Impact of the Disc Vacuum Phenomenon on Surgical Outcomes in Lumbar Spinal Stenosis: A Comparative Study between Endoscopic Decompression and Minimally Invasive Oblique Lateral Interbody Fusion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Patients
2.2. Surgical Procedures
2.3. Data Collection and Radiologic Assessments
2.4. Clinical Outcome Measures
2.5. Statistical Analyses
3. Results
3.1. Demographic and Clinical Characteristics
3.2. Imaging Characteristics
3.3. Clinical Outcomes
4. Representative Cases
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Katz, J.N.; Zimmerman, Z.E.; Mass, H.; Makhni, M.C. Diagnosis and management of lumbar spinal stenosis: A review. JAMA 2022, 327, 1688–1699. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Ahn, D.-K.; Choi, D.-J. Treatment concept and technical considerations of biportal endoscopic spine surgery for lumbar spinal stenosis. Asian Spine J. 2024, 18, 301–323. [Google Scholar] [CrossRef]
- Kasai, Y.; Paholpak, P.; Wisanuyotin, T.; Sukitthanakornkul, N.; Hanarwut, P.; Chaiyamoon, A.; Iamsaard, S.; Mizuno, T. Incidence and skeletal features of developmental cervical and lumbar spinal stenosis. Asian Spine J. 2023, 17, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Schönnagel, L.; Caffard, T.; Zhu, J.; Tani, S.; Camino-Willhuber, G.; Amini, D.A.; Haffer, H.; Muellner, M.; Guven, A.E.; Chiapparelli, E.; et al. Decision-making algorithm for the surgical treatment of degenerative lumbar spondylolisthesis of L4/L5. Spine 2024, 49, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Chin, B.Z.; Yong, J.H.; Wang, E.; Sim, S.I.; Lin, S.; Wu, P.H.; Hey, H.W.D. Full-endoscopic versus microscopic spinal decompression for lumbar spinal stenosis: A systematic review & meta-analysis. Spine J. 2024, 24, 1022–1033. [Google Scholar] [CrossRef] [PubMed]
- Camino-Willhuber, G.; Schönnagel, L.; Caffard, T.; Zhu, J.; Tani, S.; Chiapparelli, E.; Arzani, A.; Shue, J.; Duculan, R.; Bendersky, M.; et al. Severe intervertebral vacuum phenomenon is associated with higher preoperative low back pain, ODI, and indication for fusion in patients with degenerative lumbar spondylolisthesis. Clin. Spine Surg. 2024, 37, E1–E8. [Google Scholar] [CrossRef] [PubMed]
- Joaquim, A.F.; Milano, J.B.; Ghizoni, E.; Patel, A.A. Is there a role for decompression alone for treating symptomatic degenerative lumbar spondylolisthesis?: A systematic review. Clin. Spine Surg. 2016, 29, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Moliterno, J.; Veselis, C.A.; Hershey, M.A.; Lis, E.; Laufer, I.; Bilsky, M.H. Improvement in pain after lumbar surgery in cancer patients with mechanical radiculopathy. Spine J. 2014, 14, 2434–2439. [Google Scholar] [CrossRef]
- Camino-Willhuber, G.; Vildoza, S.; Martinez, E.; Canestrari, L.; Holc, F.; Oh, M.; Bhatia, N.; Lee, Y.P.; Bianchi, H.; Bendersky, M. Intervertebral vacuum phenomenon—prevalence and severity CT-scan analysis in patients older than 50 years: A retrospective cohort study. Acta Radiol. 2024, 65, 56–61. [Google Scholar] [CrossRef]
- Camino-Willhuber, G.; Schönnagel, L.; Chiapparelli, E.; Amoroso, K.; Tani, S.; Caffard, T.; Arzani, A.; Guven, A.E.; Verna, B.; Zhu, J.; et al. Association between lumbar intervertebral vacuum phenomenon severity and posterior paraspinal muscle atrophy in patients undergoing spine surgery. Eur. Spine J. 2024, 33, 1013–1020. [Google Scholar] [CrossRef]
- Kanna, R.M.; Hajare, S.; Thippeswamy, P.B.; Shetty, A.P.; Rajasekaran, S. Advanced disc degeneration, bi-planar instability and pathways of peri-discal gas suffusion contribute to the pathogenesis of intradiscal vacuum phenomenon. Eur. Spine J. 2022, 31, 755–763. [Google Scholar] [CrossRef] [PubMed]
- Ekşi, M.Ş.; Özcan-Ekşi, E.E.; Akkaş, A.; Orhun, Ö.; Arslan, H.N.; Zarbizada, M.; Küçüksüleymanoğlu, D.; Pamir, M.N.; Benzel, E.C. Intradiscal vacuum phenomenon and spinal degeneration: A cross-sectional analysis of 219 subjects. Curr. Med. Res. Opin. 2022, 38, 255–263. [Google Scholar] [CrossRef] [PubMed]
- Cianci, F.; Ferraccioli, G.; Ferraccioli, E.S.; Gremese, E. Comprehensive review on intravertebral intraspinal, intrajoint, and intradiscal vacuum phenomenon: From anatomy and physiology to pathology. Mod. Rheumatol. 2021, 31, 303–311. [Google Scholar] [CrossRef]
- Murata, K.; Akeda, K.; Takegami, N.; Cheng, K.; Masuda, K.; Sudo, A. Morphology of intervertebral disc ruptures evaluated by vacuum phenomenon using multi-detector computed tomography: Association with lumbar disc degeneration and canal stenosis. BMC Musculoskelet. Disord. 2018, 19, 164. [Google Scholar] [CrossRef]
- Yanagawa, Y.; Ohsaka, H.; Jitsuiki, K.; Yoshizawa, T.; Takeuchi, I.; Omori, K.; Oode, Y.; Ishikawa, K. Vacuum phenomenon. Emerg. Radiol. 2016, 23, 377–382. [Google Scholar] [CrossRef] [PubMed]
- Morishita, K.; Kasai, Y.; Uchida, A. Clinical symptoms of patients with intervertebral vacuum phenomenon. Neurologist 2008, 14, 37–39. [Google Scholar] [CrossRef] [PubMed]
- Camino Willhuber, G.; Bendersky, M.; De Cicco, F.L.; Kido, G.; Duarte, M.P.; Estefan, M.; Petracchi, M.; Gruenberg, M.; Sola, C. Development of a new therapy-oriented classification of intervertebral vacuum phenomenon with evaluation of intra- and interobserver reliabilities. Glob. Spine J. 2021, 11, 480–487. [Google Scholar] [CrossRef]
- Buttiens, A.; Simko, M.; Van Goethem, J. Vacuum phenomenon in the lumbar spine: Pilot study for accuracy of magnetic resonance imaging. J. Belg. Soc. Radiol. 2023, 107, 83. [Google Scholar] [CrossRef] [PubMed]
- Tsukamoto, M.; Morimoto, T.; Kobayashi, T.; Muranaka, K.; Yoshihara, T.; Maeda, K.; Sonohata, M.; Kasai, Y.; Otani, K.; Mawatari, M. The relationship between traction spurs, Modic change, vacuum phenomenon, and segmental instability of the lumbar spine. Sci. Rep. 2022, 12, 9939. [Google Scholar] [CrossRef]
- Chen, P.Q.; Zeng, Z.Y.; Zhao, X.; Fan, S.Y.; Wu, H.F.; Yu, W.; Zhang, J.Q.; Song, Y.X.; Fan, S.W.; Fang, X.Q.; et al. Application of oblique lateral interbody fusion in the treatment of lumbar intervertebral disc degeneration in patients with Modic change and endplate sclerosis. Zhongguo Gu Shang 2023, 36, 29–37. [Google Scholar] [CrossRef]
- Iwasaki, M.; Hayase, H.; Takamiya, S.; Yamazaki, K. Preoperative dorsal disc height is a predictor of indirect decompression effect through oblique lateral interbody fusion in lumbar degenerative stenosis. Medicine 2022, 101, e31020. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ding, W.; Yang, D.; Wu, H.; Hao, L.; Hu, Z.; Fan, S.; Zhao, F. Modic changes (MCs) associated with endplate sclerosis can prevent cage subsidence in oblique lumbar interbody fusion (OLIF) stand-alone. World Neurosurg. 2020, 138, e160–e168. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.Y.; Kang, D.H.; Cho, S.K. Innovative developments in lumbar interbody cage materials and design: A comprehensive narrative review. Asian Spine J. 2024, 18, 444–457. [Google Scholar] [CrossRef] [PubMed]
- Sanmarchi, F.; Bucci, A.; Nuzzolese, A.G.; Carullo, G.; Toscano, F.; Nante, N.; Golinelli, D. A step-by-step researcher’s guide to the use of an AI-based transformer in epidemiology: An exploratory analysis of ChatGPT using the STROBE checklist for observational studies. J. Public Health 2023, 1–36. [Google Scholar] [CrossRef] [PubMed]
- Kaen, A.; Park, M.K.; Son, S.-K. Clinical outcomes of uniportal compared with biportal endoscopic decompression for the treatment of lumbar spinal stenosis: A systematic review and meta-analysis. Eur. Spine J. 2023, 32, 2717–2725. [Google Scholar] [CrossRef]
- Jun, L.; Zou, T.; Wei, J.J.; Huo, T.; Min, W.; Wei, C.; Zhao, H. Comparison of the effects between oblique lateral interbody fusion (OLIF) and minimally invasive transforaminal interbody fusion (MIS-TLIF) in the treatment of adult degenerative lumbar scoliosis. J. Orthop. 2024, 58, 58–65. [Google Scholar] [CrossRef]
- Scheufler, K.-M. OLIF Technique (Oblique Lumbar Interbody Fusion); Minimally Invasive Spine Intervention; Springer: Berlin/Heidelberg, Germany, 2023; pp. 253–261. [Google Scholar]
- Ko, Y.J.; Lee, E.; Lee, J.W.; Park, C.Y.; Cho, J.; Kang, Y.; Ahn, J.M. Clinical validity of two different grading systems for lumbar central canal stenosis: Schizas and Lee classification systems. PLoS ONE 2020, 15, e0233633. [Google Scholar] [CrossRef]
- Wei, J. The adoption of repeated measurement of variance analysis and Shapiro-Wilk test. Front. Med. 2022, 16, 659–660. [Google Scholar] [CrossRef]
- Zuckerman, S.L.; Devin, C.J. Pseudarthrosis of the cervical spine. Clin. Spine Surg. 2022, 35, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Goel, A. Is the symptom of cervical or lumbar radiculopathy an evidence of spinal instability? J. Craniovertebr. Junction Spine 2018, 9, 81–82. [Google Scholar] [CrossRef]
- Shamji, M.F.; Guha, D.; Paul, D.; Shcharinsky, A. Systemic inflammatory and Th17 immune activation among patients treated for lumbar radiculopathy exceeds that of patients treated for persistent postoperative neuropathic pain. Neurosurgery 2017, 81, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Sutovsky, J.; Benco, M.; Sutovska, M.; Kocmalova, M.; Pappova, L.; Miklusica, J.; Frano, A.; Kurca, E. Cytokine and chemokine profile changes in patients with lower segment lumbar degenerative spondylolisthesis. Int. J. Surg. 2017, 43, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Ohyama, S.; Aoki, Y.; Inoue, M.; Nakajima, T.; Sato, Y.; Sato, M.; Yoh, S.; Takahashi, H.; Nakajima, A.; Kotani, T.; et al. Effect of preoperative severity and location of lumbar intervertebral disc vacuum phenomenon on surgical outcomes after single-level transforaminal lumbar interbody fusion. World Neurosurg. 2023, 173, e727–e737. [Google Scholar] [CrossRef] [PubMed]
- Hallett, A.; Huntley, J.S.; Gibson, J.N.A. Foraminal Stenosis and Single-Level Degenerative Disc Disease: A Randomized Controlled Trial Comparing Decompression with Decompression and Instrumented Fusion; LWW: Philadelphia, PA, USA, 2007. [Google Scholar]
- Leufvén, C.; Nordwall, A. Management of chronic disabling low back pain with 360 degrees fusion. Results from pain provocation test and concurrent posterior lumbar interbody fusion, posterolateral fusion, and pedicle screw instrumentation in patients with chronic disabling low back pain. Spine 1999, 24, 2042–2045. [Google Scholar] [CrossRef]
- Herkowitz, H.N.; Sidhu, K.S. Lumbar spine fusion in the treatment of degenerative conditions: Current indications and recommendations. J. Am. Acad. Orthop. Surg. 1995, 3, 123–135. [Google Scholar] [CrossRef] [PubMed]
Non-VP | VP | p Value | |
---|---|---|---|
(n = 42) | (n = 68) | ||
Age, years | 67.5 ± 11.2 | 70.4 ± 9.0 | 0.203 |
Sex, M:F | 19:23 | 40:28 | 0.165 |
ASA classification | 0.569 | ||
2 | 21 (60.0%) | 24 (52.2%) | |
3 | 14 (40.0%) | 21 (45.7%) | |
4 | 0 (0.0%) | 1 (2.2%) | |
Height, cm | 159.8 ± 5.7 | 157.2 ± 7.3 | 0.137 |
Weight, kg | 62.5 ± 11.3 | 60.7 ± 8.5 | 0.208 |
BMI (kg/m2) | 24.5 ± 2.4 | 24.6 ± 3.3 | 0.975 |
BMD, T-score | −1.2 ± 1.8 | −1.5 ± 1.4 | 0.702 |
HTN, n | 15 (35.7%) | 21 (30.9%) | 0.599 |
DM, n | 7 (16.7%) | 17 (25.0%) | 0.304 |
Smoking, n | 5 (11.9%) | 11 (16.2%) | 0.537 |
Operation type | 0.556 | ||
Decompression | 23 (54.8%) | 32 (47.1%) | |
Fusion | 19 (45.2%) | 36 (52.9%) | |
Location | 0.616 | ||
L1–2 | 0 (0.0%) | 1 (1.5%) | |
L2–3 | 1 (2.4%) | 6 (8.8%) | |
L3–4 | 5 (11.9%) | 9 (13.2%) | |
L4–5 | 31 (73.8%) | 44 (64.7%) | |
L5–S1 | 5 (11.9%) | 8 (11.8%) |
Non-VP | VP | p Value | |
---|---|---|---|
(n = 42) | (n = 68) | ||
Schizas grade, n | 0.773 | ||
B | 2 | 3 | |
C | 23 | 41 | |
D | 18 | 24 | |
VP grade, n | <0.001 * | ||
0 | 42 (100.0%) | ||
1 | 27 (39.7%) | ||
2 | 29 (42.6%) | ||
3 | 12 (17.6%) | ||
Endplate sclerosis, n | 6 (14.3%) | 33 (48.5%) | 0.001 * |
ISL, n | 2 (4.8%) | 6 (8.8%) | 0.425 |
CT measurements | |||
ADH, mm | 9.7 ± 2.9 | 7.6 ± 2.8 | <0.001 * |
PDH, mm | 5.5 ± 1.9 | 3.8 ± 1.4 | <0.001 * |
RFH, mm | 11.6 ± 2.9 | 10.9 ± 2.5 | 0.262 |
RFA, mm2 | 67.0 ± 22.5 | 61.4 ± 21.1 | 0.222 |
LFH, mm | 11.8 ± 2.8 | 12.2 ± 9.4 | 0.762 |
LFA, mm2 | 66.2 ± 21.0 | 64.5 ± 18.4 | 0.673 |
Total | Non-VP | VP | p Value | |
---|---|---|---|---|
(n = 110) | (n = 42) | (n = 68) | ||
Preoperative | ||||
Back pain | 6.5 ± 2.3 | 6.3 ± 2.5 | 6.7 ± 2.0 | 0.55 |
Leg pain | 4.8 ± 2.0 | 4.4 ± 1.8 | 5.3 ± 2.1 | 0.010 * |
ODI score | 61.1 ±15.8 | 59.7 ± 15.9 | 62.5 ± 15.9 | 0.335 |
Eq5D score | 15.4 ± 3.1 | 15.4 ± 3.3 | 15.4 ± 2.8 | 0.856 |
2 years | ||||
Back pain | 2.3 ± 1.9 | 2.3 ± 2.0 | 2.3 ± 1.9 | 0.948 |
Leg pain | 1.4 ± 1.5 | 1.3 ± 1.4 | 1.6 ± 1.6 | 0.422 |
ODI score | 29.8 ± 17.2 | 25.8 ± 17.5 | 32.6 ± 16.6 | 0.085 |
Eq5D score | 9.1 ± 3.3 | 8.8 ± 3.5 | 9.4 ± 3.2 | 0.449 |
Decompression (n = 23) | Fusion (n = 19) | p Value | |
---|---|---|---|
Back Pain VAS | |||
Preoperative | 6.6 ± 2.0 | 6.4 ± 2.2 | 0.738 |
1 Month | 2.7 ± 1.5 | 2.7 ± 2.0 | 0.9 |
6 Months | 2.0 ± 1.6 | 2.2 ± 2.0 | 0.751 |
1 Year | 2.3 ± 1.8 | 2.2 ± 1.7 | 0.832 |
2 Years | 2.1 ± 1.8 | 2.6 ± 2.3 | 0.499 |
Leg Pain VAS | |||
Preoperative | 4.0 ± 2.1 | 4.7 ± 1.9 | 0.293 |
1 Month | 1.9 ± 1.4 | 1.9 ± 2.2 | 0.974 |
6 Months | 1.5 ± 1.7 | 1.0 ± 1.4 | 0.29 |
1 Year | 1.1 ± 1.0 | 1.0 ± 1.2 | 0.684 |
2 Years | 1.3 ± 1.1 | 1.3 ± 1.7 | 0.964 |
Oswestry Disability Index | |||
Preoperative | 61.6 ± 17.5 | 64.6 ± 12.5 | 0.55 |
1 Month | 33.0 ± 13.9 | 44.3 ± 15.6 | 0.018 * |
6 Months | 24.4 ± 10.3 | 31.9 ± 17.6 | 0.135 |
1 Year | 23.0 ± 12.0 | 29.8 ± 17.1 | 0.22 |
2 Years | 22.5 ± 14.4 | 29.8 ± 20.4 | 0.242 |
EuroQol-5 Dimension | |||
Preoperative | 14.8 ± 3.4 | 15.2 ± 2.9 | 0.695 |
1 Month | 9.7 ± 2.6 | 10.8 ± 2.9 | 0.24 |
3 Months | 8.5 ± 2.5 | 9.0 ± 3.0 | 0.595 |
6 Months | 8.0 ± 1.8 | 9.2 ± 3.3 | 0.235 |
1 Year | 8.2 ± 2.4 | 9.5 ± 4.5 | 0.35 |
Decompression (n = 32) | Fusion (n = 36) | p Value | |
---|---|---|---|
Back Pain VAS | |||
Preoperative | 6.7 ± 2.1 | 7.0 ± 1.6 | 0.499 |
1 Month | 2.5 ± 1.5 | 3.5 ± 1.9 | 0.02 |
6 Months | 2.5 ± 2.2 | 2.5 ± 1.3 | 0.973 |
1 Year | 2.3 ± 1.6 | 2.8 ± 1.3 | 0.24 |
2 Years | 2.7 ± 2.5 | 2.0 ± 1.2 | 0.27 |
Leg Pain VAS | |||
Preoperative | 5.2 ± 2.2 | 5.2 ± 2.1 | 1 |
1 Month | 2.2 ± 1.8 | 2.7 ± 1.3 | 0.355 |
6 Months | 1.7 ± 1.6 | 1.8 ± 1.7 | 0.664 |
1 Year | 1.9 ± 1.5 | 1.3 ± 1.5 | 0.042 * |
2 Years | 2.1 ± 1.8 | 1.2 ± 1.4 | 0.017 * |
Oswestry Disability Index | |||
Preoperative | 59.7 ± 13.8 | 60.0 ± 12.7 | 0.939 |
1 Month | 38.5 ± 17.2 | 46.4 ± 10.2 | 0.028 |
6 Months | 32.3 ± 20.7 | 36.2 ± 12.6 | 0.382 |
1 Year | 28.7 ± 17.4 | 34.4 ± 13.1 | 0.196 |
2 Years | 34.4 ± 21.7 | 31.0 ± 11.0 | 0.52 |
EuroQol-5 Dimension | |||
Preoperative | 15.1 ± 2.3 | 15.4 ± 2.7 | 0.726 |
1 Month | 10.0 ± 2.7 | 11.3 ± 2.3 | 0.079 |
6 Months | 9.9 ± 3.8 | 9.9 ± 1.9 | 0.967 |
1 Year | 9.0 ± 3.3 | 9.7 ± 2.0 | 0.423 |
2 Years | 9.6 ± 4.3 | 9.2 ± 2.2 | 0.723 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.R.; Lee, K.J.; Lee, S.Y.; Yang, J.H. Impact of the Disc Vacuum Phenomenon on Surgical Outcomes in Lumbar Spinal Stenosis: A Comparative Study between Endoscopic Decompression and Minimally Invasive Oblique Lateral Interbody Fusion. J. Clin. Med. 2024, 13, 5827. https://doi.org/10.3390/jcm13195827
Lee HR, Lee KJ, Lee SY, Yang JH. Impact of the Disc Vacuum Phenomenon on Surgical Outcomes in Lumbar Spinal Stenosis: A Comparative Study between Endoscopic Decompression and Minimally Invasive Oblique Lateral Interbody Fusion. Journal of Clinical Medicine. 2024; 13(19):5827. https://doi.org/10.3390/jcm13195827
Chicago/Turabian StyleLee, Hyung Rae, Kun Joon Lee, Seung Yup Lee, and Jae Hyuk Yang. 2024. "Impact of the Disc Vacuum Phenomenon on Surgical Outcomes in Lumbar Spinal Stenosis: A Comparative Study between Endoscopic Decompression and Minimally Invasive Oblique Lateral Interbody Fusion" Journal of Clinical Medicine 13, no. 19: 5827. https://doi.org/10.3390/jcm13195827
APA StyleLee, H. R., Lee, K. J., Lee, S. Y., & Yang, J. H. (2024). Impact of the Disc Vacuum Phenomenon on Surgical Outcomes in Lumbar Spinal Stenosis: A Comparative Study between Endoscopic Decompression and Minimally Invasive Oblique Lateral Interbody Fusion. Journal of Clinical Medicine, 13(19), 5827. https://doi.org/10.3390/jcm13195827