.E.; Prati, F.; Windecker, S.; Puri, R.; Hucko, T.; Aradi, D.; Herrman, J.-P.R.; Hermanides, R.S.; et al. Effect of Evolocumab on Coronary Plaque Phenotype and Burden in Statin-Treated Patients Following Myocardial Infarction. JACC Cardiovasc. Imaging 2022, 15, 1308–1321. [Google Scholar] [CrossRef]
- Räber, L.; Ueki, Y.; Otsuka, T.; Losdat, S.; Häner, J.D.; Lonborg, J.; Fahrni, G.; Iglesias, J.F.; van Geuns, R.-J.; Ondracek, A.S.; et al. Effect of Alirocumab Added to High-Intensity Statin Therapy on Coronary Atherosclerosis in Patients With Acute Myocardial Infarction. JAMA 2022, 327, 1771. [Google Scholar] [CrossRef]
- Gao, F.; Wang, Z.J.; Ma, X.T.; Shen, H.; Yang, L.X.; Zhou, Y.J. Effect of Alirocumab on Coronary Plaque in Patients with Coronary Artery Disease Assessed by Optical Coherence Tomography. Lipids Health Dis. 2021, 20, 106. [Google Scholar] [CrossRef]
- Sugizaki, Y.; Otake, H.; Kawamori, H.; Toba, T.; Nagano, Y.; Tsukiyama, Y.; Yanaka, K.; Yamamoto, H.; Nagasawa, A.; Onishi, H.; et al. Adding Alirocumab to Rosuvastatin Helps Reduce the Vulnerability of Thin-Cap Fibroatheroma. JACC Cardiovasc. Imaging 2020, 13, 1452–1454. [Google Scholar] [CrossRef]
- Ako, J.; Hibi, K.; Tsujita, K.; Hiro, T.; Morino, Y.; Kozuma, K.; Shinke, T.; Otake, H.; Uno, K.; Louie, M.J.; et al. Effect of Alirocumab on Coronary Atheroma Volume in Japanese Patients With Acute Coronary Syndrome—The ODYSSEY J-IVUS Trial—. Circ. J. 2019, 83, 2025–2033. [Google Scholar] [CrossRef]
- Yano, H.; Horinaka, S.; Ishimitsu, T. Effect of Evolocumab Therapy on Coronary Fibrous Cap Thickness Assessed by Optical Coherence Tomography in Patients with Acute Coronary Syndrome. J. Cardiol. 2020, 75, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Pérez de Isla, L.; Díaz-Díaz, J.L.; Romero, M.J.; Muñiz-Grijalvo, O.; Mediavilla, J.D.; Argüeso, R.; Sánchez Muñoz-Torrero, J.F.; Rubio, P.; Álvarez-Baños, P.; Ponte, P.; et al. Alirocumab and Coronary Atherosclerosis in Asymptomatic Patients with Familial Hypercholesterolemia: The ARCHITECT Study. Circulation 2023, 147, 1436–1443. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, P.; Liu, C.; Jin, M.; Wan, J.; Hou, J.; Yang, Y.; Wang, D.; Liu, Z.; Fu, Z. Effect of PCSK9 Antibodies on Coronary Plaque Regression and Stabilization Derived from Intravascular Imaging in Patients with Coronary Artery Disease: A Meta-Analysis. Int. J. Cardiol. 2023, 392, 131330. [Google Scholar] [CrossRef] [PubMed]
- Biccirè, F.G.; Häner, J.; Losdat, S.; Ueki, Y.; Shibutani, H.; Otsuka, T.; Kakizaki, R.; Hofbauer, T.M.; van Geuns, R.-J.; Stortecky, S.; et al. Concomitant Coronary Atheroma Regression and Stabilization in Response to Lipid-Lowering Therapy. J. Am. Coll. Cardiol. 2023, 82, 1737–1747. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, K.; Pyrpyris, N.; Tsioufis, K. The Potential Future Role of Extensive Lipid Lowering in ACS Patients with the Use of PCSK9 Inhibitors: Early Bird Catches the Worm. Eur. Heart J. Cardiovasc. Pharmacother. 2024, 10, 85–86. [Google Scholar] [CrossRef]
- Ding, Z.; Pothineni, N.V.K.; Goel, A.; Lüscher, T.F.; Mehta, J.L. PCSK9 and Inflammation: Role of Shear Stress, pro-Inflammatory Cytokines, and LOX-1. Cardiovasc. Res. 2020, 116, 908–915. [Google Scholar] [CrossRef]
- Pyrpyris, N.; Dimitriadis, K.; Beneki, E.; Iliakis, P.; Soulaidopoulos, S.; Tsioufis, P.; Adamopoulou, E.; Kasiakogias, A.; Sakalidis, A.; Koutsopoulos, G.; et al. LOX-1 Receptor: A Diagnostic Tool and Therapeutic Target in Atherogenesis. Curr. Probl. Cardiol. 2024, 49, 102117. [Google Scholar] [CrossRef]
- Roche-Molina, M.; Sanz-Rosa, D.; Cruz, F.M.; García-Prieto, J.; López, S.; Abia, R.; Muriana, F.J.G.; Fuster, V.; Ibáñez, B.; Bernal, J.A. Induction of Sustained Hypercholesterolemia by Single Adeno-Associated Virus–Mediated Gene Transfer of Mutant HPCSK9. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 50–59. [Google Scholar] [CrossRef]
- Denis, M.; Marcinkiewicz, J.; Zaid, A.; Gauthier, D.; Poirier, S.; Lazure, C.; Seidah, N.G.; Prat, A. Gene Inactivation of Proprotein Convertase Subtilisin/Kexin Type 9 Reduces Atherosclerosis in Mice. Circulation 2012, 125, 894–901. [Google Scholar] [CrossRef]
- Zulkapli, R.; Muid, S.A.; Wang, S.M.; Nawawi, H. PCSK9 Inhibitors Reduce PCSK9 and Early Atherogenic Biomarkers in Stimulated Human Coronary Artery Endothelial Cells. Int. J. Mol. Sci. 2023, 24, 5098. [Google Scholar] [CrossRef]
- Leung, A.K.K.; Xue, Y.C.; de Guzman, A.; Grzelkovski, G.; Kong, H.J.; Genga, K.R.; Russell, J.A.; Boyd, J.H.; Francis, G.A.; Walley, K.R. Modulation of Vascular Endothelial Inflammatory Response by Proprotein Convertase Subtilisin-Kexin Type 9. Atherosclerosis 2022, 362, 29–37. [Google Scholar] [CrossRef]
- Bohula, E.A.; Giugliano, R.P.; Leiter, L.A.; Verma, S.; Park, J.-G.; Sever, P.S.; Lira Pineda, A.; Honarpour, N.; Wang, H.; Murphy, S.A.; et al. Inflammatory and Cholesterol Risk in the FOURIER Trial. Circulation 2018, 138, 131–140. [Google Scholar] [CrossRef]
- Cao, Y.-X.; Li, S.; Liu, H.-H.; Li, J.-J. Impact of PCSK9 Monoclonal Antibodies on Circulating Hs-CRP Levels: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. BMJ Open 2018, 8, e022348. [Google Scholar] [CrossRef] [PubMed]
- Hoogeveen, R.M.; Opstal, T.S.J.; Kaiser, Y.; Stiekema, L.C.A.; Kroon, J.; Knol, R.J.J.; Bax, W.A.; Verberne, H.J.; Cornel, J.H.; Stroes, E.S.G. PCSK9 Antibody Alirocumab Attenuates Arterial Wall Inflammation Without Changes in Circulating Inflammatory Markers. JACC Cardiovasc. Imaging 2019, 12, 2571–2573. [Google Scholar] [CrossRef] [PubMed]
- Marfella, R.; Prattichizzo, F.; Sardu, C.; Paolisso, P.; D’Onofrio, N.; Scisciola, L.; La Grotta, R.; Frigé, C.; Ferraraccio, F.; Panarese, I.; et al. Evidence of an Anti-Inflammatory Effect of PCSK9 Inhibitors within the Human Atherosclerotic Plaque. Atherosclerosis 2023, 378, 117180. [Google Scholar] [CrossRef]
- Safaeian, L.; Mirian, M.; Bahrizadeh, S. Evolocumab, a PCSK9 Inhibitor, Protects Human Endothelial Cells against H2O2-Induced Oxidative Stress. Arch. Physiol. Biochem. 2022, 128, 1681–1686. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, N.; Prattichizzo, F.; Marfella, R.; Sardu, C.; Martino, E.; Scisciola, L.; Marfella, L.; La Grotta, R.; Frigé, C.; Paolisso, G.; et al. SIRT3 Mediates the Effects of PCSK9 Inhibitors on Inflammation, Autophagy, and Oxidative Stress in Endothelial Cells. Theranostics 2023, 13, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Martino, E.; D’Onofrio, N.; Balestrieri, A.; Mele, L.; Sardu, C.; Marfella, R.; Campanile, G.; Balestrieri, M.L. MiR-15b-5p and PCSK9 Inhibition Reduces Lipopolysaccharide-Induced Endothelial Dysfunction by Targeting SIRT4. Cell Mol. Biol. Lett. 2023, 28, 66. [Google Scholar] [CrossRef]
- Schremmer, J.; Busch, L.; Baasen, S.; Heinen, Y.; Sansone, R.; Heiss, C.; Kelm, M.; Stern, M. Chronic PCSK9 Inhibitor Therapy Leads to Sustained Improvements in Endothelial Function, Arterial Stiffness, and Microvascular Function. Microvasc. Res. 2023, 148, 104513. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Wei, X.; Chen, W.; Wan, D.; Han, W.; Liu, H. Effects of Early PCSK9 Inhibitor Application on Inflammation Levels and Microcirculatory Function after PCI in Patients with NSTE-ACS. Am. J. Transl. Res. 2023, 15, 3586–3596. [Google Scholar] [PubMed]
- Rexhaj, E.; Bär, S.; Soria, R.; Ueki, Y.; Häner, J.D.; Otsuka, T.; Kavaliauskaite, R.; Siontis, G.C.M.; Stortecky, S.; Shibutani, H.; et al. Effects of Alirocumab on Endothelial Function and Coronary Atherosclerosis in Myocardial Infarction: A PACMAN-AMI Randomized Clinical Trial Substudy. Atherosclerosis 2024, 392, 117504. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, M.; Asakura, M.; Hibi, K.; Okada, K.; Shimizu, W.; Takano, H.; Suwa, S.; Fujii, K.; Okumura, Y.; Mano, T.; et al. Evolocumab for Prevention of Microvascular Dysfunction in Patients Undergoing Percutaneous Coronary Intervention: The Randomised, Open-Label EVOCATION Trial. EuroIntervention 2022, 18, e647–e655. [Google Scholar] [CrossRef]
- Angiolillo, D.A.; Galli, M.; Collet, J.-P.; Kastrati, A.; O’Donoghue, M.O. Antiplatelet Therapy after Percutaneous Coronary Intervention. EuroIntervention 2022, 17, e1371–e1396. [Google Scholar] [CrossRef]
- Brar, S.S.; ten Berg, J.; Marcucci, R.; Price, M.J.; Valgimigli, M.; Kim, H.-S.; Patti, G.; Breet, N.J.; DiSciascio, G.; Cuisset, T.; et al. Impact of Platelet Reactivity on Clinical Outcomes After Percutaneous Coronary Intervention. J. Am. Coll. Cardiol. 2011, 58, 1945–1954. [Google Scholar] [CrossRef]
- Gurbel, P.A.; Bliden, K.P.; Hiatt, B.L.; O’Connor, C.M. Clopidogrel for Coronary Stenting. Circulation 2003, 107, 2908–2913. [Google Scholar] [CrossRef]
- Vila, P.M.; Zafar, M.U.; Badimon, J.J. Platelet Reactivity and Nonresponse to Dual Antiplatelet Therapy: A Review. Platelets 2009, 20, 531–538. [Google Scholar] [CrossRef]
- Li, S.; Zhu, C.-G.; Guo, Y.-L.; Xu, R.-X.; Zhang, Y.; Sun, J.; Li, J.-J. The Relationship between the Plasma PCSK9 Levels and Platelet Indices in Patients with Stable Coronary Artery Disease. J. Atheroscler. Thromb. 2015, 22, 76–84. [Google Scholar] [CrossRef]
- Navarese, E.P.; Kolodziejczak, M.; Winter, M.-P.; Alimohammadi, A.; Lang, I.M.; Buffon, A.; Lip, G.Y.; Siller-Matula, J.M. Association of PCSK9 with Platelet Reactivity in Patients with Acute Coronary Syndrome Treated with Prasugrel or Ticagrelor: The PCSK9-REACT Study. Int. J. Cardiol. 2017, 227, 644–649. [Google Scholar] [CrossRef]
- Wang, S.; Fu, D.; Liu, H.; Peng, D. Independent Association of PCSK9 with Platelet Reactivity in Subjects without Statin or Antiplatelet Agents. Front. Cardiovasc. Med. 2022, 9, 934914. [Google Scholar] [CrossRef] [PubMed]
- Camera, M.; Rossetti, L.; Barbieri, S.S.; Zanotti, I.; Canciani, B.; Trabattoni, D.; Ruscica, M.; Tremoli, E.; Ferri, N. PCSK9 as a Positive Modulator of Platelet Activation. J. Am. Coll. Cardiol. 2018, 71, 952–954. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Hu, L.; Zhang, J.; Yang, W.; Liu, X.; Jia, D.; Yao, Z.; Chang, L.; Pan, G.; Zhong, H.; et al. PCSK9 (Proprotein Convertase Subtilisin/Kexin 9) Enhances Platelet Activation, Thrombosis, and Myocardial Infarct Expansion by Binding to Platelet CD36. Circulation 2021, 143, 45–61. [Google Scholar] [CrossRef]
- Franchi, F.; Ortega-Paz, L.; Rollini, F.; Been, L.; Rivas, A.; Maaliki, N.; Zhou, X.; Pineda, A.M.; Suryadevara, S.; Soffer, D.; et al. Impact of Evolocumab on the Pharmacodynamic Profiles of Clopidogrel in Patients with Atherosclerotic Cardiovascular Disease: A Randomised, Double-Blind, Placebo-Controlled Study. EuroIntervention 2023, 18, 1254–1265. [Google Scholar] [CrossRef] [PubMed]
- Ziogos, E.; Chelko, S.P.; Harb, T.; Engel, M.; Vavuranakis, M.A.; Landim-Vieira, M.; Walsh, E.M.; Williams, M.S.; Lai, S.; Halushka, M.K.; et al. Platelet Activation and Endothelial Dysfunction Biomarkers in Acute Coronary Syndrome: The Impact of PCSK9 Inhibition. Eur. Heart J. Cardiovasc. Pharmacother. 2023, 9, 636–646. [Google Scholar] [CrossRef]
- Ueki, Y.; Häner, J.D.; Losdat, S.; Gargiulo, G.; Shibutani, H.; Bär, S.; Otsuka, T.; Kavaliauskaite, R.; Mitter, V.R.; Temperli, F.; et al. Effect of Alirocumab Added to High-Intensity Statin on Platelet Reactivity and Noncoding RNAs in Patients with AMI: A Substudy of the PACMAN-AMI Trial. Thromb. Haemost. 2024, 124, 517–527. [Google Scholar] [CrossRef]
- Nelson, K.; Fuster, V.; Ridker, P.M. Low-Dose Colchicine for Secondary Prevention of Coronary Artery Disease. J. Am. Coll. Cardiol. 2023, 82, 648–660. [Google Scholar] [CrossRef]
- Tardif, J.-C.; Kouz, S.; Waters, D.D.; Bertrand, O.F.; Diaz, R.; Maggioni, A.P.; Pinto, F.J.; Ibrahim, R.; Gamra, H.; Kiwan, G.S.; et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N. Engl. J. Med. 2019, 381, 2497–2505. [Google Scholar] [CrossRef]
- Tong, D.C.; Quinn, S.; Nasis, A.; Hiew, C.; Roberts-Thomson, P.; Adams, H.; Sriamareswaran, R.; Htun, N.M.; Wilson, W.; Stub, D.; et al. Colchicine in Patients With Acute Coronary Syndrome. Circulation 2020, 142, 1890–1900. [Google Scholar] [CrossRef]
- Shah, B.; Pillinger, M.; Zhong, H.; Cronstein, B.; Xia, Y.; Lorin, J.D.; Smilowitz, N.R.; Feit, F.; Ratnapala, N.; Keller, N.M.; et al. Effects of Acute Colchicine Administration Prior to Percutaneous Coronary Intervention. Circ. Cardiovasc. Interv. 2020, 13, e008717. [Google Scholar] [CrossRef]
- Tong, D.C.; Bloom, J.E.; Quinn, S.; Nasis, A.; Hiew, C.; Roberts-Thomson, P.; Adams, H.; Sriamareswaran, R.; Htun, N.M.; Wilson, W.; et al. Colchicine in Patients With Acute Coronary Syndrome: Two-Year Follow-Up of the Australian COPS Randomized Clinical Trial. Circulation 2021, 144, 1584–1586. [Google Scholar] [CrossRef] [PubMed]
- d’Entremont, M.-A.; Lee, S.F.; Mian, R.; Kedev, S.; Montalescot, G.; Cornel, J.H.; Stankovic, G.; Moreno, R.; Storey, R.F.; Henry, T.D.; et al. Design and Rationale of the CLEAR SYNERGY (OASIS 9) Trial: A 2x2 Factorial Randomized Controlled Trial of Colchicine versus Placebo and Spironolactone versus Placebo in Patients with Myocardial Infarction. Am. Heart J. 2024, 275, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Frampton, J.E. Inclisiran: A Review in Hypercholesterolemia. Am. J. Cardiovasc. Drugs 2023, 23, 219–230. [Google Scholar] [CrossRef]
- Karakasis, P.; Patoulias, D.; Barkas, F.; Theofilis, P.; Milionis, H.; Doumas, M.; Kassimis, G.; Tsioufis, K.; Fragakis, N. Long-Term Cardiovascular Safety of Inclisiran: A Pooled Analysis of Phase 3 Randomized Trials. Hell. J. Cardiol. 2024, in press. [CrossRef] [PubMed]
- Koenig, W.; Conde, L.G.; Landmesser, U.; Leiter, L.A.; Ray, K.K.; Schwartz, G.G.; Wright, R.S.; Han, J.; Raal, F.J. Efficacy and Safety of Inclisiran in Patients with Polyvascular Disease: Pooled, Post Hoc Analysis of the ORION-9, ORION-10, and ORION-11 Phase 3 Randomized Controlled Trials. Cardiovasc. Drugs Ther. 2024, 38, 493–503. [Google Scholar] [CrossRef]
- Landmesser, U.; Koenig, W.; Leiter, L.A.; Raal, F.J.; Ray, K.K.; Wright, R.S.; Han, J.; Conde, L.G.; Schwartz, G.G. Inclisiran in Patients with Prior Myocardial Infarction: A Post Hoc Pooled Analysis of the ORION-10 and ORION-11 Phase 3 Randomised Trials. Atherosclerosis 2023, 386, 117354. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitriadis, K.; Pyrpyris, N.; Iliakis, P.; Beneki, E.; Adamopoulou, E.; Papanikolaou, A.; Konstantinidis, D.; Fragkoulis, C.; Kollias, A.; Aznaouridis, K.; et al. Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors in Patients Following Acute Coronary Syndromes: From Lipid Lowering and Plaque Stabilization to Improved Outcomes. J. Clin. Med. 2024, 13, 5040. https://doi.org/10.3390/jcm13175040
Dimitriadis K, Pyrpyris N, Iliakis P, Beneki E, Adamopoulou E, Papanikolaou A, Konstantinidis D, Fragkoulis C, Kollias A, Aznaouridis K, et al. Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors in Patients Following Acute Coronary Syndromes: From Lipid Lowering and Plaque Stabilization to Improved Outcomes. Journal of Clinical Medicine. 2024; 13(17):5040. https://doi.org/10.3390/jcm13175040
Chicago/Turabian StyleDimitriadis, Kyriakos, Nikolaos Pyrpyris, Panagiotis Iliakis, Eirini Beneki, Eleni Adamopoulou, Aggelos Papanikolaou, Dimitrios Konstantinidis, Christos Fragkoulis, Anastasios Kollias, Konstantinos Aznaouridis, and et al. 2024. "Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors in Patients Following Acute Coronary Syndromes: From Lipid Lowering and Plaque Stabilization to Improved Outcomes" Journal of Clinical Medicine 13, no. 17: 5040. https://doi.org/10.3390/jcm13175040
APA StyleDimitriadis, K., Pyrpyris, N., Iliakis, P., Beneki, E., Adamopoulou, E., Papanikolaou, A., Konstantinidis, D., Fragkoulis, C., Kollias, A., Aznaouridis, K., & Tsioufis, K. (2024). Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors in Patients Following Acute Coronary Syndromes: From Lipid Lowering and Plaque Stabilization to Improved Outcomes. Journal of Clinical Medicine, 13(17), 5040. https://doi.org/10.3390/jcm13175040