Long COVID Cardiopulmonary Symptoms and Health Resort Treatment: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.2. Characteristics of Participants
2.3. Statistical Analysis
3. Results
4. Discussion
5. Study Limitations and Further Studies Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koc, H.C.; Xiao, J.; Liu, W.; Li, Y.; Chen, G. Long COVID and its Management. Int. J. Biol. Sci. 2022, 18, 4768–4780. [Google Scholar] [CrossRef] [PubMed]
- Astin, R.; Banerjee, A.; Baker, M.R.; Dani, M.; Ford, E.; Hull, J.H.; Lim, P.B.; McNarry, M.; Morten, K.; O’Sullivan, O.; et al. Long COVID: Mechanisms, risk factors and recovery. Exp. Physiol. 2023, 108, 12–27. [Google Scholar] [CrossRef]
- Lippi, G.; Sanchis-Gomar, F.; Henry, B.M. COVID-19 and its long-term sequelae: What do we know in 2023? Pol. Arch. Intern. Med. 2023, 133, 16402. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146, Erratum in Nat. Rev. Microbiol. 2023, 21, 408. https://doi.org/10.1038/s41579-023-00896-0. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.; Pant, A.B. Long Covid: Untangling the Complex Syndrome and the Search for Therapeutics. Viruses 2022, 15, 42. [Google Scholar] [CrossRef]
- Lai, C.C.; Hsu, C.K.; Yen, M.Y.; Lee, P.I.; Ko, W.C.; Hsueh, P.R. Long COVID: An inevitable sequela of SARS-CoV-2 infection. J. Microbiol. Immunol. Infect. 2023, 56, 1–9. [Google Scholar] [CrossRef]
- Yong, S.J. Long COVID or post-COVID-19 syndrome: Putative pathophysiology, risk factors, and treatments. Infect. Dis. 2021, 53, 737–754. [Google Scholar] [CrossRef]
- Oronsky, B.; Larson, C.; Hammond, T.C.; Oronsky, A.; Kesari, S.; Lybeck, M.; Reid, T.R. A Review of Persistent Post-COVID Syndrome (PPCS). Clin. Rev. Allergy Immunol. 2023, 64, 66–74. [Google Scholar] [CrossRef]
- Chuang, H.J.; Lin, C.W.; Hsiao, M.Y.; Wang, T.G.; Liang, H.W. Long COVID and rehabilitation. J. Formos. Med. Assoc. 2024, 123, 61–69. [Google Scholar] [CrossRef]
- DePace, N.L.; Colombo, J. Long-COVID Syndrome and the Cardiovascular System: A Review of Neurocardiologic Effects on Multiple Systems. Curr. Cardiol. Rep. 2022, 24, 1711–1726. [Google Scholar] [CrossRef]
- Chee, Y.J.; Fan, B.E.; Young, B.E.; Dalan, R.; Lye, D.C. Clinical trials on the pharmacological treatment of long COVID: A systematic review. J. Med. Virol. 2023, 95, e28289. [Google Scholar] [CrossRef] [PubMed]
- Carlile, O.; Briggs, A.; Henderson, A.D.; Butler-Cole, B.F.C.; Tazare, J.; Tomlinson, L.A.; Marks, M.; Jit, M.; Lin, L.Y.; Bates, C.; et al. Impact of long COVID on health-related quality-of-life: An OpenSAFELY population cohort study using patient-reported outcome measures (OpenPROMPT). Lancet Reg. Health Eur. 2024, 24, 100908. [Google Scholar] [CrossRef]
- Aiyegbusi, O.L.; Hughes, S.E.; Turner, G.; Rivera, S.C.; McMullan, C.; Chandan, J.S.; Haroon, S.; Price, G.; Davies, E.H.; Nirantharakumar, K.; et al. Symptoms, complications and management of long COVID: A review. J. R. Soc. Med. 2021, 114, 428–442. [Google Scholar] [CrossRef] [PubMed]
- Onik, G.; Patrzyk, A.; Biedal, M.; Sieroń, K. Ocena skuteczności kompleksowej rehabilitacji u chorych po przebyciu COVID-19—doniesienie wstępne. Med. Rehabil. 2023, 27, 9–20. [Google Scholar] [CrossRef]
- Boutou, A.K.; Asimakos, A.; Kortianou, E.; Vogiatzis, I.; Tzouvelekis, A. Long COVID-19 Pulmonary Sequelae and Management Considerations. J. Pers. Med. 2021, 11, 838. [Google Scholar] [CrossRef]
- Zilberman-Itskovich, S.; Catalogna, M.; Sasson, E.; Elman-Shina, K.; Hadanny, A.; Lang, E.; Finci, S.; Polak, N.; Fishlev, G.; Korin, C.; et al. Hyperbaric oxygen therapy improves neurocognitive functions and symptoms of post-COVID condition: Randomised controlled trial. Sci. Rep. 2022, 12, 11252. [Google Scholar] [CrossRef]
- Mratskova, G. Benefits of balneo and mud treatment for late sequences of Covid-19. MEDIS—Med. Sci. Res. 2023, 2, 11–17. [Google Scholar] [CrossRef]
- Khaltaev, N.; Solimene, U.; Vitale, F.; Zanasi, A. Balneotherapy and hydrotherapy in chronic respiratory disease. J. Thorac. Dis. 2020, 12, 4459–4468. [Google Scholar] [CrossRef]
- Matsumoto, S. Evaluation of the Role of Balneotherapy in Rehabilitation Medicine. J. Nippon. Med. Sch. 2018, 85, 196–203. [Google Scholar] [CrossRef]
- Kubincová, A.; Takáč, P.; Kendrová, L.; Joppa, P.; Mikuľáková, W. The Effect of Pulmonary Rehabilitation in Mountain Environment on Exercise Capacity and Quality of Life in Patients with Chronic Obstructive Pulmonary Disease (COPD) and Chronic Bronchitis. Med. Sci. Monit. 2018, 12, 6375–6386. [Google Scholar] [CrossRef]
- Wang, P.C.; Song, Q.C.; Chen, C.Y.; Su, T.C. Cardiovascular physiological effects of balneotherapy: Focused on seasonal differences. Hypertens. Res. 2023, 46, 1650–1661. [Google Scholar] [CrossRef] [PubMed]
- Maccarone, M.C.; Masiero, S. Spa therapy interventions for post respiratory rehabilitation in COVID-19 subjects: Does the review of recent evidence suggest a role? Environ. Sci. Pollut. Res. Int. 2021, 28, 46063–46066. [Google Scholar] [CrossRef] [PubMed]
- Masiero, S.; Maccarone, M.C.; Agostini, F. Health resort medicine can be a suitable setting to recover disabilities in patients tested negative for COVID-19 discharged from hospital? A challenge for the future. Int. J. Biometeorol. 2020, 64, 1807–1809. [Google Scholar] [CrossRef]
- Mratskova, G. Medical resort treatment in post COVID-19 patients with persistent musculoskeletal symptoms. Knowl.-Int. J. 2023, 59, 309–315. [Google Scholar]
- Gvozdjáková, A.; Sumbalová, Z.; Kucharská, J.; Rausová, Z.; Kovalčíková, E.; Takácsová, T.; Navas, P.; López-Lluch, G.; Mojto, V.; Palacka, P. Mountain spa rehabilitation improved health of patients with post-COVID-19 syndrome: Pilot study. Environ. Sci. Pollut. Res. Int. 2023, 30, 14200–14211. [Google Scholar] [CrossRef]
- Hsu, K.Y.; Lin, J.R.; Lin, M.S.; Chen, W.; Chen, Y.J.; Yan, Y.H. The modified Medical Research Council dyspnoea scale is a good indicator of health-related quality of life in patients with chronic obstructive pulmonary disease. Singap. Med. J. 2013, 54, 321–327. [Google Scholar] [CrossRef]
- Yasui, H.; Inui, N.; Karayama, M.; Mori, K.; Hozumi, H.; Suzuki, Y.; Furuhashi, K.; Enomoto, N.; Fujisawa, T.; Nakamura, Y.; et al. Correlation of the modified Medical Research Council dyspnea scale with airway structure assessed by three-dimensional CT in patients with chronic obstructive pulmonary disease. Respir. Med. 2019, 146, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Launois, C.; Barbe, C.; Bertin, E.; Nardi, J.; Perotin, J.M.; Dury, S.; Lebargy, F.; Deslee, G. The modified Medical Research Council scale for the assessment of dyspnea in daily living in obesity: A pilot study. BMC Pulm. Med. 2012, 12, 61. [Google Scholar] [CrossRef] [PubMed]
- Liao, T.; Meng, D.; Xiong, L.; Wu, S.; Yang, L.; Wang, S.; Zhou, M.; He, X.; Cao, X.; Xiong, H.; et al. Long-Term Effects of COVID-19 on Health Care Workers 1-Year Post-Discharge in Wuhan. Infect. Dis. Ther. 2022, 11, 145–163. [Google Scholar] [CrossRef]
- Romanet, C.; Wormser, J.; Fels, A.; Lucas, P.; Prudat, C.; Sacco, E.; Bruel, C.; Plantefève, G.; Pene, F.; Chatellier, G.; et al. Effectiveness of exercise training on the dyspnoea of individuals with long COVID: A randomised controlled multicentre trial. Ann. Phys. Rehabil. Med. 2023, 66, 101765. [Google Scholar] [CrossRef]
- Ma, Y.; Deng, J.; Liu, Q.; Du, M.; Liu, M.; Liu, J. Long-Term Consequences of COVID-19 at 6 Months and Above: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 6865. [Google Scholar] [CrossRef] [PubMed]
- Sperling, S.; Leth, S.; Fløe, A.; Hyldgaard, C.; Gissel, T.; Topcu, A.; Kristensen, L.; Sønderskov Dahl, L.; Martin Schmid, J.; Jensen-Fangel, S.; et al. Twelve-month follow-up after hospitalisation for SARS-COV-2: Physiology improves, symptoms remain. Infect. Dis. Now 2023, 53, 104686. [Google Scholar] [CrossRef]
- Rao, C.M.; Behera, D.; Mohapatra, A.K.; Mohapatra, S.K.; Jagaty, S.K.; Banu, P.; Pattanaik, A.P.; Mohapatra, I.; Patro, S. Supervised hospital based pulmonary rehabilitation outcome in long COVID-experience from a tertiary care hospital. J. Fam. Med. Prim. Care 2022, 11, 7875–7881. [Google Scholar] [CrossRef]
- Watase, M.; Miyata, J.; Terai, H.; Sunata, K.; Matsuyama, E.; Asakura, T.; Namkoong, H.; Masaki, K.; Yagi, K.; Ohgino, K.; et al. Cough and sputum in long COVID are associated with severe acute COVID-19: A Japanese cohort study. Respir. Res. 2023, 14, 283. [Google Scholar] [CrossRef] [PubMed]
- Bai, F.; Tomasoni, D.; Falcinella, C.; Barbanotti, D.; Castoldi, R.; Mulè, G.; Augello, M.; Mondatore, D.; Allegrini, M.; Cona, A.; et al. Female gender is associated with long COVID syndrome: A prospective cohort study. Clin. Microbiol. Infect. 2022, 28, e9–e611. [Google Scholar] [CrossRef] [PubMed]
- Carfì, A.; Bernabei, R.; Landi, F. Persistent Symptoms in Patients After Acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef]
- Huang, L.; Yao, Q.; Gu, X.; Wang, Q.; Ren, L.; Wang, Y.; Hu, P.; Guo, L.; Liu, M.; Xu, J.; et al. 1-year outcomes in hospital survivors with COVID-19: A longitudinal cohort study. Lancet 2021, 398, 747–758, Erratum in Lancet 2022, 399, 1778. https://doi.org/10.1016/S0140-6736(22)00795-4. [Google Scholar] [CrossRef]
- Cabrera Martimbianco, A.L.; Pacheco, R.L.; Bagattini, Â.M.; Riera, R. Frequency, signs and symptoms, and criteria adopted for long COVID-19: A systematic review. Int. J. Clin. Pract. 2021, 75, e14357. [Google Scholar] [CrossRef]
- Perlis, R.H.; Santillana, M.; Ognyanova, K.; Safarpour, A.; Lunz Trujillo, K.; Simonson, M.D.; Green, J.; Quintana, A.; Druckman, J.; Baum, M.A.; et al. Prevalence and Correlates of Long COVID Symptoms Among US Adults. JAMA Netw. Open 2022, 5, e2238804. [Google Scholar] [CrossRef]
- Czapla, B.; Gziut, A.I. Patient qualification rules for various types of spa treatment: Theory and practice. Kardiol. Inwazyjna. 2020, 15, 21–27. [Google Scholar]
- Koçak, F.A.; Kurt, E.E.; Milletli Sezgin, F.; Şaş, S.; Tuncay, F.; Erdem, H.R. The effect of balneotherapy on body mass index, adipokine levels, sleep disturbances, and quality of life of women with morbid obesity. Int. J. Biometeorol. 2020, 64, 1463–1472. [Google Scholar] [CrossRef] [PubMed]
- Nopp, S.; Moik, F.; Klok, F.A.; Gattinger, D.; Petrovic, M.; Vonbank, K.; Koczulla, A.R.; Ay, C.; Zwick, R.H. Outpatient Pulmonary Rehabilitation in Patients with Long COVID Improves Exercise Capacity, Functional Status, Dyspnea, Fatigue, and Quality of Life. Respiration 2022, 101, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Jimeno-Almazán, A.; Franco-López, F.; Buendía-Romero, Á.; Martínez-Cava, A.; Sánchez-Agar, J.A.; Sánchez-Alcaraz Martínez, B.J.; Courel-Ibáñez, J.; Pallarés, J.G. Rehabilitation for post-COVID-19 condition through a supervised exercise intervention: A randomised controlled trial. Scand. J. Med. Sci. Sports 2022, 32, 1791–1801. [Google Scholar] [CrossRef] [PubMed]
- Jimeno-Almazán, A.; Buendía-Romero, Á.; Martínez-Cava, A.; Franco-López, F.; Sánchez-Alcaraz, B.J.; Courel-Ibáñez, J.; Pallarés, J.G. Effects of a concurrent training, respiratory muscle exercise, and self-management recommendations on recovery from post-COVID-19 conditions: The RECOVE trial. J. Appl. Physiol. 2023, 134, 95–104. [Google Scholar] [CrossRef]
- Castelli, L.; Galasso, L.; Mulè, A.; Ciorciari, A.; Fornasini, F.; Montaruli, A.; Roveda, E.; Esposito, F. Sleep and spa therapies: What is the role of balneotherapy associated with exercise? A systematic review. Front. Physiol. 2022, 13, 964232. [Google Scholar] [CrossRef]
- Dani, M.; Dirksen, A.; Taraborrelli, P.; Torocastro, M.; Panagopoulos, D.; Sutton, R.; Lim, P.B. Autonomic dysfunction in ‘long COVID’: Rationale, physiology and management strategies. Clin. Med. 2021, 21, e63–e67. [Google Scholar] [CrossRef]
- Reger, M.; Kutschan, S.; Freuding, M.; Schmidt, T.; Josfeld, L.; Huebner, J. Water therapies (hydrotherapy, balneotherapy or aqua therapy) for patients with cancer: A systematic review. J. Cancer Res. Clin. Oncol. 2022, 148, 1277–1297. [Google Scholar] [CrossRef] [PubMed]
- Protano, C.; Vitali, M.; De Giorgi, A.; Marotta, D.; Crucianelli, S.; Fontana, M. Balneotherapy using thermal mineral water baths and dermatological diseases: A systematic review. Int. J. Biometeorol. 2024, 68, 1005–1013. [Google Scholar] [CrossRef]
- Masiero, S.; Maccarone, M.C.; Magro, G. Balneotherapy and human immune function in the era of COVID-19. Int. J. Biometeorol. 2020, 64, 1433–1434. [Google Scholar] [CrossRef]
- Gálvez, I.; Torres-Piles, S.; Ortega-Rincón, E. Balneotherapy, Immune System, and Stress Response: A Hormetic Strategy? Int. J. Mol. Sci. 2018, 19, 1687. [Google Scholar] [CrossRef]
- Jimeno-Almazán, A.; Pallarés, J.G.; Buendía-Romero, Á.; Martínez-Cava, A.; Franco-López, F.; Sánchez-Alcaraz Martínez, B.J.; Bernal-Morel, E.; Courel-Ibáñez, J. Post-COVID-19 Syndrome and the Potential Benefits of Exercise. Int. J. Environ. Res. Public Health 2021, 18, 5329. [Google Scholar] [CrossRef] [PubMed]
- Dembska-Sięka, P. Występowanie i wykorzystanie wód leczniczych w uzdrowisku Goczałkowice-Zdrój. Prz. Geol. 2015, 63, 672–677. [Google Scholar]
- Kubincová, A.; Takáč, P.; Demjanovič Kendrová, L.; Joppa, P. Predictors of Quality-of-Life Improvement at Different Minimum Clinically Important Difference Values in Patients with Chronic Obstructive Pulmonary Disease after Climatic Rehabilitation Treatment. Life 2023, 13, 1763. [Google Scholar] [CrossRef] [PubMed]
- Berni, M.; Brancato, A.M.; Torriani, C.; Bina, V.; Annunziata, S.; Cornella, E.; Trucchi, M.; Jannelli, E.; Mosconi, M.; Gastaldi, G.; et al. The Role of Low-Level Laser Therapy in Bone Healing: Systematic Review. Int. J. Mol. Sci. 2023, 24, 7094. [Google Scholar] [CrossRef]
- Ahmad, S.A.; Hasan, S.; Saeed, S.; Khan, A.; Khan, M. Low-level laser therapy in temporomandibular joint disorders: A systematic review. J. Med. Life 2021, 14, 148–164. [Google Scholar] [CrossRef]
- Yetişir, A.; Öztürk, G.Y. Effects of low-level laser therapy on acupuncture points on knee pain and function in knee osteoarthritis. Rev. Assoc. Med. Bras. 2023, 70, e20230264. [Google Scholar] [CrossRef]
- Kunkle, B.F.; Kothandaraman, V.; Goodloe, J.B.; Curry, E.J.; Friedman, R.J.; Li, X.; Eichinger, J.K. Orthopaedic Application of Cryotherapy: A Comprehensive Review of the History, Basic Science, Methods, and Clinical Effectiveness. JBJS Rev. 2021, 9, e20.00016. [Google Scholar] [CrossRef]
- Garcia, C.; Karri, J.; Zacharias, N.A.; Abd-Elsayed, A. Use of Cryotherapy for Managing Chronic Pain: An Evidence-Based Narrative. Pain Ther. 2021, 10, 81–100. [Google Scholar] [CrossRef]
- Onik, G.; Knapik, K.; Sieroń, A.; Sieroń-Stołtny, K. Physical medicine modalities most frequently applied in the lower limbs chronic wounds treatment in Poland. Pol. Ann. Med. 2017, 24, 92–98. [Google Scholar] [CrossRef]
- Johnson, M.I.; Paley, C.A.; Howe, T.E.; Sluka, K.A. Transcutaneous electrical nerve stimulation for acute pain. Cochrane Database Syst. Rev. 2015, 6, CD006142. [Google Scholar] [CrossRef]
- Guillot, X.; Tordi, N.; Laheurte, C.; Pazart, L.; Prati, C.; Saas, P.; Wendling, D. Local ice cryotherapy decreases synovial interleukin 6, interleukin 1β, vascular endothelial growth factor, prostaglandin-E2, and nuclear factor kappa B p65 in human knee arthritis: A controlled study. Arthritis Res. Ther. 2019, 21, 180. [Google Scholar] [CrossRef] [PubMed]
- Letizia Mauro, G.; Scaturro, D.; Gimigliano, F.; Paoletta, M.; Liguori, S.; Toro, G.; Iolascon, G.; Moretti, A. Physical Agent Modalities in Early Osteoarthritis: A Scoping Review. Medicina 2021, 57, 1165. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Xie, W.; Ye, W.; He, C. Effects of electromagnetic fields on osteoarthritis. Biomed. Pharmacother. 2019, 118, 109282. [Google Scholar] [CrossRef] [PubMed]
Women (n = 71) | Men (n = 51) | |||||
---|---|---|---|---|---|---|
Min | Max | Mean ± SD | Min | Max | Mean ± SD | |
Age [years] | 43 | 77 | 65.00 ± 8.59 | 42 | 79 | 63.45 ± 8.78 |
Body weight [kg] | 55 | 125 | 82.18 ± 16.14 | 70 | 120 | 90.66 ± 12.36 |
Body height [m] | 1.5 | 1.78 | 1.62 ± 0.05 | 1.61 | 1.95 | 1.75 ± 0.07 |
BMI [kg/m2] | 21.45 | 46.55 | 31.32 ± 5.89 | 23.99 | 39.79 | 29.7 ± 3.51 |
Systolic blood pressure [mmHg] | 105 | 160 | 139.22 ± 14.36 | 115 | 165 | 140.52 ± 11.7 |
Diastolic blood pressure [mmHg] | 55 | 95 | 78.97 ± 8.04 | 66 | 95 | 81.59 ± 6.49 |
Treatment duration [day] | 19 | 47 | 25.21 ± 6.71 | 17 | 46 | 23.72 ± 5.74 |
Comorbidities | Women (n = 71) | Men (n = 51) | ||||
Hypertension [n] | 44 | 26 | ||||
Osteoarthritis [n] | 16 | 11 | ||||
Type 2 diabetes mellitus [n] | 13 | 10 | ||||
Hypothyroidism [n] | 14 | 2 | ||||
Gout [n] | 2 | 2 | ||||
Benign prostatic hyperplasia [n] | - - | 1 |
Group I (n = 37) | Group II (n = 42) | Group III (n = 43) | p 1 Value | Post-Hoc Test 2 | ||||
---|---|---|---|---|---|---|---|---|
Min Max | Mean ± SD | Min Max | Mean ± SD | Min Max | Mean ± SD | |||
Body weight [kg] | 62 125 | 87.97 ± 14.36 | 57 120 | 89.33 ± 17.6 | 55 110 | 80.28 ± 11.83 | 0.02 | Group II > Group III p = 0.02 |
Body height [m] | 1.51 1.95 | 1.7 ± 0.09 | 1.52 1.88 | 1.68 ± 0.08 | 1.5 1.78 | 1.64 ± 0.07 | 0.04 | Group I > Group III p = 0.005 Group II vs. Group III: p = 0.03 |
BMI [kg/m2] | 21.97 46.47 | 30.49 ± 4.9 | 21.45 46.65 | 31.45 ± 5.79 | 22.03 40.48 | 29.98 ± 4.47 | 0.73 | - |
Systolic blood pressure [mmHg] | 105 165 | 135.32 ± 14.06 | 109 160 | 140.16 ± 12.29 | 115 160 | 143.2 ± 12.7 | 0.03 | Group I < Group III p = 0.02 |
Diastolic blood pressure [mmHg] | 66 95 | 83.03 ± 6.79 | 55 95 | 79.81 ± 7.51 | 63 95 | 77.77 ± 7.41 | 0.02 | Group I > Group III p = 0.006 |
Treatment duration [day] | 17 41 | 23.67 ± 5.49 | 20 46 | 25.02 ± 6.57 | 19 47 | 24.95 ± 6.83 | 0.38 | - |
Before Resort Treatment | After Resort Treatment | p 1 Value | |||||
---|---|---|---|---|---|---|---|
Min | Max | Mean ± SD | Min | Max | Mean ± SD | ||
Dyspnoea at rest [points] | 0 | 6 | 1.11 ± 1.51 | 0 | 3 | 0.31 ± 0.62 | <0.0001 |
Exercise-induced dyspnoea [points] | 0 | 9 | 3.20 ± 2.73 | 0 | 4 | 1.19 ± 1.27 | <0.0001 |
Cough intensity [points] | 0 | 6 | 0.96 ± 1.41 | 0 | 2 | 0.18 ± 0.46 | <0.0001 |
Tightness of the chest [points] | 0 | 6 | 0.75 ± 1.47 | 0 | 4 | 0.20 ± 0.6 | <0.0001 |
Chest pain [points] | 0 | 6 | 0.34 ± 0.96 | 0 | 2 | 0.08 ± 0.3 | 0.002 |
Sputum [points] | 0 | 5 | 0.69 ± 1.14 | 0 | 3 | 0.13 ± 0.44 | <0.0001 |
Palpitations [points] | 0 | 5 | 0.22 ± 0.76 | 0 | 3 | 0.07 ± 0.37 | 0.02 |
Fast heart rate [points] | 0 | 5 | 0.24 ± 0.81 | 0 | 3 | 0.08 ± 0.38 | 0.06 |
Dyspnoea at Rest [Points] (Mean ± SD) | |||
---|---|---|---|
Before Resort Treatment | After Resort Treatment | p 1 Value | |
Women (n = 71) | 1.2 ± 1.46 | 0.39 ± 0.73 | <0.0001 |
Men (n = 51) | 0.98 ± 1.58 | 0.2 ± 0.4 | <0.0001 |
p 2 value | 0.15 | 0.24 | |
Exercise-induced dyspnoea [points] (Mean ± SD) | |||
Before resort treatment | After resort treatment | p 1 value | |
Women (n = 71) | 3.13 ± 2.75 | 1.15 ± 1.21 | <0.0001 |
Men (n = 51) | 3.31 ± 2.74 | 1.23 ± 1.35 | <0.0001 |
p 2 value | 0.69 | 0.83 | |
Cough intensity [points] (Mean ± SD) | |||
Before resort treatment | After resort treatment | p 1 value | |
Women (n = 71) | 1.15 ± 1.62 | 0.21 ± 0.5 | <0.0001 |
Men (n = 51) | 0.69 ± 1.01 | 0.14 ± 0.4 | <0.0001 |
p 2 value | 0.2 | 0.42 | |
Tightness of the chest [points] (Mean ± SD) | |||
Before resort treatment | After resort treatment | p 1 value | |
Women (n = 71) | 0.89 ± 1.63 | 0.22 ± 0.7 | <0.0001 |
Men (n = 51) | 0.57 ± 1.19 | 0.18 ± 0.43 | 0.04 |
p 2 value | 0.17 | 0.72 | |
Chest pain [points] (Mean ± SD) | |||
Before resort treatment | After resort treatment | p 1 value | |
Women (n = 71) | 0.25 ± 0.73 | 0.08 ± 0.33 | 0.04 |
Men (n = 51) | 0.47 ± 1.2 | 0.08 ± 0.27 | 0.04 |
p 2 value | 0.51 | 0.89 | |
Sputum [points] (Mean ± SD) | |||
Before resort treatment | After resort treatment | p 1 value | |
Women (n = 71) | 0.75 ± 1.19 | 0.14 ± 0.49 | <0.0001 |
Men (n = 51) | 0.61 ± 1.06 | 0.12 ± 0.38 | <0.0001 |
p 2 value | 0.53 | 0.98 | |
Palpitations [points] (Mean ± SD) | |||
Before resort treatment | After resort treatment | p 1 value | |
Women (n = 71) | 0.28 ± 0.85 | 0.09 ± 0.45 | 0.03 |
Men (n = 51) | 0.14 ± 0.63 | 0.04 ± 0.2 | 0.62 |
p 2 value | 0.16 | 0.65 | |
Fast heart rate [points] (Mean ± SD) | |||
Before resort treatment | After resort treatment | p 1 value | |
Women (n = 71) | 0.28 ± 0.85 | 0.14 ± 0.49 | 0.34 |
Men (n = 51) | 0.18 ± 0.76 | 0 ± 0 | 0.13 |
p 2 value | 0.29 | 0.02 |
Dyspnoea at Rest [Points] (Mean ± SD) | |||
---|---|---|---|
Before Resort Treatment | After Resort Treatment | p 1 Value | |
Group I (n = 37) | 1.49 ± 1.04 | 0.49 ± 0.84 | <0.0001 |
Group II (n = 42) | 1.23 ± 0.98 | 0.59 ± 0.79 | <0.0001 |
Group III (n = 43) | 1.39 ± 0.85 | 0.49 ± 0.55 | <0.0001 |
p 2 value | 0.54 | 0.61 | |
Exercise-induced dyspnea [points] (Mean ± SD) | |||
Before resort treatment | After resort treatment | p 1 value | |
Group I (n = 37) | 3.92 ± 2.95 | 1.43 ± 1.36 | <0.0001 |
Group II (n = 42) | 3.02 ± 2.87 | 1.05 ± 1.25 | <0.0001 |
Group III (n = 43) | 2.77 ± 2.31 | 1.12 ± 1.19 | <0.0001 |
p 2 value | 0.20 | 0.37 | |
Cough intensity [points] (Mean ± SD) | |||
Before resort treatment | After resort treatment | p 1 value | |
Group I (n = 37) | 1.38 ± 1.77 | 0.24 ± 0.55 | <0.0001 |
Group II (n = 42) | 0.59 ± 0.79 | 0.09 ± 0.3 | <0.0001 |
Group III (n = 43) | 0.95 ± 1.46 | 0.21 ± 0.51 | <0.0001 |
p 2 value | 0.29 | 0.44 | |
Tightness of the chest [points] (Mean ± SD) | |||
Before resort treatment | After resort treatment | p 1 value | |
Group I (n = 37) | 1.27 ± 1.83 | 0.24 ± 0.72 | 0.002 |
Group II (n = 42) | 0.45 ± 1.33 | 0.12 ± 0.33 | 0.44 |
Group III (n = 43) | 0.6 ± 1.11 | 0.25 ± 0.69 | 0.003 |
p 2 value | 0.05 | 0.83 | |
Chest pain [points] (Mean ± SD) | |||
Before resort treatment | After resort treatment | p 1 value | |
Group I (n = 37) | 0.57 ± 1.12 | 0.11 ± 0.31 | 0.01 |
Group II (n = 42) | 0.21 ± 0.98 | 0.05 ± 0.21 | 1.00 |
Group III (n = 43) | 0.28 ± 0.76 | 0.09 ± 0.37 | 0.13 |
p 2 value | 0.1 | 0.6 | |
Sputum [points] (Mean ± SD) | |||
Before resort treatment | After resort treatment | p 1 value | |
Group I (n = 37) | 0.7 ± 1.24 | 0.08 ± 0.36 | 0.003 |
Group II (n = 42) | 0.45 ± 0.7 | 0.05 ± 0.21 | <0.0001 |
Group III (n = 43) | 0.91 ± 1.34 | 0.25 ± 0.62 | <0.0001 |
p 2 value | 0.34 | 0.06 | |
Heart palpitations [points] (Mean ± SD) | |||
Before resort treatment | After resort treatment | p 1 value | |
Group I (n = 37) | 0.4 ± 0.98 | 0.11 ± 0.39 | 0.04 |
Group II (n = 42) | 0.05 ± 0.21 | 0.07 ± 0.34 | 1.00 |
Group III (n = 43) | 0.21 ± 0.83 | 0.09 ± 0.48 | 0.37 |
p 2 value | 0.11 | 0.5 | |
Fast heart rate [points] (Mean ± SD) | |||
Before resort treatment | After resort treatment | p 1 value | |
Group I (n = 37) | 0.43 ± 1.09 | 0.05 ± 0.23 | 0.04 |
Group II (n = 42) | 0.12 ± 0.45 | 0.02 ± 0.15 | 0.62 |
Group III (n = 43) | 0.19 ± 0.79 | 0.16 ± 0.57 | 0.62 |
p 2 value | 0.21 | 0.37 |
Dyspnoea at Rest [Points] (Mean ± SD) | |||
---|---|---|---|
Before Resort Treatment | After Resort Treatment | p 1 Value | |
Group A (n = 73) | 1.26 ± 1.5 | 0.31 ± 0.63 | <0.0001 |
Group B (n = 49) | 0.88 ± 1.51 | 0.31 ± 0.62 | 0.005 |
p 2 value | 0.25 | 0.85 | |
Exercise-induced dyspnoea [points] (Mean ± SD) | |||
Before resort treatment | After resort treatment | p 1 value | |
Group A (n = 73) | 2.85 ± 2.71 | 1.03 ± 1.28 | <0.0001 |
Group B (n = 49) | 3.74 ± 2.71 | 1.43 ± 1.22 | <0.0001 |
p 2 value | 0.12 | 0.04 | |
Cough intensity [points] (Mean ± SD) | |||
Before resort treatment | After resort treatment | p 1 value | |
Group A (n = 73) | 1.00 ± 1.35 | 0.16 ± 0.44 | <0.0001 |
Group B (n = 49) | 0.89 ± 1.5 | 0.2 ± 0.49 | <0.0001 |
p 2 value | 0.33 | 0.68 | |
Tightness of the chest [points] (Mean ± SD) | |||
Before resort treatment | After resort treatment | p 1 value | |
Group A (n = 73) | 0.78 ± 1.54 | 0.23 ± 0.67 | <0.0001 |
Group B (n = 49) | 0.71 ± 1.37 | 0.16 ± 0.47 | 0.02 |
p 2 value | 0.93 | 0.66 | |
Chest pain [points] (Mean ± SD) | |||
Before resort treatment | After resort treatment | p 1 value | |
Group A (n = 73) | 0.26 ± 0.82 | 0.11 ± 0.35 | 0.18 |
Group B (n = 49) | 0.47 ± 1.14 | 0.04 ± 0.19 | 0.008 |
p 2 value | 0.22 | 0.25 | |
Sputum [points] (Mean ± SD) | |||
Before resort treatment | After resort treatment | p 1 value | |
Group A (n = 73) | 0.76 ± 1.18 | 0.11 ± 0.46 | <0.0001 |
Group B (n = 49) | 0.57 ± 1.06 | 0.16 ± 0.42 | 0.02 |
p 2 value | 0.22 | 0.19 | |
Palpitations [points] (Mean ± SD) | |||
Before resort treatment | After resort treatment | p 1 value | |
Group A (n = 73) | 0.25 ± 0.86 | 0.09 ± 0.45 | 0.04 |
Group B (n = 49) | 0.18 ± 0.60 | 0.04 ± 0.19 | 0.37 |
p 2 value | 0.88 | 0.71 | |
Fast heart rate [points] (Mean ± SD) | |||
Before resort treatment | After resort treatment | p 1 value | |
Group A (n = 73) | 0.23 ± 0.91 | 0.09 ± 0.41 | 0.28 |
Group B (n = 49) | 0.24 ± 0.66 | 0.06 ± 0.31 | 0.22 |
p 2 value | 0.44 | 0.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Onik, G.; Knapik, K.; Sieroń, K. Long COVID Cardiopulmonary Symptoms and Health Resort Treatment: A Retrospective Study. J. Clin. Med. 2024, 13, 5563. https://doi.org/10.3390/jcm13185563
Onik G, Knapik K, Sieroń K. Long COVID Cardiopulmonary Symptoms and Health Resort Treatment: A Retrospective Study. Journal of Clinical Medicine. 2024; 13(18):5563. https://doi.org/10.3390/jcm13185563
Chicago/Turabian StyleOnik, Grzegorz, Katarzyna Knapik, and Karolina Sieroń. 2024. "Long COVID Cardiopulmonary Symptoms and Health Resort Treatment: A Retrospective Study" Journal of Clinical Medicine 13, no. 18: 5563. https://doi.org/10.3390/jcm13185563
APA StyleOnik, G., Knapik, K., & Sieroń, K. (2024). Long COVID Cardiopulmonary Symptoms and Health Resort Treatment: A Retrospective Study. Journal of Clinical Medicine, 13(18), 5563. https://doi.org/10.3390/jcm13185563