Overall Survival and Cancer-Specific Mortality in Patients with Prostate Cancer Undergoing Definitive Therapies: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Radical Prostatectomy
3.1. Surgical Outcomes of Robot-Assisted RP
3.2. BCR after RARP
4. Radiation Therapy
4.1. Therapeutic Characteristics of RT for PCa
4.2. BCR after RT
5. Oncological Outcomes
5.1. Oncological Outcomes after RP or RT
5.2. Treatment Method and Its Efficacy for Patients with mCRPC after RP and RT for the Prostate
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA Cancer J. Clin. 2024, 74, 12–49. [Google Scholar] [CrossRef] [PubMed]
- Cancer Statistics in Japan. 2022. Available online: https://ganjoho.jp/reg_stat/statistics/stat/summary.html (accessed on 10 July 2024).
- Pound, C.R.; Partin, A.W.; Eisenberger, M.A.; Chan, D.W.; Pearson, J.D.; Walsh, P.C. Natural history of progression after PSA elevation following radical prostatectomy. JAMA 1999, 281, 1591–1597. [Google Scholar] [CrossRef] [PubMed]
- Neal, D.E.; Metcalfe, C.; Donovan, J.L.; Lane, J.A.; Davis, M.; Young, G.J.; Dutton, S.J.; Walsh, E.I.; Martin, R.M.; Peters, T.J.; et al. Ten-year Mortality, Disease Progression, and Treatment-related Side Effects in Men with Localised Prostate Cancer from the ProtecT Randomised Controlled Trial According to Treatment Received. Eur. Urol. 2020, 77, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Heesterman, B.L.; Aben, K.K.H.; de Jong, I.J.; Pos, F.J.; van der Hel, O.L. Radical prostatectomy versus external beam radiotherapy with androgen deprivation therapy for high-risk prostate cancer: A systematic review. BMC Cancer 2023, 23, 398. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.C.; Huang, C.Y.; Cheng, C.H.; Huang, K.H.; Lu, Y.C.; Chow, P.M.; Chang, Y.K.; Pu, Y.S.; Chen, C.H.; Lu, S.L.; et al. Propensity score matching analysis comparing radical prostatectomy and radiotherapy with androgen deprivation therapy in locally advanced prostate cancer. Sci. Rep. 2022, 12, 12480. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, X.Y.; Huang, T.B.; Niu, Q.; Yao, K.; Song, X.; Zhou, S.Y.; Chen, Z.; Zhou, G.C. Effect on survival of local treatment in patients with low prostate-specific antigen, high Gleason score prostate cancer: A population-based propensity score-matched analysis. Ann. Palliat. Med. 2020, 9, 1708–1717. [Google Scholar] [CrossRef]
- Hamdy, F.C.; Donovan, J.L.; Lane, J.A.; Mason, M.; Metcalfe, C.; Holding, P.; Davis, M.; Peters, T.J.; Turner, E.L.; Martin, R.M.; et al. 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N. Engl. J. Med. 2016, 375, 1415–1424. [Google Scholar] [CrossRef]
- Suárez, J.F.; Zamora, V.; Garin, O.; Gutiérrez, C.; Pont, À.; Pardo, Y.; Goñi, A.; Mariño, A.; Hervás, A.; Herruzo, I.; et al. Mortality and biochemical recurrence after surgery, brachytherapy, or external radiotherapy for localized prostate cancer: A 10-year follow-up cohort study. Sci. Rep. 2022, 12, 12589. [Google Scholar] [CrossRef]
- Alam, M.U.; Kumar, J.; Norez, D.; Woolfe, J.; Tanneru, K.; Jazayeri, S.B.; Bazargani, S.; Thomas, D.; Gautam, S.; Costa, J.; et al. Natural history, and impact of surgery and radiation on survival outcomes of men diagnosed with low-grade prostate cancer at ≤ 55 years of age: A 25-year follow-up of > 60,000 men. Int. Urol. Nephrol. 2023, 55, 295–300. [Google Scholar] [CrossRef]
- . Herlemann, A.; Cowan, J.E.; Washington, S.L., 3rd; Wong, A.C.; Broering, J.M.; Carroll, P.R.; Cooperberg, M.R. Long-term Prostate Cancer-specific Mortality After Prostatectomy, Brachytherapy, External Beam Radiation Therapy, Hormonal Therapy, or Monitoring for Localized Prostate Cancer. Eur. Urol. 2024, 85, 565–573. [Google Scholar] [CrossRef]
- Mori, A.; Hashimoto, K.; Koroki, Y.; Wu, D.B.; Masumori, N. The correlation between metastasis-free survival and overall survival in non-metastatic castration resistant prostate cancer patients from the Medical Data Vision claims database in Japan. Curr. Med. Res. Opin. 2019, 35, 1745–1750. [Google Scholar] [CrossRef] [PubMed]
- Miyake, H.; Matsushita, Y.; Watanabe, H.; Tamura, K.; Motoyama, D.; Ito, T.; Sugiyama, T.; Otsuka, A. Prognostic Significance of Time to Castration Resistance in Patients with Metastatic Castration-sensitive Prostate Cancer. Anticancer. Res. 2019, 39, 1391–1396. [Google Scholar] [CrossRef]
- Kodama, H.; Koie, T.; Oikawa, M.; Narita, T.; Tanaka, T.; Noro, D.; Iwamura, H.; Tobisawa, Y.; Yoneyama, T.; Hashimoto, Y.; et al. Castration-resistant prostate cancer without metastasis at presentation may achieve cancer-specific survival in patients who underwent prior radical prostatectomy. Int. Urol. Nephrol. 2020, 52, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Iinuma, K.; Nakano, M.; Kato, T.; Kato, D.; Takai, M.; Maekawa, Y.M.; Nakane, K.; Mizutani, K.; Tsuchiya, T.; Ishihara, T.; et al. Assessment of Long-term Changes in Lower Urinary Tract Symptoms in Patients with Prostate Cancer Who Underwent Low-dose-rate Prostate Brachytherapy. Urology 2020, 142, 213–220. [Google Scholar] [CrossRef]
- Nakai, Y.; Tanaka, N.; Asakawa, I.; Hori, S.; Miyake, M.; Yamaki, K.; Anai, S.; Torimoto, K.; Inoue, T.; Hasegawa, M.; et al. Quality of life in patients who underwent robot-assisted radical prostatectomy compared with those who underwent low-dose-rate brachytherapy. Prostate 2023, 83, 701–712. [Google Scholar] [CrossRef]
- Kohada, Y.; Hieda, K.; Miyamoto, S.; Tasaka, R.; Asami, A.; Akiyama, K.; Sakamoto, Y.; Kirishima, F.; Saito, K.; Fukushima, T.; et al. Retrospective evaluation of the improvement in the urinary status-related quality of life after robot-assisted radical prostatectomy. Int. J. Urol. 2023, 30, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, S.; Hasegawa, A.; Makabe, S.; Onagi, A.; Matsuoka, K.; Kayama, E.; Koguchi, T.; Hata, J.; Sato, Y.; Akaihata, H.; et al. Impacts of Neoadjuvant Hormonal Therapy Prior to Robot-Assisted Radical Prostatectomy on Postoperative Hormonal- and Sexual-Related Quality of Life—Assessment by Patient-Reported Questionnaire. Res. Rep. Urol. 2022, 14, 39–48. [Google Scholar] [CrossRef]
- Roy, S.; Romero, T.; Michalski, J.M.; Feng, F.X.; Efstathiou, J.A.; Lawton, C.A.F.; Bolla, M.; Maigon, P.; de Reijke, T.; Joseph, D. Biochemical Recurrence Surrogacy for Clinical Outcomes After Radiotherapy for Adenocarcinoma of the Prostate. J. Clin. Oncol. 2023, 41, 5005–5014. [Google Scholar] [CrossRef]
- Eastham, J.A.; Auffenberg, G.B.; Barocas, D.A.; Chou, R.; Crispino, T.; Davis, J.W.; Eggener, S.; Horwitz, E.M.; Kane, C.J.; Kirkby, E.; et al. Clinically Localized Prostate Cancer: AUA/ASTRO Guideline, Part II: Principles of Active Surveillance, Principles of Surgery, and Follow-Up. J. Urol. 2022, 208, 19–25. [Google Scholar] [CrossRef]
- Prostate Cancer. NCCN Guideline. Available online: https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (accessed on 10 July 2024).
- Ilic, D.; Evans, S.M.; Allan, C.A.; Jung, J.H.; Murphy, D.; Frydenberg, M. Laparoscopic and robot-assisted vs open radical prostatectomy for the treatment of localized prostate cancer: A Cochrane systematic review. BJU Int. 2018, 121, 845–853. [Google Scholar] [CrossRef]
- Kato, D.; Ebara, S.; Tatenuma, T.; Sasaki, T.; Ikehata, Y.; Nakayama, A.; Toide, M.; Yoneda, T.; Sakaguchi, K.; Teishima, J.; et al. Short-term oncological and surgical outcomes of robot-assisted radical prostatectomy: A retrospective multicenter cohort study in Japan (the MSUG94 group). Asian J. Endosc. Surg. 2022, 15, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Ebara, S.; Tatenuma, T.; Ikehata, Y.; Nakayama, A.; Kawase, M.; Toide, M.; Yoneda, T.; Sakaguchi, K.; Teishima, J.; et al. Prognostic factors among patients with pathological Grade Group 5 prostate cancer based on robot-associated radical prostatectomy specimens from a large Japanese cohort (MSUG94). World J. Urol. 2024, 42, 152. [Google Scholar] [CrossRef] [PubMed]
- Kawase, M.; Kato, D.; Tobisawa, Y.; Iinuma, K.; Nakane, K.; Koie, T. Efficacy and safety of combination neoadjuvant chemo-hormonal therapy and robot-assisted radical prostatectomy for oligometastatic prostate cancer. Int. J. Urol. 2024, 31, 826–828. [Google Scholar] [CrossRef] [PubMed]
- Andrade, G.M.; Lau, C.; Olivares, R.; Duarte, I.K.; Teles, S.B.; Gavassa, F.P.; Pereira, H.M.J.; Kayano, P.P.; Barbosa, A.R.G.; Bianco, B.; et al. Implementation of Robot-assisted Urologic Surgeries using Hugo™ RAS System in a High-volume Robotic “Da vinci Xi” Center: Outcomes and initial experience. Urology, 2024; in press. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, A.; Izumi, K.; Ikezoe, E.; Inoue, M.; Tsujioka, H.; Nirazuka, A.; Hasegawa, K.; Osaka, A.; Yasuda, Y.; Fukuda, Y.; et al. Robot-assisted radical prostatectomy using the novel hinotoriTM surgical robot system: Initial experience and operation learning curve at a single institution. Transl. Cancer Res. 2024, 13, 57–64. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, Y.; Qin, S.; Zhong, S.; Huang, X. Perioperative, function, and positive surgical margin in extraperitoneal versus transperitoneal single port robot-assisted radical prostatectomy: A systematic review and meta-analysis. World J. Surg. Oncol. 2023, 21, 383. [Google Scholar] [CrossRef]
- Salomon, L.; Saint, F.; Anastasiadis, A.G.; Sebe, P.; Chopin, D.; Abbou, C.C. Combined reporting of cancer control and functional results of radical prostatectomy. Eur. Urol. 2003, 44, 656–660. [Google Scholar] [CrossRef]
- Patel, V.R.; Sivaraman, A.; Coelho, R.F.; Chauhan, S.; Palmer, K.J.; Orvieto, M.A.; Camacho, I.; Coughlin, G.; Rocco, B. Pentafecta: A new concept for reporting outcomes of robot-assisted laparoscopic radical prostatectomy. Eur. Urol. 2011, 59, 702–707. [Google Scholar] [CrossRef]
- Tewari, A.; Srivasatava, A.; Menon, M.; Members of the VIP Team. A prospective comparison of radical retropubic and robot-assisted prostatectomy: Experience in one institution. BJU Int. 2003, 92, 205–210. [Google Scholar] [CrossRef]
- Gainsburg, D.M.; Wax, D.; Reich, D.L.; Carlucci, J.R.; Samadi, D.B. Intraoperative management of robotic-assisted versus open radical prostatectomy. JSLS J. Soc. Laparoendosc. Surg. 2010, 14, 1–5. [Google Scholar] [CrossRef]
- Davis, J.W.; Kreaden, U.S.; Gabbert, J.; Thomas, R. Learning curve assessment of robot-assisted radical prostatectomy compared with open-surgery controls from the premier perspective database. J. Endourol. 2014, 28, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Galfano, A.; Secco, S.; Dell’Oglio, P.; Rha, K.; Eden, C.; Fransis, K.; Sooriakumaran, P.; De La Muela, P.S.; Kowalczyk, K.; Miyagawa, T.; et al. Retzius-sparing robot-assisted radical prostatectomy: Early learning curve experience in three continents. BJU Int. 2021, 127, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Kato, D.; Namiki, S.; Ueda, S.; Takeuchi, Y.; Takeuchi, S.; Kawase, M.; Kawase, K.; Nakai, C.; Takai, M.; Iinuma, K.; et al. Validation of standardized training system for robot-assisted radical prostatectomy: Comparison of perioperative and surgical outcomes between experienced surgeons and novice surgeons at a low-volume institute in Japan. Minim. Invasive Ther. Allied Technol. 2022, 31, 1103–1111. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.K.; Kim, K.H.; Shin, T.Y.; Rha, K.H. Current status of robot-assisted laparoscopic radical prostatectomy: How does it compare with other surgical approaches? Int. J. Urol. 2013, 20, 271–284. [Google Scholar] [CrossRef]
- Krambeck, A.E.; DiMarco, D.S.; Rangel, L.J.; Bergstralh, E.J.; Myers, R.P.; Blute, M.L.; Gettman, M.T. Radical prostatectomy for prostatic adenocarcinoma: A matched comparison of open retropubic and robot-assisted techniques. BJU Int. 2009, 103, 448–453. [Google Scholar] [CrossRef]
- Rocco, B.; Matei, D.V.; Melegari, S.; Ospina, J.C.; Mazzoleni, F.; Errico, G.; Mastropasqua, M.; Santoro, L.; Detti, S.; de Cobelli, O. Robotic vs open prostatectomy in a laparoscopically naive centre: A matched-pair analysis. BJU Int. 2009, 104, 991–995. [Google Scholar] [CrossRef]
- Doumerc, N.; Yuen, C.; Savdie, R.; Rahman, M.B.; Rasiah, K.K.; Pe Benito, R.; Delprado, W.; Matthews, J.; Haynes, A.M.; Stricker, P.D. Should experienced open prostatic surgeons covert to robotic surgery? The real learning curve for one surgeon over 3 years. BJU Int. 2010, 106, 378–384. [Google Scholar] [CrossRef]
- Kordan, Y.; Barocas, D.A.; Altamar, H.O.; Clark, P.E.; Chang, S.S.; Davis, R.; Herrell, S.D.; Baumgartner, R.; Mishra, V.; Chan, R.C.; et al. Comparison of transfusion requirements between open and robotic-assisted laparoscopic radical prostatectomy. BJU Int. 2010, 106, 1036–1040. [Google Scholar] [CrossRef]
- Kostakopoulos, N.; Bellos, T.; Malovrouvas, E.; Katsimperis, S.; Kostakopoulos, A. Robot-Assisted Urological Oncology Procedures, Outcomes, and Safety in Frail Patients: A Narrative Review of Available Studies. Urol. Res. Pract. 2024, 50, 36–41. [Google Scholar] [CrossRef]
- Yamada, Y.; Teshima, T.; Fujimura, T.; Sato, Y.; Nakamura, M.; Niimi, A.; Kimura, N.; Kakutani, S.; Kawai, T.; Yamada, D.; et al. Comparison of perioperative outcomes in elderly (age ≥ 75 years) vs. younger men undergoing robot-assisted radical prostatectomy. PLoS ONE 2020, 15, e0234113. [Google Scholar] [CrossRef]
- Luzzago, S.; Rosiello, G.; Pecoraro, A.; Deuker, M.; Stolzenbach, F.; Mistretta, F.A.; Tian, Z.; Musi, G.; Montanari, E.; Shariat, S.F.; et al. Contemporary Rates and Predictors of Open Conversion During Minimally Invasive Radical Prostatectomy for Nonmetastatic Prostate Cancer. J. Endourol. 2020, 34, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Levy, I.; Finkelstein, M.; Bilal, K.H.; Palese, M. Modified frailty index associated with Clavien-Dindo IV complications in robot-assisted radical prostatectomies: A retrospective study. Urol. Oncol. 2017, 35, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Van den Broeck, T.; van den Bergh, R.C.; Briers, E.; Cornford, P.; Cumberbatch, M.; Tilki, D.; De Santis, M.; Fanti, S.; Fossati, N.; Gillessen, S.; et al. Biochemical Recurrence in Prostate Cancer: The European Association of Urology Prostate Cancer Guidelines Panel Recommendations. Eur. Urol. Focus. 2020, 15, 231–234. [Google Scholar] [CrossRef]
- Mitsunari, K.; Fukushima, H.; Kurata, H.; Harada, J.; Nakamura, Y.; Matsuo, T.; Ohba, K.; Mochizuki, Y.; Imamura, R. Predictive Factors for Early Biochemical Recurrence Following Robot-assisted Radical Prostatectomy. Anticancer Res. 2024, 44, 3149–3154. [Google Scholar] [CrossRef]
- Rajan, P.; Hagman, A.; Sooriakumaran, P.; Nyberg, T.; Wallerstedt, A.; Adding, C.; Akre, O.; Carlsson, S.; Hosseini, A.; Olsson, M.; et al. Oncologic Outcomes After Robot-assisted Radical Prostatectomy: A Large European Single-centre Cohort with Median 10-Year Follow-up. Eur. Urol. Focus. 2018, 4, 351–359. [Google Scholar] [CrossRef]
- Diaz, M.; Peabody, J.O.; Kapoor, V.; Sammon, J.; Rogers, C.G.; Stricker, H.; Lane, Z.; Gupta, N.; Bhandari, M.; Menon, M. Oncologic outcomes at 10 years following robotic radical prostatectomy. Eur. Urol. 2015, 67, 1168–1176. [Google Scholar] [CrossRef]
- Novara, G.; Ficarra, V.; Rosen, R.C.; Artibani, W.; Costello, A.; Eastham, J.A.; Graefen, M.; Guazzoni, G.; Shariat, S.F.; Stolzenburg, J.U.; et al. Systematic review and meta-analysis of perioperative outcomes and complications after robot-assisted radical prostatectomy. Eur. Urol. 2012, 62, 431–452. [Google Scholar] [CrossRef]
- Chalfin, H.J.; Dinizo, M.; Trock, B.J.; Feng, Z.; Partin, A.W.; Walsh, P.C.; Humphreys, E.; Han, M. Impact of surgical margin status on prostate-cancer-specific mortality. BJU Int. 2012, 110, 1684–1689. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, B.; Zha, Z.; Zhao, H.; Yuan, J.; Jiang, Y.; Yang, W. Surgical margin status and its impact on prostate cancer prognosis after radical prostatectomy: A meta-analysis. World J. Urol. 2018, 36, 1803–1815. [Google Scholar] [CrossRef]
- Yossepowitch, O.; Briganti, A.; Eastham, J.A.; Epstein, J.; Graefen, M.; Montironi, R.; Touijer, K. Positive surgical margins after radical prostatectomy: A systematic review and contemporary update. Eur. Urol. 2014, 65, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Komori, H.; Blas, L.; Shiota, M.; Takamatsu, D.; Matsumoto, T.; Lee, K.; Monji, K.; Kashiwagi, E.; Inokuchi, J.; Eto, M. Impact of nerve sparing in robot-assisted radical prostatectomy on the risk of positive surgical margin and biochemical recurrence. Int. J. Urol. 2022, 29, 824–829. [Google Scholar] [CrossRef]
- Morizane, S.; Yumioka, T.; Makishima, K.; Tsounapi, P.; Iwamoto, H.; Hikita, K.; Honda, M.; Umekita, Y.; Takenaka, A. Impact of positive surgical margin status in predicting early biochemical recurrence after robot-assisted radical prostatectomy. Int. J. Clin. Oncol. 2021, 26, 1961–1967. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.W.; Wang, H.H.; Hassouna, M.F.; Chand, M.; Huang, W.J.S.; Chung, H.J. Prediction of a positive surgical margin and biochemical recurrence after robot-assisted radical prostatectomy. Sci. Rep. 2021, 11, 14329. [Google Scholar] [CrossRef] [PubMed]
- Porcaro, A.B.; Tafuri, A.; Sebben, M.; Amigoni, N.; Shakir, A.; Corsi, P.; Processali, T.; Pirozzi, M.; Rizzetto, R.; Bernasconi, R.; et al. Linear extent of positive surgical margin impacts biochemical recurrence after robot-assisted radical prostatectomy in a high-volume center. J. Robot. Surg. 2020, 14, 663–675. [Google Scholar] [CrossRef] [PubMed]
- Jo, J.K.; Hong, S.K.; Byun, S.S.; Zargar, H.; Autorino, R.; Lee, S.E. Positive surgical margin in robot-assisted radical prostatectomy: Correlation with pathology findings and risk of biochemical recurrence. Minerva Urol. Nefrol. 2017, 69, 493–500. [Google Scholar] [CrossRef]
- Mattes, M.D. Overview of Radiation Therapy in the Management of Localized and Metastatic Prostate Cancer. Curr. Urol. Rep. 2024, 25, 181–192. [Google Scholar] [CrossRef]
- Swensen, S.; Liao, J.J.; Chen, J.J.; Kim, K.; Ma, T.M.; Weg, E.S. The expanding role of radiation oncology across the prostate cancer continuum. Abdom. Radiol. 2024, 49, 2693–2705. [Google Scholar] [CrossRef]
- Zietman, A.L.; Bae, K.; Slater, J.D.; Shipley, W.U.; Efstathiou, J.A.; Coen, J.J.; Bush, D.A.; Lunt, M.; Spiegel, D.Y.; Rafi Skowronski, R.; et al. Randomized trial comparing conventional-dose with high-dose conformal radiation therapy in early-stage adenocarcinoma of the prostate: Long-term results from proton radiation oncology group/american college of radiology 95-09. J. Clin. Oncol. 2010, 28, 1106–1111. [Google Scholar] [CrossRef]
- Al-Mamgani, A.; van Putten, W.L.J.; van der Wielen, G.J.; Levendag, P.C.; Incrocci, L. Dose Escalation and Quality of Life in Patients with Localized Prostate Cancer Treated with Radiotherapy: Long-Term Results of the Dutch Randomized Dose-Escalation Trial (CKTO 96-10 Trial). Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 1004–1012. [Google Scholar] [CrossRef]
- Kuban, D.A.; Tucker, S.L.; Dong, L.; Starkschall, G.; Huang, E.H.; Cheung, M.R.; Lee, A.K.; Pollack, A. Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2008, 70, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Avkshtol, V.; Ruth, K.J.; Ross, E.A.; Hallman, M.A.; Greenberg, R.E.; Price, R.A., Jr.; Leachman, B.; Uzzo, R.G.; Ma, C.; Chen, D.; et al. Ten-Year Update of a Randomized, Prospective Trial of Conventional Fractionated Versus Moderate Hypofractionated Radiation Therapy for Localized Prostate Cancer. J. Clin. Oncol. 2020, 38, 1676–1684. [Google Scholar] [CrossRef] [PubMed]
- Ritter, M.A.; Kupelian, P.A.; Petereit, D.G.; Lawton, C.A.; Anger, N.; Geye, H.; Chappell, R.J.; Forman, J.D. A Prospective Multi-Institutional Phase I/II Trial of Step-Wise Dose-per-Fraction Escalation in Low and Intermediate Risk Prostate Cancer. Pract. Radiat. Oncol. 2020, 10, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Wortel, R.C.; Oomen-de Hoop, E.; Heemsbergen, W.D.; Pos, F.J.; Incrocci, L. Moderate Hypofractionation in Intermediate- and High-Risk, Localized Prostate Cancer: Health-Related Quality of Life from the Randomized, Phase 3 HYPRO Trial. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Incrocci, L.; Wortel, R.C.; Alemayehu, W.G.; Aluwini, S.; Schimmel, E.; Krol, S.; van der Toorn, P.P.; Jager, H.; Heemsbergen, W.; Heijmen, B.; et al. Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): Final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2016, 17, 1061–1069. [Google Scholar] [CrossRef]
- Ishikawa, H.; Tsuji, H.; Murayama, S.; Sugimoto, M.; Shinohara, N.; Maruyama, S.; Murakami, M.; Shirato, H.; Sakurai, H. Particle therapy for prostate cancer: The past, present and future. Int. J. Urol. 2019, 26, 971–979. [Google Scholar] [CrossRef]
- Bryant, C.M.; Henderson, R.H.; Nichols, R.C.; Mendenhall, W.M.; Hoppe, B.S.; Vargas, C.E.; Daniels, T.B.; Choo, C.R.; Parikh, R.R.; Giap, H.; et al. Consensus Statement on Proton Therapy for Prostate Cancer. Int. J. Part. Ther. 2021, 12, 1–16. [Google Scholar] [CrossRef]
- Stone, N.N.; Potters, L.; Davis, B.J.; Ciezki, J.P.; Zelefsky, M.J.; Roach, M.; Fearn, P.A.; Kattan, M.W.; Stock, R.G. Customized dose prescription for permanent prostate brachytherapy: Insights from a multicenter analysis of dosimetry outcomes. Int. J. Radiat. Oncol. Biol. Phys. 2007, 69, 1472–1477. [Google Scholar] [CrossRef]
- Taniguchi, T.; Kawase, M.; Nakane, K.; Nakano, M.; Iinuma, K.; Kato, D.; Takai, M.; Tobisawa, Y.; Mori, T.; Takano, H.; et al. Prognostic Factors for Resolution Delay of Lower Urinary Tract Symptoms in Patients with Prostate Cancer after Low-Dose-Rate Brachytherapy. Cancers 2023, 15, 4048. [Google Scholar] [CrossRef]
- Tsuchiya, K.; Kawase, M.; Nakane, K.; Nakano, M.; Iinuma, K.; Kato, D.; Takai, M.; Tobisawa, Y.; Mori, T.; Takano, H.; et al. Chronological Changes of Lower Urinary Tract Symptoms in Elderly Patients with Prostate Cancer after Low-Dose-Rate Prostate Brachytherapy. Life 2023, 13, 1507. [Google Scholar] [CrossRef]
- Chargari, C.; Deutsch, E.; Blanchard, P.; Gouy, S.; Martelli, H.; Guérin, F.; Dumas, I.; Bossi, A.; Morice, P.; Viswanathan, A.N.; et al. Brachytherapy: An overview for clinicians. CA Cancer J. Clin. 2019, 69, 386–401. [Google Scholar] [CrossRef] [PubMed]
- Zaorsky, N.G.; Davis, B.J.; Nguyen, P.L.; Showalter, T.N.; Hoskin, P.J.; Yoshioka, Y.; Morton, G.C.; Horwitz, E.M. The evolution of brachytherapy for prostate cancer. Nat. Rev. Urol. 2017, 14, 415–439. [Google Scholar] [CrossRef]
- Michalski, J.M.; Winter, K.A.; Prestidge, B.R.; Sanda, M.G.; Amin, M.; Bice, W.S.; Gay, H.A.; Ibbott, G.S.; Crook, J.M.; Catton, C.N.; et al. Effect of Brachytherapy with External Beam Radiation Therapy Versus Brachytherapy Alone for Intermediate-Risk Prostate Cancer: NRG Oncology RTOG 0232 Randomized Clinical Trial. J. Clin. Oncol. 2023, 41, 4035–4044. [Google Scholar] [CrossRef]
- Morris, W.J.; Tyldesley, S.; Rodda, S.; Halperin, R.; Pai, H.; McKenzie, M.; Duncan, G.; Morton, G.; Hamm, J.; Murray, N. Androgen Suppression Combined with Elective Nodal and Dose Escalated Radiation Therapy (the ASCENDE-RT Trial): An Analysis of Survival Endpoints for a Randomized Trial Comparing a Low-Dose-Rate Brachytherapy Boost to a Dose-Escalated External Beam Boost for High- and Intermediate-risk Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 275–285. [Google Scholar]
- Oh, J.; Tyldesley, S.; Pai, H.; McKenzie, M.; Halperin, R.; Duncan, G.; Morton, G.; Keyes, M.; Hamm, J.; Morris, W.J. An Updated Analysis of the Survival Endpoints of ASCENDE-RT. Int. J. Radiat. Oncol. Biol. Phys. 2023, 115, 1061–1070. [Google Scholar] [CrossRef] [PubMed]
- Demanes, D.J.; Ghilezan, M.I. High-dose-rate brachytherapy as monotherapy for prostate cancer. Brachytherapy 2014, 13, 529–541. [Google Scholar] [CrossRef] [PubMed]
- Hoskin, P.J.; Rojas, A.M.; Ostler, P.J.; Bryant, L.; Lowe, G.J. Randomised trial of external-beam radiotherapy alone or with high-dose-rate brachytherapy for prostate cancer: Mature 12-year results. Radiother. Oncol. 2021, 154, 214–219. [Google Scholar] [CrossRef]
- Crook, J.; Moideen, N.; Arbour, G.; Castro, F.; Araujo, C.; Batchelar, D.; Halperin, R.; Hilts, M.; Kim, D.; Petrik, D.; et al. A Randomized Trial Comparing Quality of Life After Low-Dose Rate or High-Dose Rate Prostate Brachytherapy Boost with Pelvic External Beam Radiation Therapy. Int. J. Radiat. Oncol. Biol. Phys. 2024; in press. [Google Scholar] [CrossRef]
- Lee, W.R.; Dignam, J.J.; Amin, M.B.; Bruner, D.W.; Low, D.; Swanson, G.P.; Shah, A.B.; D’Souza, D.; Michalski, J.M.; Dayes, I.S.; et al. Long-Term Analysis of NRG Oncology RTOG 0415: A Randomized Phase III Noninferiority Study Comparing Two Fractionation Schedules in Patients with Low-Risk Prostate Cancer. J. Clin. Oncol. 2024, 42, 2377–2381. [Google Scholar] [CrossRef]
- Yin, Z.; You, J.; Wang, Y.; Zhao, J.; Jiang, S.; Zhang, X.; Wang, P.; Tao, Z.; Wang, X.; Yuan, Z. Moderate hypofractionated radiotherapy vs conventional fractionated radiotherapy in localized prostate cancer: A systemic review and meta-analysis from Phase III randomized trials. OncoTargets Ther. 2019, 12, 1259–1268. [Google Scholar] [CrossRef]
- Van As, N.; Tree, A.; Patel, J.; Ostler, P.; van der Voet, H.; Loblaw, A.; Chu, W.; Ford, D.; Tolan, S.; Jain, S.; et al. 5-Year Outcomes from PACE B: An International Phase III Randomized Controlled Trial Comparing Stereotactic Body Radiotherapy (SBRT) vs. Conventionally Fractionated or Moderately Hypo Fractionated External Beam Radiotherapy for Localized Prostate Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2024, 120, 49–58. [Google Scholar] [CrossRef]
- Takeuchi, S.; Iinuma, K.; Nakane, K.; Nakano, M.; Kawase, M.; Kawase, K.; Takai, M.; Kato, D.; Mori, T.; Takano, H.; et al. Direct Comparison of Two Different Definitions with Biochemical Recurrence after Low-Dose-Rate Brachytherapy for Prostate Cancer. Curr. Oncol. 2023, 30, 2792–2800. [Google Scholar] [CrossRef] [PubMed]
- Tsumura, H.; Tanaka, N.; Oguchi, T.; Owari, T.; Nakai, Y.; Asakawa, I.; Iijima, K.; Kato, H.; Hashida, I.; Tabata, K.I.; et al. Comparative effectiveness of low-dose-rate brachytherapy with or without external beam radiotherapy in favorable and unfavorable intermediate-risk prostate cancer. Sci. Rep. 2022, 12, 11023. [Google Scholar] [CrossRef]
- Behmueller, M.; Tselis, N.; Zamboglou, N.; Zoga, E.; Baltas, D.; Rödel, C.; Chatzikonstantinou, G. High-Dose-Rate Brachytherapy as Monotherapy for Low- and Intermediate-Risk Prostate Cancer. Oncological Outcomes After a Median 15-Year Follow-Up. Front. Oncol. 2021, 11, 770959. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Demanes, D.J.; Ragab, O.; Zhang, M.; Veruttipong, D.; Nguyen, K.; Park, S.J.; Marks, L.; Pantuck, A.; Steinberg, M.; et al. High-dose-rate brachytherapy monotherapy without androgen deprivation therapy for intermediate-risk prostate cancer. Brachytherapy 2017, 16, 299–305. [Google Scholar] [CrossRef]
- Moll, M.; Nechvile, E.; Kirisits, C.; Komina, O.; Pajer, T.; Kohl, B.; Miszczyk, M.; Widder, J.; Knocke-Abulesz, T.H.; Goldner, G. Radiotherapy in localized prostate cancer: A multicenter analysis evaluating tumor control and late toxicity after brachytherapy and external beam radiotherapy in 1293 patients. Strahlenther. Und Onkol. 2024, 200, 698–705. [Google Scholar] [CrossRef]
- Li, S.W.; Chiu, A.W.; Huang, A.C.; Lai, Y.W.; Leu, J.D.; Hsiao, Y.C.; Chen, S.S.; Hsueh, T.Y. Ten-years outcome analysis in patients with clinically localized prostate cancer treated by radical prostatectomy or external beam radiation therapy. Front. Surg. 2022, 9, 966025. [Google Scholar] [CrossRef]
- Hoffman, K.E.; Penson, D.F.; Zhao, Z.; Huang, L.C.; Conwill, R.; Laviana, A.A.; Joyce, D.D.; Luckenbaugh, A.N.; Goodman, M.; Hamilton, A.S.; et al. Patient-Reported Outcomes Through 5 Years for Active Surveillance, Surgery, Brachytherapy, or External Beam Radiation with or Without Androgen Deprivation Therapy for Localized Prostate Cancer. JAMA 2020, 323, 149–163. [Google Scholar] [CrossRef]
- Caño-Velasco, J.; Herranz-Amo, F.; Barbas-Bernardos, G.; Polanco-Pujol, L.; Hernández-Cavieres, J.; Lledó-García, E.; Hernández-Fernández, C. Differences in overall survival and cancer-specific survival in high-risk prostate cancer patients according to the primary treatment. Actas Urol. Esp. 2019, 43, 91–98. [Google Scholar] [CrossRef]
- Koo, K.C.; Cho, J.S.; Bang, W.J.; Lee, S.H.; Cho, S.Y.; Kim, S.I.; Kim, S.J.; Rha, K.H.; Hong, S.J.; Chung, B.H. Cancer-Specific Mortality Among Korean Men with Localized or Locally Advanced Prostate Cancer Treated with Radical Prostatectomy Versus Radiotherapy: A Multi-Center Study Using Propensity Scoring and Competing Risk Regression Analyses. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2018, 50, 129–137. [Google Scholar] [CrossRef]
- Aas, K.; Axcrona, K.; Kvåle, R.; Møller, B.; Myklebust, T.Å.; Axcrona, U.; Berge, V.; Fosså, S.D. Ten-year Mortality in Men with Nonmetastatic Prostate Cancer in Norway. Urology 2017, 110, 140–147. [Google Scholar] [CrossRef]
- Morris, W.J.; Pickles, T.; Keyes, M. Using a surgical prostate-specific antigen threshold of >0.2 ng/mL to define biochemical failure for intermediate- and high-risk prostate cancer patients treated with definitive radiation therapy in the ASCENDE-RT randomized control trial. Brachytherapy 2018, 17, 837–844. [Google Scholar] [CrossRef]
- Gul, Z.G.; Say, R.; Skouteris, V.M.; Stock, R.G.; Stone, N.N. Comparison of AUA and phoenix definitions of biochemical failure following permanent brachytherapy for prostate cancer. Brachytherapy 2022, 21, 833–838. [Google Scholar] [CrossRef]
- Ito, K.; Saito, S.; Yorozu, A.; Kojima, S.; Kikuchi, T.; Higashide, S.; Aoki, M.; Koga, H.; Satoh, T.; Ohashi, T.; et al. Nationwide Japanese Prostate Cancer Outcome Study of Permanent Iodine-125 Seed Implantation (J-POPS): First analysis on survival. Int. J. Clin. Oncol. 2018, 23, 1148–1159. [Google Scholar] [CrossRef]
- Chen, L.; Li, Q.; Wang, Y.; Zhang, Y.; Ma, X. Comparison on efficacy of radical prostatectomy versus externalbeam radiotherapy for the treatment of localized prostate cancer. Oncotarget 2024, 8, 79854–79863. [Google Scholar] [CrossRef]
- Wallis, C.D.J.; Saskin, R.; Choo, R.; Herschrn, S.; Kodama, R.T.; Satkunasivam, R.; Shah, P.; Danjoux, C.; Nam, R.K. Surgery Versus Radiotherapy for Clinically-localized Prostate Cancer: A Systematic Review and Meta-analysis. Eur. Urol. 2016, 70, 21–30. [Google Scholar] [CrossRef]
- Ryan, C.J.; Smith, M.R.; Fizazi, K.; Saad, F.; Mulders, P.F.; Sternberg, C.N.; Miller, K.; Logothetis, C.J.; Shore, N.D.; Small, E.J. Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naive men with metastatic castration-resistant prostate cancer (COU-AA-302): Final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol. 2015, 16, 152–160. [Google Scholar] [CrossRef]
- Roy, S.; Sun, Y.; Morgan, S.C.; Wallis, C.J.D.; King, K.; Zhou, Y.M.; D’souza, L.A.; Azem, O.; Cueto-Marquez, A.E.; Camden, N.B. Effect of Prior Local Therapy on Response to First-line Androgen Receptor Axis Targeted Therapy in Metastatic Castrate-resistant Prostate Cancer: A Secondary Analysis of the COU-AA-302 Trial. Eur. Urol. 2023, 83, 571–579. [Google Scholar] [CrossRef]
- Annock, I.F.; de Wit, R.; Berry, W.R.; Horti, J.; Pluzanska, A.; Chi, K.N.; Oudard, S.; Théodore, C.; James, N.D.; Turesson, I. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 2004, 351, 1502–1512. [Google Scholar] [CrossRef]
- de Bono, J.S.; Oudard, S.; Ozguroglu, M.; Hansen, S.; Machiels, J.P.; Kocak, I.; Gravis, G.; Bodrogi, I.; Mackenzie, M.J.; Shen, L. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial. Lancet 2010, 376, 1147–1154. [Google Scholar] [CrossRef]
- Frabtellizzi, V.; Costa, R.; Mascia, M.; Spanu, A.; Farcomeni, A.; Licari, M.; Cindolo, L.; Nuvoli, S.; Pontico, M.; De Vincentis, G. Primary Radical Prostatectomy or Ablative Radiotherapy as Protective Factors for Patients With mCRPC Treated with Radium-223 Dichloride: An Italian Multicenter Study. Clin. Genitourin. Cancer 2020, 18, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Serretta, V.; Valerio, M.R.; Costa, R.; Tripoli, V.; Murabito, A.; Princiotta, A.; Scalici Gesolfo, C.; Borsellino, N.; Verderame, F.; Gebbia, V.; et al. Radium-223 treatment in castration resistant bone metastatic prostate cancer. Should be the primary tumor always treated? Urol. Oncol. 2019, 37, 964–969. [Google Scholar] [CrossRef] [PubMed]
Study | Year | Number of Cases | Median Age, Years | ≥Clinical T2 (%) | Median Operation Time, min | Median EBL, mL | Blood Transfusion Rate (%) |
---|---|---|---|---|---|---|---|
Krambeck et al. [37] | 2008 | ORP, 588; RARP, 294 | ORP, 61.5; RARP, 60.5 | ORP, 28.3; RARP, 27.2 | ORP, 204; RARP, 236 | NA | ORP, 13; RARP, 5.1 |
Rocco et al. [38] | 2009 | ORP, 240; RARP, 120 | ORP, 63; RARP, 63 | ORP, 39; RARP, 31 | ORP, 160; RARP, 215 | ORP, 800; RARP, 200 | NA |
Doumerc et al. [39] | 2010 | ORP, 502; RARP, 212 | ORP, 60.1; RARP, 61.3 | ORP, 58; RARP, 50 | ORP, 148; RARP, 192 | ORP <499 69.7 500–999 29.1 >1000 1.2 RARP <499 98.4 500–999 1.6 >1000 0 | ORP, 2.0; RARP, 0.9 |
Kordan et al. [40] | 2010 | ORP, 414; RARP, 830 | ORP, 61.5; RARP, 60.5 | ORP, 31.2; RARP, 24.8 | NA | ORP, 450; RARP, 100 | ORP, 3.4; RARP, 0.8 |
Study | PSM Rate | Number of PSMs (%) | Location of PSM (%) | BCR, Number (%) | Median Follow-up Period (Months) | Increased Risk of BCR |
---|---|---|---|---|---|---|
Komori et al. [54] | 21.9% | Not applicable | Left: 9.6; right: 10.0; bilateral: 3.2; apex: 9.6; non-apical: 9.6 | 120 (14.7) | 27.8 | HR, 3.22; p < 0.001 |
Morizane et al. [55] | 17.0% | Unifocal: 47.3; multifocal: 52.7 | Apex: 54.3; mid-gland: 25.7; base: 25.7 | 61 (14.0) | 52.4 | HR, 3.281; p = 0.022 |
Yang et al. [56] | 30.1% | Unifocal: 74.6; multifocal: 23.0 | Apex: 27.7; mid-gland: 13.5; base: 73.8 | 97 (24.6) | 29.3 | HR, 1.725; p = 0.027 |
Porcaro et al. [57] | 26.3% | Unifocal: 69.3; multifocal: 30.7 | Not applicable | 40 (8.7) | 26 | HR, 3.771; p < 0.001 |
JO et al. [58] | 14.5% | Unifocal: 42.5; multifocal: 57.5 | Apex: 43.7%; other site: 56.3% | 152 (18.7) | Not applicable | HR, 3.123; p < 0.001 |
PCa Risk and Metastatic Patterns | Conventional Fractionation EBRT | Moderate Hypofraction EBRT | Ultra Hypofraction EBRT | BT Alone | Combination Therapy of EBRT and BT Boost |
---|---|---|---|---|---|
Low-risk | ◯ | ◯ | ◯ | ◯ | |
Favorable-intermediate risk | ◯ | ◯ | ◯ | ◯ | |
Unfavorable-intermediate risk | ◯ | ◯ | ◯ | ◯ | ◯ |
High-risk | ◯ | ◯ | ◯ | ◯ | |
Pelvic lymph node recurrence | ◯ | ◯ | ◯ | ||
Salvage therapy after surgery | ◯ | ◯ | |||
De novo oligometastasis | ◯ |
Study | Treatment, Number | Median Follow-up Period | PCSM or PCSS | MFS | OS or OM | |||
---|---|---|---|---|---|---|---|---|
% | Statistical Analysis | % | Statistical Analysis | % | Statistical Analysis | |||
Suárez et al. [9] | RP, 192; BT, 317; EBRT, 195 | 10 y | 10-year PCSM: RP, 0%; BT, 1.9%; EBRT, 6.2% | HR (ref. RP): BT, 4.41 (95% CI, 0.69–28.29; p = 0.120); EBRT, 9.37 (95% CI, 1.53–57.21; p = 0.015) | NA | NA | 10-year OS: RP, 85.3%; BT, 78.1%; EBRT, 73.3% | HR (ref. RP): BT, 1.36; (95% CI, 0.77–2.42; p = 0.292); EBRT, 1.40 (95% CI, 0.78–2.51; p = 0.222) |
Li et al. [89] | LRP, 64; RT, 154 | LRP, 53.5M; RT, 64 M | 5-year PCSS: LRP, 93.3%; RT, 64.7% | p = 0.022 | 5-year: LRP, 48.0%; RT, 40.2% | p = 0.045 | 5-year OS: LRP, 93.3%; RT, 59.3% | p = 0.004 |
Hoffman et al. [90] | RP, 402; EBRT, 217 | 73 M | 5-year PCSS: RP, 99.5%; EBRT, 99.0% | p = 0.10 | NA | NA | 5-year OS: RP, 97.7%; EBRT, 91.8% | p < 0.001 |
Caño-Velasco et al. [91] | RP, 145; EBRT, 141 | RP, 152 M; EBRT, 97 M | 5-year PCSS: RP, 95.7%; EBRT, 97.0% | p = 0.44 | NA | NA | 5-year OS: RP, 92.4%; EBRT, 89.2% | HR (ref. EBRT): RP, 0.48 (95% CI, 0.48–1.50; p = 0.04) |
Koo et al. [92] | RP, 339; EBRT, 339 | RP, 69M; EBRT, 60.5M | 5-year PCSS: RP, 98.8%; EBRT, 99.5% | p = 0.576 | 5-year: RP, 33.3%; EBRT 41.7% | p = 0.778 | 5-year OS: RP, 94.7%; EBRT, 92.0% | p = 0.105 |
Aas et al. [93] | RP, 104; EBRT, 294 | 10y | 10-year PCSM: RP, 1.5%; EBRT, 6.2% | HR (ref. RP): EBRT, 2.0 (95% CI, 1.03–3.69; p = 0.034) | NA | NA | 10-year OM: RP, 9.3%; EBRT, 20.5% | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kawase, M.; Nakane, K.; Iinuma, K.; Kawase, K.; Taniguchi, T.; Tomioka, M.; Tobisawa, Y.; Koie, T. Overall Survival and Cancer-Specific Mortality in Patients with Prostate Cancer Undergoing Definitive Therapies: A Narrative Review. J. Clin. Med. 2024, 13, 5561. https://doi.org/10.3390/jcm13185561
Kawase M, Nakane K, Iinuma K, Kawase K, Taniguchi T, Tomioka M, Tobisawa Y, Koie T. Overall Survival and Cancer-Specific Mortality in Patients with Prostate Cancer Undergoing Definitive Therapies: A Narrative Review. Journal of Clinical Medicine. 2024; 13(18):5561. https://doi.org/10.3390/jcm13185561
Chicago/Turabian StyleKawase, Makoto, Keita Nakane, Koji Iinuma, Kota Kawase, Tomoki Taniguchi, Masayuki Tomioka, Yuki Tobisawa, and Takuya Koie. 2024. "Overall Survival and Cancer-Specific Mortality in Patients with Prostate Cancer Undergoing Definitive Therapies: A Narrative Review" Journal of Clinical Medicine 13, no. 18: 5561. https://doi.org/10.3390/jcm13185561
APA StyleKawase, M., Nakane, K., Iinuma, K., Kawase, K., Taniguchi, T., Tomioka, M., Tobisawa, Y., & Koie, T. (2024). Overall Survival and Cancer-Specific Mortality in Patients with Prostate Cancer Undergoing Definitive Therapies: A Narrative Review. Journal of Clinical Medicine, 13(18), 5561. https://doi.org/10.3390/jcm13185561