Development and Validation of Machine Learning Models to Predict Postoperative Delirium Using Clinical Features and Polysomnography Variables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Participants
2.2. Delirium Assessments
2.3. Clinical Variables
2.4. PSG
2.5. Sleep Questionnaires
2.6. Machine Learning
2.7. Statistical Analyses
3. Results
3.1. Clinical Characteristics
3.2. Sleep Characteristics
3.3. Performances of Machine Learning Models
3.4. Feature Importances
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Inouye, S.K.; Westendorp, R.G.; Saczynski, J.S. Delirium in elderly people. Lancet 2014, 383, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Ormseth, C.H.; LaHue, S.C.; Oldham, M.A.; Josephson, S.A.; Whitaker, E.; Douglas, V.C. Predisposing and Precipitating Factors Associated with Delirium: A Systematic Review. JAMA Netw. Open 2023, 6, e2249950. [Google Scholar] [CrossRef] [PubMed]
- Whitlock, E.L.; Vannucci, A.; Avidan, M.S. Postoperative delirium. Minerva Anestesiol. 2011, 77, 448–456. [Google Scholar] [PubMed]
- Ely, E.W.; Shintani, A.; Truman, B.; Speroff, T.; Gordon, S.M.; Harrell, F.E., Jr.; Inouye, S.K.; Bernard, G.R.; Dittus, R.S. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA 2004, 291, 1753–1762. [Google Scholar] [CrossRef]
- Fong, T.G.; Inouye, S.K. The inter-relationship between delirium and dementia: The importance of delirium prevention. Nat. Rev. Neurol. 2022, 18, 579–596. [Google Scholar] [CrossRef]
- McCusker, J.; Cole, M.G.; Dendukuri, N.; Belzile, E. Does delirium increase hospital stay? J. Am. Geriatr. Soc. 2003, 51, 1539–1546. [Google Scholar] [CrossRef]
- Killgore, W.D. Effects of sleep deprivation on cognition. Prog. Brain Res. 2010, 185, 105–129. [Google Scholar] [CrossRef]
- Chen, Q.; Peng, Y.; Lin, Y.; Li, S.; Huang, X.; Chen, L.W. Atypical Sleep and Postoperative Delirium in the Cardiothoracic Surgical Intensive Care Unit: A Pilot Prospective Study. Nat. Sci. Sleep 2020, 12, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Sun, Y.; Huang, X.; Liu, J.; Yang, J.; Zhang, K.; Kong, G.; Han, F.; Hao, D.; Wang, X. Sleep and circadian rhythm disturbances in intensive care unit (ICU)-acquired delirium: A case-control study. J. Int. Med. Res. 2021, 49, 300060521990502. [Google Scholar] [CrossRef]
- Farasat, S.; Dorsch, J.J.; Pearce, A.K.; Moore, A.A.; Martin, J.L.; Malhotra, A.; Kamdar, B.B. Sleep and Delirium in Older Adults. Curr. Sleep Med. Rep. 2020, 6, 136–148. [Google Scholar] [CrossRef]
- Pisani, M.A.; D’Ambrosio, C. Sleep and Delirium in Adults Who Are Critically Ill: A Contemporary Review. Chest 2020, 157, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Slatore, C.G.; Goy, E.R.; O’hearn, D.J.; Boudreau, E.A.; O’Malley, J.P.; Peters, D.; Ganzini, L. Sleep quality and its association with delirium among veterans enrolled in hospice. Am. J. Geriatr. Psychiatry 2012, 20, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Wang, L.; Wang, W.; Zhang, H.; Yao, F.; Chen, J.; Wang, Q. Association and prediction of subjective sleep quality and postoperative delirium during major non-cardiac surgery: A prospective observational study. BMC Anesthesiol. 2023, 23, 306. [Google Scholar] [CrossRef] [PubMed]
- Leung, J.M.; Tang, C.; Do, Q.; Sands, L.P.; Tran, D.; Lee, K.A. Sleep Loss the night before surgery and incidence of postoperative delirium in adults 65-95 years of age. Sleep Med. 2023, 105, 61–67. [Google Scholar] [CrossRef]
- Ibala, R.; Mekonnen, J.; Gitlin, J.; Hahm, E.Y.; Ethridge, B.R.; Colon, K.M.; Marota, S.; Ortega, C.; Pedemonte, J.C.; Cobanaj, M.; et al. A polysomnography study examining the association between sleep and postoperative delirium in older hospitalized cardiac surgical patients. J. Sleep Res. 2021, 30, e13322. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, S.; Peng, Y.; Li, S.; Huang, X.; Chen, L. Preoperative slow-wave sleep is associated with postoperative delirium after heart valve surgery: A prospective pilot study. J. Sleep Res. 2023, 32, e13920. [Google Scholar] [CrossRef]
- Roggenbach, J.; Klamann, M.; von Haken, R.; Bruckner, T.; Karck, M.; Hofer, S. Sleep-disordered breathing is a risk factor for delirium after cardiac surgery: A prospective cohort study. Crit. Care 2014, 18, 477. [Google Scholar] [CrossRef]
- Berry, R.; Quan, S.; Abreu, A. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications, Version 2.6.; American Academy of Sleep Medicine: Darien, CT, USA, 2020. [Google Scholar]
- Iber, C.; Ancoli-Israel, S.; Chesson, A.L.; Quan, S. The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications; American Academy of Sleep Medicine: Westchester, IL, USA, 2007. [Google Scholar]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef] [PubMed]
- Morin, C.M.; Belleville, G.; Bélanger, L.; Ivers, H. The Insomnia Severity Index: Psychometric indicators to detect insomnia cases and evaluate treatment response. Sleep 2011, 34, 601–608. [Google Scholar] [CrossRef]
- Johns, M.W. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef]
- Chung, F.; Abdullah, H.R.; Liao, P. STOP-Bang Questionnaire: A Practical Approach to Screen for Obstructive Sleep Apnea. Chest 2016, 149, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.; Yin, J.D.; Tan, L.W.; van Dam, R.M.; Cheung, Y.Y.; Lee, C.H. Using the Berlin Questionnaire to Predict Obstructive Sleep Apnea in the General Population. J. Clin. Sleep Med. 2017, 13, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Joo, B.; Park, M.; Ahn, S.J.; Suh, S.H.; Park, Y.W.; Ahn, S.S.; Lee, S.-K. A Radiomics-Based Model for Potentially More Accurate Identification of Subtypes of Breast Cancer Brain Metastases. Yonsei Med. J. 2023, 64, 573–580. [Google Scholar] [CrossRef]
- Giuste, F.; Shi, W.; Zhu, Y.; Naren, T.; Isgut, M.; Sha, Y.; Tong, L.; Gupte, M.; Wang, M.D. Explainable Artificial Intelligence Methods in Combating Pandemics: A Systematic Review. IEEE Rev. Biomed. Eng. 2023, 16, 5–21. [Google Scholar] [CrossRef]
- Ghezzi, E.S.; Greaves, D.; Boord, M.S.; Davis, D.; Knayfati, S.; Astley, J.M.; Sharman, R.L.S.; Goodwin, S.I.; Keage, H.A.D. How do predisposing factors differ between delirium motor subtypes? A systematic review and meta-analysis. Age Ageing 2022, 51, afac200. [Google Scholar] [CrossRef]
- Ansaloni, L.; Catena, F.; Chattat, R.; Fortuna, D.; Franceschi, C.; Mascitti, P.; Melotti, R.M. Risk factors and incidence of postoperative delirium in elderly patients after elective and emergency surgery. Br. J. Surg. 2010, 97, 273–280. [Google Scholar] [CrossRef]
- Taipale, P.G.; Ratner, P.A.; Galdas, P.M.; Jillings, C.; Manning, D.; Fernandes, C.; Gallaher, J. The association between nurse-administered midazolam following cardiac surgery and incident delirium: An observational study. Int. J. Nurs. Stud. 2012, 49, 1064–1073. [Google Scholar] [CrossRef]
- Tsolaki, M.; Sia, E.; Giannouli, V. Anesthesia and dementia: An up-to-date review of the existing literature. Appl. Neuropsychol. Adult 2024, 31, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Strutz, P.K.; Kronzer, V.; Tzeng, W.; Arrington, B.; McKinnon, S.L.; Ben Abdallah, A.; Haroutounian, S.; Avidan, M.S. The relationship between obstructive sleep apnoea and postoperative delirium and pain: An observational study of a surgical cohort. Anaesthesia 2019, 74, 1542–1550. [Google Scholar] [CrossRef]
- Manford, M.; Andermann, F. Complex visual hallucinations. Clinical and neurobiological insights. Brain 1998, 121 Pt 10, 1819–1840. [Google Scholar] [CrossRef]
- Trompeo, A.C.; Vidi, Y.; Locane, M.D.; Braghiroli, A.; Mascia, L.; Bosma, K.; Ranieri, V.M. Sleep disturbances in the critically ill patients: Role of delirium and sedative agents. Minerva Anestesiol. 2011, 77, 604–612. [Google Scholar] [PubMed]
- Joo, H.J.; Joo, J.H.; Kwon, J.; Jang, B.N.; Park, E.C. Association between quality and duration of sleep and subjective cognitive decline: A cross-sectional study in South Korea. Sci. Rep. 2021, 11, 16989. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Li, J.; Gao, J.; Pan, W.; Zhang, Y. Prediction models for postoperative delirium after cardiac surgery: Systematic review and critical appraisal. Int. J. Nurs. Stud. 2022, 136, 104340. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Oh, J.; Ahn, J.S.; Chung, K.; Kim, M.-K.; Shin, C.S.; Park, J.Y. Clinical Features of Delirium among Patients in the Intensive Care Unit According to Motor Subtype Classification: A Retrospective Longitudinal Study. Yonsei Med. J. 2023, 64, 712–720. [Google Scholar] [CrossRef]
- Lechat, B.; Scott, H.; Manners, J.; Adams, R.; Proctor, S.; Mukherjee, S.; Catcheside, P.; Eckert, D.J.; Vakulin, A.; Reynolds, A.C. Multi-night measurement for diagnosis and simplified monitoring of obstructive sleep apnoea. Sleep Med. Rev. 2023, 72, 101843. [Google Scholar] [CrossRef]
Delirium (+) (n = 185) | Delirium (−) (n = 727) | p Value | |
---|---|---|---|
Age (years) | 46.7 ± 15.7 | 52.8 ± 14.9 | <0.001 |
Male sex, n (%) | 146 (78.9) | 497 (68.4) | 0.005 |
Height (cm) | 170.3 ± 8.9 | 167.7 ± 9.1 | 0.001 |
Weight (kg) | 76.2 ± 15.2 | 72.7 ± 15.6 | 0.007 |
Body mass index (kg/m2) | 26.2 ± 4.3 | 25.7 ± 4.5 | 0.237 |
Underlying comorbidities | |||
HTN, n (%) | 44 (23.8) | 268 (36.9) | 0.001 |
DM, n (%) | 15 (8.1) | 100 (13.8) | 0.039 |
Cardiac disease, n (%) | 8 (4.3) | 53 (7.3) | 0.149 |
Brain disease, n (%) | 6 (3.2) | 35 (4.8) | 0.357 |
ASA III–IV, n (%) | 54 (29.2) | 247 (34.0) | 0.216 |
Anesthetic agents | |||
Midazolam, n (%) | 42 (22.7) | 67 (9.2) | <0.001 |
Propofol, n (%) | 152 (82.2) | 619 (85.1) | 0.316 |
Operation type | |||
CS, n (%) | 16 (8.6) | 55 (7.6) | 0.623 |
GS, n (%) | 4 (2.2) | 142 (19.5) | <0.001 |
NS, n (%) | 14 (7.6) | 56 (7.7) | 0.951 |
OBGY, n (%) | 1 (0.5) | 33 (4.5) | 0.010 |
OS, n (%) | 9 (4.9) | 97 (13.3) | 0.001 |
URO, n (%) | 1 (0.5) | 77 (10.6) | <0.001 |
ENT, n (%) | 140 (75.7) | 267 (36.7) | <0.001 |
Surgery duration (min) | 124.5 ± 96.9 | 102.9 ± 83.7 | 0.003 |
Emergency surgery (%) | 19 (10.3) | 44 (6.1) | 0.043 |
Lab results * | |||
Anemia, n (%) | 19/124 (15.3) | 78/503 (15.5) | 0.959 |
Thrombocytopenia, n (%) | 6/124 (4.8) | 27/503 (5.4) | 0.813 |
Hypoalbuminemia, n (%) | 7/123 (5.7) | 5/511 (1.0) | 0.001 |
AST/ALT elevation, n (%) | 28/123 (22.8) | 92/517 (17.8) | 0.204 |
Cr elevation, n (%) | 6/123 (4.9) | 31/510 (6.1) | 0.610 |
Hyponatremia †, n (%) | 7/121 (5.8) | 9/502 (1.8) | 0.021 |
Hypokalemia †, n (%) | 0/121 (0.0) | 3/503 (0.6) | 1.000 |
Delirium (+) (n = 185) | Delirium (−) (n = 727) | P Value | |
---|---|---|---|
Sleep latency (min) | 16.2 ± 38.9 | 12.5 ± 22.6 | 0.214 |
TIB (min) | 434.3 ± 40.2 | 439.6 ± 39.5 | 0.104 |
TST (min) | 355.4 ± 64.5 | 357.7 ± 57.1 | 0.646 |
WASO (min) | 60.0 ± 55.7 | 67.1 ± 58.5 | 0.136 |
Sleep efficiency (%) | 82.4 ± 15.8 | 81.9 ± 14.1 | 0.686 |
N1 stage (%) | 38.9 ± 18.6 | 37.3 ± 18.0 | 0.294 |
N2 stage (%) | 45.7 ± 16.2 | 47.2 ± 15.4 | 0.247 |
N3 stage (%) | 0.6 ± 2.2 | 0.4 ± 1.9 | 0.196 |
REM stage (%) | 14.8 ± 6.5 | 15.1 ± 6.5 | 0.514 |
REM episodes (n) | 5.9 ± 4.8 | 6.9 ± 5.3 | 0.019 |
REM latency (min) | 142.7 ± 89.4 | 147.0 ± 87.5 | 0.559 |
Awakenings (n) | 29.9 ± 20.0 | 32.9 ± 21.2 | 0.088 |
Arousal index (/h) | 42.7 ± 20.5 | 40.4 ± 20.3 | 0.167 |
AHI (/h) | 42.6 ± 27.7 | 38.1 ± 27.1 | 0.049 |
OSA classification | |||
No, n (%) | 8 (4.3) | 59 (8.1) | 0.161 |
Mild, n (%) | 30 (16.2) | 106 (14.6) | |
Moderate, n (%) | 34 (18.4) | 162 (22.3) | |
Severe, n (%) | 113 (61.1) | 400 (55.0) | |
O2 min (%) | 81.1 ± 8.2 | 82.2 ± 8.2 | 0.098 |
Snoring index (/h) | 219.9 ±159.6 | 231.7 ± 161.2 | 0.374 |
PLM index (/h) | 7.5 ± 21.8 | 8.0 ± 18.7 | 0.742 |
PLMar index (/h) | 1.2 ± 4.6 | 2.8 ± 12.2 | 0.007 |
Sleep questionnaire * | |||
PSQI | 7 (5.5–11.5) | 8 (5–11) | 0.730 |
ISI | 11 (7–17) | 11 (7–16) | 0.841 |
ESS | 8 (4–12) | 7 (4–11) | 0.097 |
STOP-Bang | 4 (3–6) | 4 (3–5) | 0.801 |
Berlin questionnaire (high, %) | 130 (71.0) | 500 (69.9) | 0.770 |
Models | Accuracy | Precision | Recall | F1-Score | AUROC (95% CI) |
---|---|---|---|---|---|
Logistic Regression | 0.8113 | 0.6429 | 0.2045 | 0.3103 | 0.7884 (0.7157–0.8571) |
Random Forest | 0.7972 | 0.6667 | 0.0455 | 0.0851 | 0.7908 (0.7160–0.8574) |
XGBoost | 0.7783 | 0.4348 | 0.2273 | 0.2985 | 0.8037 (0.7279–0.8658) |
Light GBM | 0.7972 | 0.5238 | 0.2500 | 0.3385 | 0.7980 (0.7235–0.8663) |
SVM | 0.7972 | 1.0000 | 0.0227 | 0.0444 | 0.7610 (0.6868–0.8254) |
ANN | 0.8113 | 0.7858 | 0.8113 | 0.7857 | 0.7959 (0.7120–0.8650) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, W.-S.; Choi, B.-K.; Yeom, J.; Song, S.; Cho, S.; Chu, M.-K.; Kim, W.-J.; Heo, K.; Kim, K.-M. Development and Validation of Machine Learning Models to Predict Postoperative Delirium Using Clinical Features and Polysomnography Variables. J. Clin. Med. 2024, 13, 5485. https://doi.org/10.3390/jcm13185485
Ha W-S, Choi B-K, Yeom J, Song S, Cho S, Chu M-K, Kim W-J, Heo K, Kim K-M. Development and Validation of Machine Learning Models to Predict Postoperative Delirium Using Clinical Features and Polysomnography Variables. Journal of Clinical Medicine. 2024; 13(18):5485. https://doi.org/10.3390/jcm13185485
Chicago/Turabian StyleHa, Woo-Seok, Bo-Kyu Choi, Jungyeon Yeom, Seungwon Song, Soomi Cho, Min-Kyung Chu, Won-Joo Kim, Kyoung Heo, and Kyung-Min Kim. 2024. "Development and Validation of Machine Learning Models to Predict Postoperative Delirium Using Clinical Features and Polysomnography Variables" Journal of Clinical Medicine 13, no. 18: 5485. https://doi.org/10.3390/jcm13185485
APA StyleHa, W. -S., Choi, B. -K., Yeom, J., Song, S., Cho, S., Chu, M. -K., Kim, W. -J., Heo, K., & Kim, K. -M. (2024). Development and Validation of Machine Learning Models to Predict Postoperative Delirium Using Clinical Features and Polysomnography Variables. Journal of Clinical Medicine, 13(18), 5485. https://doi.org/10.3390/jcm13185485