Management of Myocardial Infarction and the Role of Cardiothoracic Surgery
Abstract
:1. Introduction to Myocardial Infarction
1.1. Overview
1.2. Diagnosis of Myocardial Infarction
1.3. Non-ST-Elevation Myocardial Infarction vs. ST-Elevation Myocardial Infarction
2. Treatment of Non-ST-Elevation Myocardial Infarction
2.1. Overview
2.2. Heart Team
2.3. Factors Considered
2.4. Risk Scores
2.5. Percutaneous Coronary Intervention vs. Coronary Artery Bypass Grafting and Timing
2.6. Medical Management
3. Treatment of ST-Elevation Myocardial Infarction
3.1. Overview
3.2. When Percutaneous Coronary Intervention Is Recommended
3.3. When Medical Management Is Considered
3.4. When Surgery Is Considered
4. Post Revascularization Shock
4.1. Overview
4.2. Intra-Aortic Balloon Pump
4.3. Impella
4.4. Extracorporeal Membrane Oxygenation
5. Surgical Treatment of Post-Myocardial Infarction Complications
5.1. Cardiogenic Shock
5.2. Ventricular Septal Rupture
5.3. Papillary Wall Rupture
5.4. Free Wall Rupture
5.5. Aneurysm
5.6. Ischemic Heart Failure
6. Heart Failure: Low-Ejection-Fraction Coronary Artery Bypass Graft vs. Advanced Therapies
6.1. Coronary Artery Bypass Graft
6.2. Left Ventricular Assist Device
6.3. Heart Transplant
7. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Thygesen, K.; Alpert, J.S.; White, H.D. Universal Definition of Myocardial Infarction. J. Am. Coll. Cardiol. 2007, 50, 2173–2195. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; de Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C.; et al. Heart disease and stroke statistics—2017 update: A report from the American Heart Association. Circulation 2017, 135, e146–e603. [Google Scholar] [CrossRef]
- Harrington, D.H.; Stueben, F.; Lenahan, C.M. ST-Elevation Myocardial Infarction and Non-ST-Elevation Myocardial Infarction: Medical and Surgical Interventions. Crit. Care Nurs. Clin. N. Am. 2019, 31, 49–64. [Google Scholar] [CrossRef]
- Reynolds, K.; Go, A.S.; Leong, T.K.; Boudreau, D.M.; Cassidy-Bushrow, A.E.; Fortmann, S.P.; Goldberg, R.J.; Gurwitz, J.H.; Magid, D.J.; Margolis, K.L.; et al. Trends in Incidence of Hospitalized Acute Myocardial Infarction in the Cardiovascular Research Network (CVRN). Am. J. Med. 2017, 130, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Gheorghiade, M.; Bonow, R.O. Chronic heart failure in the United States. Circulation 1998, 97, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Zeymer, U.; Bueno, H.; Granger, C.B.; Hochman, J.; Huber, K.; Lettino, M.; Price, S.; Schiele, F.; Tubaro, M.; Vranckx, P.; et al. Acute Cardiovascular Care Association position statement for the diagnosis and treatment of patients with acute myocardial infarction complicated by cardiogenic shock: A document of the Acute Cardiovascular Care Association of the European Society of Cardiology. Eur. Heart J. Acute Cardiovasc. Care 2020, 9, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Lawton, J.S.; Tamis-Holland, J.E.; Bangalore, S.; Bates, E.R.; Beckie, T.M.; Bischoff, J.M.; Bittl, J.A.; Cohen, M.G.; DiMaio, J.M.; Don, C.W.; et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 79, e21–e129. [Google Scholar] [CrossRef]
- Gulati, M.; Levy, P.D.; Mukherjee, D.; Amsterdam, E.; Bhatt, D.L.; Birtcher, K.K.; Blankstein, R.; Boyd, J.; Bullock-Palmer, R.P.; Conejo, T.; et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 144, e368–e454. [Google Scholar] [CrossRef] [PubMed]
- Davis, W.T.; Montrief, T.; Koyfman, A.; Long, B. Dysrhythmias and heart failure complicating acute myocardial infarction: An emergency medicine review. Am. J. Emerg. Med. 2019, 37, 1554–1561. [Google Scholar] [CrossRef]
- Costa, R.; Trêpa, M.; Oliveira, M.; Frias, A.; Campinas, A.; Luz, A.; Santos, M.; Torres, S. Heart failure incidence following st-elevation myocardial infarction. Am. J. Cardiol. 2022, 164, 14–20. [Google Scholar] [CrossRef]
- Elbadawi, A.; Elgendy, I.Y.; Mahmoud, K.; Barakat, A.F.; Mentias, A.; Mohamed, A.H.; Ogunbayo, G.O.; Megaly, M.; Saad, M.; Omer, M.A.; et al. Temporal Trends and Outcomes of Mechanical Complications in Patients With Acute Myocardial Infarction. JACC Cardiovasc. Interv. 2019, 12, 1825–1836. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.D.; Sun, T.W.; Kan, Q.C.; Guan, F.X.; Liu, Z.Q.; Zhang, S.G. The effects of intra-aortic balloon pumps on mortality in patients undergoing high-risk coronary revascularization: A meta-analysis of randomized controlled trials of coronary artery bypass grafting and stenting era. PLoS ONE 2016, 11, e0147291. [Google Scholar] [CrossRef]
- Poldervaart, J.M.; Langedijk, M.; Backus, B.E.; Dekker, I.M.C.; Six, A.J.; Doevendans, P.A.; Hoes, A.W.; Reitsma, J.B. Comparison of the Grace, heart and Timi score to predict major adverse cardiac events in chest pain patients at the Emergency Department. Int. J. Cardiol. 2017, 227, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Elbadawi, A.; Elzeneini, M.; Elgendy, I.Y.; Megaly, M.; Omer, M.; Jimenez, E.; Ghanta, R.K.; Brilakis, E.S.; Jneid, H. Coronary artery bypass grafting after acute st-elevation myocardial infarction. J. Thorac. Cardiovasc. Surg. 2023, 165, 672–683.e10. [Google Scholar] [CrossRef]
- Bhatt, D.L.; Lopes, R.D.; Harrington, R.A. Diagnosis and Treatment of Acute Coronary Syndromes: A Review. JAMA 2022, 327, 662–675. [Google Scholar] [CrossRef]
- Zalewski, J.; Nowak, K.; Furczynska, P.; Zalewska, M. Complicating Acute Myocardial Infarction. Current Status and Unresolved Targets for Subsequent Research. J. Clin. Med. 2021, 10, 5904. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Schömig, A.; Mehilli, J.; Antoniucci, D.; Ndrepepa, G.; Markwardt, C.; Di Pede, F.; Nekolla, S.G.; Schlotterbeck, K.; Schühlen, H.; Pache, J.; et al. Mechanical Reperfusion in Patients With Acute Myocardial Infarction Presenting More Than 12 Hours From Symptom Onset: A Randomized Controlled Trial. JAMA 2005, 293, 2865–2872. [Google Scholar] [CrossRef]
- Kettner, J.; Sramko, M.; Holek, M.; Pirk, J.; Kautzner, J. Utility of intra-aortic balloon pump support for ventricular septal rupture and acute mitral regurgitation complicating acute myocardial infarction. Am. J. Cardiol. 2013, 112, 1709–1713. [Google Scholar] [CrossRef] [PubMed]
- Apolito, R.A.; Greenberg, M.A.; Menegus, M.A.; Lowe, A.M.; Sleeper, L.A.; Goldberger, M.H.; Remick, J.; Radford, M.J.; Hochman, J.S. Impact of the New York State Cardiac Surgery and Percutaneous Coronary Intervention Reporting System on the management of patients with acute myocardial infarction complicated by cardiogenic shock. Am. Heart J. 2008, 155, 267–273. [Google Scholar] [CrossRef]
- Kolte, D.; Khera, S.; Aronow, W.S.; Mujib, M.; Palaniswamy, C.; Sule, S.; Jain, D.; Gotsis, W.; Ahmed, A.; Frishman, W.H.; et al. Trends in incidence, management, and outcomes of cardiogenic shock complicating ST-elevation myocardial infarction in the United States. J. Am. Heart Assoc. 2014, 3, e000590. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shah, M.; Patnaik, S.; Patel, B.; Ram, P.; Garg, L.; Agarwal, M.; Agrawal, S.; Arora, S.; Patel, N.; Wald, J.; et al. Trends in mechanical circulatory support use and hospital mortality among patients with acute myocardial infarction and non-infarction related cardiogenic shock in the United States. Clin. Res. Cardiol. 2018, 107, 287–303. [Google Scholar] [CrossRef] [PubMed]
- Telukuntla, K.S.; Estep, J.D. Acute Mechanical Circulatory Support for Cardiogenic Shock. Methodist Debakey Cardiovasc. J. 2020, 16, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Zeymer, U.; Neumann, F.J.; Ferenc, M.; Olbrich, H.G.; Hausleiter, J.; Richardt, G.; Hennersdorf, M.; Empen, K.; Fuernau, G.; et al. IABP-SHOCK II Trial Investigators. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N. Engl. J. Med. 2012, 367, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Seyfarth, M.; Sibbing, D.; Bauer, I.; Fröhlich, G.; Bott-Flügel, L.; Byrne, R.; Dirschinger, J.; Kastrati, A.; Schömig, A. A Randomized Clinical Trial to Evaluate the Safety and Efficacy of a Percutaneous Left Ventricular Assist Device Versus Intra-Aortic Balloon Pumping for Treatment of Cardiogenic Shock Caused by Myocardial Infarction. J. Am. Coll. Cardiol. 2008, 52, 1584–1588. [Google Scholar] [CrossRef]
- O’Neill, W.W.; Kleiman, N.S.; Moses, J.; Henriques, J.P.; Dixon, S.; Massaro, J.; Palacios, I.; Maini, B.; Mulukutla, S.; Dzavík, V.; et al. A prospective, randomized clinical trial of hemodynamic support with Impella 2.5 versus intra-aortic balloon pump in patients undergoing high-risk percutaneous coronary intervention: The PROTECT II study. Circulation 2012, 126, 1717–1727. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.B.; Goldstein, J.; Milano, C.; Morris, L.D.; Kormos, R.L.; Bhama, J.; Kapur, N.K.; Bansal, A.; Garcia, J.; Baker, J.N.; et al. Benefits of a novel percutaneous ventricular assist device for right heart failure: The prospective RECOVER RIGHT study of the Impella RP device. J. Heart Lung Transplant. 2015, 34, 1549–1560. [Google Scholar] [CrossRef]
- Napp, L.C.; Kühn, C.; Bauersachs, J. ECMO in cardiac arrest and cardiogenic shock. Herz 2017, 42, 27–44. [Google Scholar] [CrossRef]
- Ostadal, P.; Rokyta, R.; Karasek, J.; Kruger, A.; Vondrakova, D.; Janotka, M.; Naar, J.; Smalcova, J.; Hubatova, M.; Hromadka, M.; et al. ECMO-CS Investigators. Extracorporeal Membrane Oxygenation in the Therapy of Cardiogenic Shock: Results of the ECMO-CS Randomized Clinical Trial. Circulation 2023, 147, 454–464. [Google Scholar] [CrossRef]
- Masi, P.; Gendreau, S.; Moyon, Q.; Leguyader, M.; Lebreton, G.; Ropers, J.; Dangers, L.; Sitruk, S.; Bréchot, N.; Pineton de Chambrun, M.; et al. Bleeding complications, coagulation disorders, and their management in acute myocardial infarction-related cardiogenic shock rescued by veno-arterial ECMO: A retrospective cohort study. J. Crit. Care 2024, 82, 154771. [Google Scholar] [CrossRef] [PubMed]
- Tigano, S.; Caruso, A.; Liotta, C.; LaVia, L.; Vargas, M.; Romagnoli, S.; Landoni, G.; Sanfilippo, F. Exposure to severe hyperoxemia worsens survival and neurological outcome in patients supported by veno-arterial extracorporeal membrane oxygenation: A meta-analysis. Resuscitation 2024, 194, 110071. [Google Scholar] [CrossRef] [PubMed]
- Sleeper, L.A.; Ramanathan, K.; Picard, M.H.; Lejemtel, T.H.; White, H.D.; Dzavik, V.; Tormey, D.; Avis, N.E.; Hochman, J.S.; SHOCK Investigators. Functional Status and Quality of Life After Emergency Revascularization for Cardiogenic Shock Complicating Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2005, 46, 266–273. [Google Scholar] [CrossRef] [PubMed]
- White, H.D.; Assmann, S.F.; Sanborn, T.A.; Jacobs, A.K.; Webb, J.G.; Sleeper, L.A.; Wong, C.-K.; Stewart, J.T.; Aylward, P.E.G.; Wong, S.-C.; et al. Comparison of percutaneous coronary intervention and coronary artery bypass grafting after acute myocardial infarction complicated by Cardiogenic shock. Circulation 2005, 112, 1992–2001. [Google Scholar] [CrossRef] [PubMed]
- Hochman, J.S.; Sleeper, L.A.; Webb, J.G.; Dzavik, V.; Buller, C.E.; Aylward, P.; Col, J.; White, H.D.; SHOCK Investigators, F. Early revascularization and long-term survival in cardiogenic shock complicating acute myocardial infarction. JAMA 2006, 295, 2511. [Google Scholar] [CrossRef] [PubMed]
- Bouma, W.; Wijdh-den Hamer, I.J.; Koene, B.M.; Kuijpers, M.; Natour, E.; Erasmus, M.E.; van der Horst, I.C.; Gorman, J.H., 3rd; Gorman, R.C.; Mariani, M.A. Predictors of in-hospital mortality after mitral valve surgery for post-myocardial infarction papillary muscle rupture. J. Cardiothorac. Surg. 2014, 9, 171. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matteucci, M.; Formica, F.; Kowalewski, M.; Massimi, G.; Ronco, D.; Beghi, C.; Lorusso, R. Meta-analysis of surgical treatment for postinfarction left ventricular free-wall rupture. J. Card. Surg. 2021, 36, 3326–3333. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sattar, Y.; Alraies, M.C. Ventricular Aneurysm. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar] [PubMed]
- Sui, Y.; Teng, S.; Qian, J.; Zhao, Z.; Zhang, Q.; Wu, Y. Treatment outcomes and therapeutic evaluations of patients with left ventricular aneurysm. J. Int. Med. Res. 2019, 47, 244–251. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Del Buono, M.G.; Moroni, F.; Montone, R.A.; Azzalini, L.; Sanna, T.; Abbate, A. Ischemic Cardiomyopathy and Heart Failure After Acute Myocardial Infarction. Curr. Cardiol. Rep. 2022, 24, 1505–1515. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gaudron, P.; Eilles, C.; Kugler, I.; Ertl, G. Progressive left ventricular dysfunction and remodeling after myocardial infarction. potential mechanisms and early predictors. Circulation 1993, 87, 755–763. [Google Scholar] [CrossRef]
- Athanasuleas, C.L.; Buckberg, G.D.; Stanley, A.W.H.; Siler, W.; Dor, V.; Di Donato, M.; Menicanti, L.; de Oliveira, S.A.; Beyersdorf, F.; Kron, I.L.; et al. Surgical ventricular restoration in the treatment of congestive heart failure due to post-infarction ventricular dilation. J. Am. Coll. Cardiol. 2004, 44, 1439–1445. [Google Scholar] [CrossRef]
- Leacche, M.; Balaguer, J.M.; Byrne, J.G. Role of cardiac surgery in the post-myocardial infarction patient with heart failure. Curr. Heart Fail. Rep. 2008, 5, 204–210. [Google Scholar] [CrossRef]
- Carson, P.; Wertheimer, J.; Miller, A.; O’Connor, O.M.; Pina, I.L.; Selzman, C.; Sueta, C.; She, L.; Greene, D.; Lee, K.L.; et al. The STICH Trial (Surgical Treatment for Ischemic Heart Failure): Mode-of-Death Results. JACC Heart Fail. 2013, 1, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Pocar, M.; Moneta, A.; Grossi, A.; Donatelli, F. Coronary artery bypass for heart failure in ischemic cardiomyopathy: 17-year follow-up. Ann. Thorac. Surg. 2007, 83, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Bounader, K.; Flécher, E. End-stage heart failure: The future of heart transplant and artificial heart. Presse Med. 2024, 53, 104191. [Google Scholar] [CrossRef]
- Sajgalik, P.; Grupper, A.; Edwards, B.S.; Kushwaha, S.S.; Stulak, J.M.; Joyce, D.L.; Joyce, L.D.; Daly, R.C.; Kara, T.; Schirger, J.A. Current status of left ventricular assist device therapy. Mayo Clin. Proc. 2016, 91, 927–940. [Google Scholar] [CrossRef]
- Rose, E.A.; Gelijns, A.C.; Moskowitz, A.J.; Heitjan, D.F.; Stevenson, L.W.; Dembitsky, W.; Long, J.W.; Ascheim, D.D.; Tierney, A.R.; Levitan, R.G.; et al. Long-term use of a left ventricular assist device for end-stage heart failure. N. Engl. J. Med. 2001, 345, 1435–1443. [Google Scholar] [CrossRef]
- Bakhtiyar, S.S.; Godfrey, E.L.; Ahmed, S.; Lamba, H.; Morgan, J.; Loor, G.; Civitello, A.; Cheema, F.H.; Etheridge, W.B.; Goss, J.; et al. Survival on the Heart Transplant Waiting List. JAMA Cardiol. 2020, 5, 1227–1235. [Google Scholar] [CrossRef]
- Mehra, M.R.; Goldstein, D.J.; Cleveland, J.C.; Cowger, J.A.; Hall, S.; Salerno, C.T.; Naka, Y.; Horstmanshof, D.; Chuang, J.; Wang, A.; et al. Five-Year Outcomes in Patients with Fully Magnetically Levitated vs. Axial-Flow Left Ventricular Assist Devices in the MOMENTUM 3 Randomized Trial. JAMA 2022, 328, 1233–1242. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Katja, R.T. Right Ventricular Failure After Left Ventricular Assist Device Placement—The Beginning of the End or Just Another Challenge? J. Cardiothorac. Vasc. Anesth. 2019, 33, 1105–1121. [Google Scholar] [CrossRef]
- Hess, N.R.; Seese, L.M.; Mathier, M.A.; Keebler, M.E.; Hickey, G.W.; McNamara, D.M.; Kilic, A. Twenty-year survival following Orthotopic Heart Transplantation in the United States. J. Card. Surg. 2020, 36, 643–650. [Google Scholar] [CrossRef]
- Dual, S.A.; Cowger, J.; Roche, E.; Nayak, A. The future of durable mechanical circulatory support: Emerging technological innovations and considerations to enable evolution of the field. J. Card. Fail. 2024, 30, 596–609. [Google Scholar] [CrossRef]
- Sachdeva, P.; Kaur, K.; Fatima, S.; Mahak, F.; Noman, M.; Siddenthi, S.M.; Surksha, M.A.; Munir, M.; Fatima, F.; Sultana, S.S.; et al. Advancements in Myocardial Infarction Management: Exploring Novel Approaches and Strategies. Cureus 2023, 15, e45578. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Class of Recommendation (COR) | Level of Evidence (LOE) |
---|---|
Class 1 (Strong): Benefit >>> Risk | Level A: high quality of evidence from multiple randomized control trials |
Class 2a (Moderate): Benefit >> Risk | Level B: moderate quality of evidence from multiple randomized control trials or nonrandomized studies |
Class 2b (Weak): Benefit ≥ Risk | Level C: limited data studies containing limitations of design or execution OR consensus of expert opinion based on clinical experience |
Class 3 with LOE A or B (No benefit, Moderate): Benefit = Risk | |
Class 3 without LOE A or B (Harm, Strong): Risk > Benefit |
Class of Recommendation | Level of Evidence | Recommendations |
---|---|---|
1 | C | Anyone experiencing acute chest pain should receive an ECG within 10 min of arrival to an emergency room |
Class of Recommendation | Level of Evidence | Recommendations |
---|---|---|
1 | A | Any patients who are at an increased risk of future cardiac events and can receive intervention should be revascularized using PCI or CABG |
1 | B | NSTEMI complicated by CS should be emergently revascularized with PCI or CABG |
1 | C | Patients with NSTEMI and hemodynamic instability should emergently receive invasive revascularization |
2a | B | When PCI fails to revascularize the myocardium and there are ongoing ischemic symptoms, hemodynamic instability, or extensive myocardium at risk, CABG should be performed |
2a | B | Patients who are initially stabilized with a high-risk score can receive invasive revascularization within 24 h |
2a | B | Patients who are initially stabilized with an intermediate or low-risk score can receive invasive revascularization prior to hospital discharge |
2a | C | In pregnant patients, PCI or CABG is reasonable if medical management is unsuccessful, and the patient’s life is at risk |
3 | B | NSTEMI complicated by CS should not receive non-culprit vessel PCI |
Class of Recommendation | Level of Evidence | Recommendations |
---|---|---|
1 | B | Use a Heart Team for clinical decision making when discussing reperfusion techniques |
1 | B | It is recommended to choose CABG over PCI when left main coronary disease is present |
2a | B | It is recommended to choose CABG over PCI when multivessel disease is present |
2b | B | Calculating the SYNTAX Score in patients with complex coronary disease can assist in treatment option decision making |
Class of Recommendation | Level of Evidence | Recommendations |
---|---|---|
2a | A | Post PCI, if there is concern for a major bleeding event, DAPT can be reduced to 1–3 months and the transition to P2Y12 monotherapy for the remaining treatment time is reasonable |
Class of Recommendation | Level of Evidence | Recommendations |
---|---|---|
1 | A | If ischemic symptoms have been present less than 12 h, PCI is recommended |
1 | A | For patients with multivessel disease, if hemodynamic stability is attained, after successful PCI of the culprit vessel, subsequent PCI of stenotic non-culprit vessels is recommended |
1 | B | In CS complicated STEMI, emergently revascularize with PCI or CABG, irrespective of time to treatment |
1 | B | Patients with mechanical complications should receive CABG at time of surgery to improve survival |
1 | C | Patients with evidence of failed fibrinolytic therapy should receive rescue PCI of the culprit vessel |
2a | B | Patients who are stable and presenting with STEMI 12–24 h after symptom onset can receive PCI |
2a | C | In patients with complex multivessel non-culprit artery disease, after primary PCI of the culprit vessel, elective CABG can be carried out to reduce MACEs |
2a | C | In pregnant patients, PCI is preferred unless SCAD has occurred |
2a | C | PCI can be considered in patients with ongoing ischemia, severe HF, or life-threatening arrythmia, irrespective of time to treatment |
3 | B | CS complicated STEMI should not receive PCI of non-culprit vessels |
3 | B | Asymptomatic stable patients should not receive PCI if presenting >24 h after symptom onset and no evidence of severe ischemia |
3 | C | Emergency CABG should not be performed after a failed PCI if there is no ischemia or large portion of myocardium at risk or if there are no distal targets |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parness, S.; Tasoudis, P.; Agala, C.B.; Merlo, A.E. Management of Myocardial Infarction and the Role of Cardiothoracic Surgery. J. Clin. Med. 2024, 13, 5484. https://doi.org/10.3390/jcm13185484
Parness S, Tasoudis P, Agala CB, Merlo AE. Management of Myocardial Infarction and the Role of Cardiothoracic Surgery. Journal of Clinical Medicine. 2024; 13(18):5484. https://doi.org/10.3390/jcm13185484
Chicago/Turabian StyleParness, Shannon, Panagiotis Tasoudis, Chris B. Agala, and Aurelie E. Merlo. 2024. "Management of Myocardial Infarction and the Role of Cardiothoracic Surgery" Journal of Clinical Medicine 13, no. 18: 5484. https://doi.org/10.3390/jcm13185484
APA StyleParness, S., Tasoudis, P., Agala, C. B., & Merlo, A. E. (2024). Management of Myocardial Infarction and the Role of Cardiothoracic Surgery. Journal of Clinical Medicine, 13(18), 5484. https://doi.org/10.3390/jcm13185484