Characterization of Patients with Poor Clinical Outcome after Adult Spinal Deformity Surgery: A Multivariate Analysis of Mean 8-Year Follow-Up Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort
2.2. Surgical Details
2.3. Clinical Outcome Measurements
2.4. Study Variables
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kim, H.J.; Yang, J.H.; Chang, D.G.; Lenke, L.G.; Suh, S.W.; Nam, Y.; Park, S.C.; Suk, S.I. Adult Spinal Deformity: A Comprehensive Review of Current Advances and Future Directions. Asian Spine J. 2022, 16, 776–788. [Google Scholar] [CrossRef] [PubMed]
- Scheer, J.K.; Lafage, R.; Schwab, F.J.; Liabaud, B.; Smith, J.S.; Mundis, G.M.; Hostin, R.; Shaffrey, C.I.; Burton, D.C.; Hart, R.A.; et al. Under Correction of Sagittal Deformities Based on Age-adjusted Alignment Thresholds Leads to Worse Health-related Quality of Life Whereas over Correction Provides No Additional Benefit. Spine 2018, 43, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.S.; Klineberg, E.; Schwab, F.; Shaffrey, C.I.; Moal, B.; Ames, C.P.; Hostin, R.; Fu, K.-M.G.; Burton, D.; Akbarnia, B.; et al. Change in classification grade by the SRS-Schwab Adult Spinal Deformity Classification predicts impact on health-related quality of life measures: Prospective analysis of operative and nonoperative treatment. Spine 2013, 38, 1663–1671. [Google Scholar] [CrossRef] [PubMed]
- Takemoto, M.; Boissiere, L.; Vital, J.M.; Pellise, F.; Perez-Grueso, F.J.S.; Kleinstuck, F.; Acaroglu, E.R.; Alanay, A.; Obeid, I. Are sagittal spinopelvic radiographic parameters significantly associated with quality of life of adult spinal deformity patients? Multivariate linear regression analyses for pre-operative and short-term post-operative health-related quality of life. Eur. Spine J. 2017, 26, 2176–2186. [Google Scholar] [CrossRef]
- Hayashi, K.; Boissière, L.; Guevara-Villazón, F.; Larrieu, D.; Núñez-Pereira, S.; Bourghli, A.; Gille, O.; Vital, J.-M.; Pellisé, F.; Sánchez Pérez-Grueso, F.J.; et al. Factors influencing patient satisfaction after adult scoliosis and spinal deformity surgery. J. Neurosurg. Spine 2019, 31, 408–417. [Google Scholar] [CrossRef]
- Alshabab, S.; Gupta, M.C.; Lafage, R.; Bess, S.; Shaffrey, C.; Kim, H.J.; Ames, C.P.; Burton, D.C.; Smith, J.S.; Eastlack, R.K.; et al. Does Achieving Global Spinal Alignment Lead to Higher Patient Satisfaction and Lower Disability in Adult Spinal Deformity? Spine 2021, 46, 1105–1110. [Google Scholar] [CrossRef]
- Hasegawa, T.; Ushirozako, H.; Yamato, Y.; Yoshida, G.; Yasuda, T.; Banno, T.; Arima, H.; Oe, S.; Yamada, T.; Ide, K.; et al. Impact of Spinal Correction Surgeries with Osteotomy and Pelvic Fixation in Patients with Kyphosis Due to Osteoporotic Vertebral Fractures. Asian Spine J. 2021, 15, 523–532. [Google Scholar] [CrossRef]
- Kim, H.J.; Yang, J.H.; Chang, D.G.; Suk, S.I.; Suh, S.W.; Kim, S.I.; Song, K.S.; Park, J.B.; Cho, W. Proximal Junctional Kyphosis in Adult Spinal Deformity: Definition, Classification, Risk Factors, and Prevention Strategies. Asian Spine J. 2022, 16, 440–450. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, K.T.; Suk, K.S.; Lee, J.H.; Seo, E.M.; Huh, D.S. Sagittal decompensation after corrective osteotomy for lumbar degenerative kyphosis: Classification and risk factors. Spine 2011, 36, E538–E544. [Google Scholar] [CrossRef]
- Cho, K.J.; Suk, S.I.; Park, S.R.; Kim, J.H.; Kang, S.B.; Kim, H.S.; Oh, S.J. Risk factors of sagittal decompensation after long posterior instrumentation and fusion for degenerative lumbar scoliosis. Spine 2010, 35, 1595–1601. [Google Scholar] [CrossRef]
- Kim, Y.J.; Bridwell, K.H.; Lenke, L.G.; Rhim, S.; Cheh, G. Sagittal thoracic decompensation following long adult lumbar spinal instrumentation and fusion to L5 or S1: Causes, prevalence, and risk factor analysis. Spine 2006, 31, 2359–2366. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.J.; Bridwell, K.H.; Lenke, L.G.; Glattes, C.R.; Rhim, S.; Cheh, G. Proximal junctional kyphosis in adult spinal deformity after segmental posterior spinal instrumentation and fusion: Minimum five-year follow-up. Spine 2008, 33, 2179–2184. [Google Scholar] [CrossRef] [PubMed]
- Lertudomphonwanit, T.; Kelly, M.P.; Bridwell, K.H.; Lenke, L.G.; McAnany, S.J.; Punyarat, P.; Bryan, T.P.; Buchowski, J.M.; Zebala, L.P.; Sides, B.A.; et al. Rod fracture in adult spinal deformity surgery fused to the sacrum: Prevalence, risk factors, and impact on health-related quality of life in 526 patients. Spine J. 2018, 18, 1612–1624. [Google Scholar] [CrossRef] [PubMed]
- How, N.E.; Street, J.T.; Dvorak, M.F.; Fisher, C.G.; Kwon, B.K.; Paquette, S.; Smith, J.S.; Shaffrey, C.I.; Ailon, T. Pseudarthrosis in adult and pediatric spinal deformity surgery: A systematic review of the literature and meta-analysis of incidence, characteristics, and risk factors. Neurosurg. Rev. 2019, 42, 319–336. [Google Scholar] [CrossRef]
- Park, S.J.; Park, J.S.; Lee, C.S.; Shin, T.S.; Lee, K.H. Proximal Junctional Failure after Corrective Surgery: Focusing on Elderly Patients with Severe Sagittal Imbalance. Clin. Orthop. Surg. 2023, 15, 975–982. [Google Scholar] [CrossRef]
- Park, S.J.; Park, J.S.; Lee, C.S.; Shin, T.S.; Kim, I.S.; Lee, K.H. Radiographic Factors of Proximal Junctional Failure According to Age Groups in Adult Spinal Deformity. Clin. Orthop. Surg. 2023, 15, 606–615. [Google Scholar] [CrossRef]
- Teles, A.R.; Aldebeyan, S.; Aoude, A.; Swamy, G.; Nicholls, F.H.; Thomas, K.C.; Jacobs, W.B. Mechanical Complications in Adult Spinal Deformity Surgery: Can Spinal Alignment Explain Everything? Spine 2022, 47, E1–E9. [Google Scholar] [CrossRef]
- Lafage, R.; Bass, R.D.; Klineberg, E.; Smith, J.S.; Bess, S.; Shaffrey, C.; Burton, D.C.; Kim, H.J.; Eastlack, R.; Mundis, G., Jr.; et al. Complication Rates Following Adult Spinal Deformity Surgery: Evaluation of the Category of Complication and Chronology. Spine 2024, 49, 829–839. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Ha, K.-Y.; Chang, D.-G.; Park, H.-Y.; Jeon, W.-K.; Park, H.-C.; Kim, S.-I. Relationship between iliac screw loosening and proximal junctional kyphosis after long thoracolumbar instrumented fusion for adult spinal deformity. Eur. Spine J. 2020, 29, 1371–1378. [Google Scholar] [CrossRef]
- Schwab, F.; Patel, A.; Ungar, B.; Farcy, J.P.; Lafage, V. Adult spinal deformity-postoperative standing imbalance: How much can you tolerate? An overview of key parameters in assessing alignment and planning corrective surgery. Spine 2010, 35, 2224–2231. [Google Scholar] [CrossRef]
- Lafage, R.; Schwab, F.; Challier, V.; Henry, J.K.; Gum, J.; Smith, J.; Hostin, R.; Shaffrey, C.; Kim, H.J.; Ames, C.; et al. Defining Spino-Pelvic Alignment Thresholds: Should Operative Goals in Adult Spinal Deformity Surgery Account for Age? Spine 2016, 41, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.J.; Protopsaltis, T.S.; Ames, C.P.; Hostin, R.; Klineberg, E.; Mundis, G.M.; Obeid, I.; Kebaish, K.; Smith, J.S.; Boachie-Adjei, O.; et al. T1 pelvic angle (TPA) effectively evaluates sagittal deformity and assesses radiographical surgical outcomes longitudinally. Spine 2014, 39, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Schwab, F.; Ungar, B.; Blondel, B.; Buchowski, J.; Coe, J.; Deinlein, D.; DeWald, C.; Mehdian, H.; Shaffrey, C.; Tribus, C.; et al. Scoliosis Research Society-Schwab adult spinal deformity classification: A validation study. Spine 2012, 37, 1077–1082. [Google Scholar] [CrossRef] [PubMed]
- Yilgor, C.; Sogunmez, N.; Boissiere, L.; Yavuz, Y.; Obeid, I.; Kleinstück, F.; Sánchez Pérez-Grueso, F.J.; Acaroglu, E.; Haddad, S.; Mannion, A.F.; et al. Global Alignment and Proportion (GAP) Score: Development and Validation of a New Method of Analyzing Spinopelvic Alignment to Predict Mechanical Complications After Adult Spinal Deformity Surgery. J. Bone Joint Surg. Am. 2017, 99, 1661–1672. [Google Scholar] [CrossRef]
- Passias, P.G.; Jalai, C.M.; Diebo, B.G.; Cruz, D.L.; Poorman, G.W.; Buckland, A.J.; Day, L.M.; Horn, S.R.; Liabaud, B.; Lafage, R.; et al. Full-Body Radiographic Analysis of Postoperative Deviations From Age-Adjusted Alignment Goals in Adult Spinal Deformity Correction and Related Compensatory Recruitment. Int. J. Spine Surg. 2019, 13, 205–214. [Google Scholar] [CrossRef]
- Maruo, K.; Ha, Y.; Inoue, S.; Samuel, S.; Okada, E.; Hu, S.S.; Deviren, V.; Burch, S.; Schairer, W.; Ames, C.P.; et al. Predictive factors for proximal junctional kyphosis in long fusions to the sacrum in adult spinal deformity. Spine 2013, 38, E1469–E1476. [Google Scholar] [CrossRef]
- Hallager, D.W.; Hansen, L.V.; Dragsted, C.R.; Peytz, N.; Gehrchen, M.; Dahl, B. A Comprehensive Analysis of the SRS-Schwab Adult Spinal Deformity Classification and Confounding Variables: A Prospective, Non-US Cross-sectional Study in 292 Patients. Spine 2016, 41, E589–E597. [Google Scholar] [CrossRef]
- Protopsaltis, T.; Schwab, F.; Bronsard, N.; Smith, J.S.; Klineberg, E.; Mundis, G.; Ryan, D.J.; Hostin, R.; Hart, R.; Burton, D.; et al. The T1 pelvic angle, a novel radiographic measure of global sagittal deformity, accounts for both spinal inclination and pelvic tilt and correlates with health-related quality of life. J. Bone Joint Surg. Am. 2014, 96, 1631–1640. [Google Scholar] [CrossRef]
- Kim, H.J.; Bridwell, K.H.; Lenke, L.G.; Park, M.S.; Ahmad, A.; Song, K.S.; Piyaskulkaew, C.; Hershman, S.; Fogelson, J.; Mesfin, A. Proximal junctional kyphosis results in inferior SRS pain subscores in adult deformity patients. Spine 2013, 38, 896–901. [Google Scholar] [CrossRef]
- Bridwell, K.H.; Lenke, L.G.; Cho, S.K.; Pahys, J.M.; Zebala, L.P.; Dorward, I.G.; Cho, W.; Baldus, C.; Hill, B.W.; Kang, M.M. Proximal junctional kyphosis in primary adult deformity surgery: Evaluation of 20 degrees as a critical angle. Neurosurgery 2013, 72, 899–906. [Google Scholar] [CrossRef]
- Koike, Y.; Kotani, Y.; Terao, H.; Iwasaki, N. Risk Factor Analysis of Proximal Junctional Kyphosis after Surgical Treatment of Adult Spinal Deformity with Oblique Lateral Interbody Fusion. Asian Spine J. 2021, 15, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Lafage, R.; Schwab, F.; Glassman, S.; Bess, S.; Harris, B.; Sheer, J.; Hart, R.; Line, B.; Henry, J.; Burton, D.; et al. Age-Adjusted Alignment Goals Have the Potential to Reduce PJK. Spine 2017, 42, 1275–1282. [Google Scholar] [CrossRef] [PubMed]
- Byun, C.W.; Cho, J.H.; Lee, C.S.; Lee, D.H.; Hwang, C.J. Effect of overcorrection on proximal junctional kyphosis in adult spinal deformity: Analysis by age-adjusted ideal sagittal alignment. Spine J. 2022, 22, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Lee, C.S.; Kang, B.J.; Shin, T.S.; Kim, I.S.; Park, J.S.; Lee, K.H.; Shin, D.H. Validation of Age-adjusted Ideal Sagittal Alignment in Terms of Proximal Junctional Failure and Clinical Outcomes in Adult Spinal Deformity. Spine 2022, 47, 1737–1745. [Google Scholar] [CrossRef] [PubMed]
- Ha, K.Y.; Kim, E.H.; Kim, Y.H.; Jang, H.D.; Park, H.Y.; Cho, C.H.; Cho, R.K.; Kim, S.I. Surgical outcomes for late neurological deficits after long segment instrumentation for degenerative adult spinal deformity. J. Neurosurg. Spine 2021, 35, 340–346. [Google Scholar] [CrossRef]
Group P | Group NP | p * | ||
---|---|---|---|---|
ODI | 60.7 ± 13.8 | 25.7 ± 11.4 | <0.001 | |
SRS-22r | Function | 2.3 ± 0.6 | 3.4 ± 0.8 | <0.001 |
Pain | 2.6 ± 0.9 | 4.0 ± 0.5 | <0.001 | |
Appearance | 2.3 ± 0.6 | 3.5 ± 0.7 | <0.001 | |
Mental health | 2.3 ± 0.7 | 3.7 ± 0.8 | <0.001 | |
Satisfaction | 2.9 ± 0.7 | 3.9 ± 0.7 | <0.001 | |
Total | 2.4 ± 0.5 | 3.7 ± 0.6 | <0.001 | |
SF-36 | Physical functioning | 18.2 ± 17.1 | 51.3 ± 25.2 | <0.001 |
Role—physical | 40.0 ± 25.9 | 64.3 ± 29.7 | <0.001 | |
Bodily pain | 39.6 ± 21.5 | 63.2 ± 20.5 | <0.001 | |
General Health | 26.4 ± 15.6 | 50.9 ± 22.2 | <0.001 | |
Vitality | 34.2 ± 18.6 | 51.4 ± 21.5 | <0.001 | |
Social functioning | 36.6 ± 26.9 | 79.0 ± 21.3 | <0.001 | |
Role—emotional | 40.4 ± 20.1 | 66.8 ± 25.0 | 0.002 | |
Mental health | 41.3 ± 20.1 | 66.8 ± 25.0 | <0.001 | |
Physical component summary | 31.1 ± 15.1 | 57.4 ± 18.3 | <0.001 | |
Mental component summary | 37.8 ± 18.4 | 67.9 ± 20.4 | <0.001 |
Group P | Group NP | p * | ||
---|---|---|---|---|
Patient factors | ||||
Age at the index surgery (yr) | 66.8 ± 7.3 | 65.9 ± 6.3 | 0.473 | |
Age at the last follow-up (yr) | 75.5 ± 6.6 | 73.9 ± 6.6 | 0.212 | |
Female:male, n (%) | 48:4 (92.3%:7.7%) | 46:7 (86.8%:13.2%) | 0.526 | |
DFB:DLS, n (%) | 31:21 (59.6%:40.4%) | 28:25 (52.8%:47.2%) | 0.557 | |
ASA grade | 2.0 ± 0.4 | 1.9 ± 0.5 | 0.552 | |
T-score on BMD (g/cm2) | −1.6 ± 1.7 | −0.8 ± 1.7 | 0.024 | |
BMI (kg/m2) | 26.2 ± 3.7 | 25.4 ± 3.6 | 0.244 | |
DM, n (%) | 13 (25.0%) | 6 (11.3%) | 0.081 | |
Smoking status, n (%) | 6 (11.5%) | 3 (5.7%) | 0.067 | |
Surgical factors | ||||
No. of total segments fused | 6.3 ± 2.2 | 6.1 ± 2.7 | 0.689 | |
Front–back surgery, n (%) | 23 (44.2%) | 26 (49.1%) | 0.697 | |
Application of PSO, n (%) | 12 (23.1%) | 6 (11.3%) | 0.127 | |
Pelvic fixation, n (%) | 29 (55.8%) | 30 (56.6%) | 1.000 |
Group P | Group NP | p * | ||
---|---|---|---|---|
Preoperatively | ||||
PI (°) | 55.1 ± 10.6 | 53.8 ± 10.5 | 0.516 | |
LL (°) | 16.1 ± 21.0 | 21.1 ± 19.7 | 0.209 | |
PI-LL (°) | 39.1 ± 21.7 | 32.7 ± 16.9 | 0.096 | |
SS (°) | 22.7 ± 11.2 | 23.8 ± 11.0 | 0.616 | |
PT (°) | 32.4 ± 12.2 | 30.0 ± 8.5 | 0.239 | |
TK (°) | 11.7 ± 14.4 | 16.2 ± 15.4 | 0.127 | |
TPA (°) | 32.3 ± 11.9 | 28.8 ± 9.9 | 0.113 | |
C7SVA (mm) | 81.1 ± 53.3 | 66.7 ± 49.4 | 0.153 | |
Immediate postoperatively | ||||
LL (°) | 41.9 ± 11.2 | 41.8 ± 10.1 | 0.953 | |
PI-LL (°) | 13.0 ± 12.9 | 12.1 ± 9.6 | 0.684 | |
SS (°) | 31.4 ± 7.9 | 32.1 ± 8.9 | 0.668 | |
PT (°) | 23.2 ± 8.9 | 21.9 ± 8.4 | 0.428 | |
TK (°) | 21.1 ± 10.1 | 22.7 ± 10.5 | 0.438 | |
TPA (°) | 20.7 ± 8.8 | 18.1 ± 27.9 | 0.091 | |
C7SVA (mm) | 28.2 ± 31.3 | 18.4 ± 27.8 | 0.092 | |
Grouping by Schwab’s criteria | 0.559 | |||
Under (PI-LL mismatch > 10°), n (%) | 30 (57.7%) | 27 (50.9%) | ||
Matched (PI-LL mismatch ≤ ±10°), n (%) | 22 (42.3%) | 26 (49.1%) | ||
Over (PI-LL mismatch < −10°), n (%) | 0 | 0 | ||
Grouping by age-adjusted PI-LL target † | 0.026 | |||
Under (PI-LL offset > 10°), n (%) | 17 (32.7%) | 12 (22.6%) | ||
Matched (PI-LL offset ≤ ±10°), n (%) | 25 (48.1%) | 38 (71.7%) | ||
Over (PI-LL offset < −10°), n (%) | 10 (19.2%) | 3 (5.7%) | ||
Grouping by GAP score ‡ | 0.632 | |||
Proportioned, n (%) | 11 (21.2%) | 9 (17.0%) | ||
Moderately disproportioned, n (%) | 17 (32.7%) | 22 (41.5%) | ||
Severely disproportioned, n (%) | 24 (46.2%) | 22 (41.5%) | ||
At the last follow-up | ||||
LL (°) | 33.9 ± 12.9 | 33.3 ± 11.7 | 0.799 | |
PI-LL (°) | 23.2 ± 17.9 | 20.6 ± 11.9 | 0.378 | |
SS (°) | 27.9 ± 8.2 | 27.9 ± 8.7 | 0.983 | |
PT (°) | 29.2 ± 10.4 | 25.9 ± 8.7 | 0.087 | |
TK (°) | 29.3 ± 14.8 | 27.3 ± 13.7 | 0.491 | |
TPA (°) | 30.0 ± 11.9 | 24.6 ± 7.6 | 0.007 | |
C7SVA (mm) | 77.0 ± 53.0 | 60.0 ± 42.2 | 0.077 | |
Mechanical complications (PJK) | <0.001 | |||
No PJK, n (%) | 12 (23.1%) | 35 (66.0%) | ||
PJK, but no revision surgery, n (%) | 28 (53.8%) | 16 (30.2%) | ||
Revision surgery for PJK, n (%) | 12 (23.1%) | 2 (3.8%) | ||
Mechanical complications (Rod fracture) | 0.792 | |||
No rod fracture, n (%) | 41 (78.8%) | 43 (81.1%) | ||
Rod fracture, but no revision surgery, n (%) | 8 (15.4%) | 6 (11.3%) | ||
Revision surgery for rod fracture, n (%) | 3 (5.8%) | 4 (7.5%) |
Variables | B | S.E | Wald | p * | Exp (B) (95% CI) |
---|---|---|---|---|---|
T-score on BMD (g/cm2) | −0.141 | 0.156 | 0.817 | 0.366 | 0.868 (0.639–1.180) |
Categories by age-adjusted PI-LL target † | 3.304 | 0.192 | |||
Matched (vs. Under) | −0.372 | 0.641 | 0.336 | 0.562 | 0.690 (0.196–2.423) |
Over (vs. Under) | 1.053 | 1.024 | 1.056 | 0.304 | 2.865 (0.385–21.325) |
Last TPA | 0.058 | 0.032 | 3.189 | 0.074 | 1.060 (0.994–1.129) |
Presence of PJK | 14.918 | 0.001 | |||
PJK (vs. no PJK) | 1.375 | 0.500 | 7.570 | 0.006 | 3.957 (1.485–10.540) |
Revision surgery for PJK (vs. no PJK) | 3.051 | 0.897 | 11.559 | 0.001 | 21.141 (3.641–122–754) |
PJK (−) (N = 47) | PJK (+), Revision (−) (N = 44) | PJK (+), Revision (+) (N = 14) | p * (ANOVA) | ||
---|---|---|---|---|---|
ODI | 34.9 ± 21.0 | 47.6 ± 18.5 | 56.4 ± 23.5 | 0.001 | |
SRS-22r | Function | 3.4 ± 0.8 | 2.6 ± 0.7 | 2.6 ± 0.7 | <0.001 |
Pain | 3.9 ± 0.8 | 3.2 ± 0.9 | 2.7 ± 0.9 | 0.004 | |
Appearance | 3.5 ± 0.8 | 2.6 ± 0.8 | 2.8 ± 0.8 | 0.001 | |
Mental health | 3.7 ± 0.9 | 2.7 ± 1.0 | 2.7 ± 0.5 | <0.001 | |
Satisfaction | 3.7 ± 0.8 | 3.5 ± 0.8 | 2.9 ± 0.9 | 0.054 | |
Total | 3.6 ± 0.7 | 2.9 ± 0.7 | 2.7 ± 0.6 | 0.001 | |
SF-36 | Physical functioning | 46.3 ± 28.6 | 29.4 ± 24.7 | 25.0 ± 24.0 | 0.049 |
Role—physical | 62.8 ± 32.6 | 47.7 ± 29.1 | 41.7 ± 22.7 | 0.124 | |
Bodily pain | 59.0 ± 23.4 | 44.0 ± 23.8 | 56.5 ± 20.9 | 0.081 | |
General Health | 49.3 ± 20.5 | 32.9 ± 23.7 | 32.2 ± 16.6 | 0.030 | |
Vitality | 47.8 ± 22.6 | 38.9 ± 22.2 | 43.1 ± 18.1 | 0.392 | |
Social functioning | 72.5 ± 29.9 | 51.4 ± 32.8 | 44.4 ± 25.1 | 0.031 | |
Role—emotional | 65.8 ± 36.7 | 56.4 ± 34.5 | 38.9 ± 17.7 | 0.142 | |
Mental health | 60.3 ± 27.3 | 50.2 ± 27.6 | 51.7 ± 14.6 | 0.410 | |
Physical component summary | 54.3 ± 21.7 | 38.5 ± 21.2 | 38.8 ± 11.4 | 0.027 | |
Mental component summary | 61.1 ± 25.3 | 49.5 ± 26.1 | 52.8 ± 24.6 | 0.151 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.-J.; Kim, H.-J.; Park, J.-S.; Kang, D.-H.; Kang, M.; Jung, K.; Lee, C.-S. Characterization of Patients with Poor Clinical Outcome after Adult Spinal Deformity Surgery: A Multivariate Analysis of Mean 8-Year Follow-Up Data. J. Clin. Med. 2024, 13, 6000. https://doi.org/10.3390/jcm13196000
Park S-J, Kim H-J, Park J-S, Kang D-H, Kang M, Jung K, Lee C-S. Characterization of Patients with Poor Clinical Outcome after Adult Spinal Deformity Surgery: A Multivariate Analysis of Mean 8-Year Follow-Up Data. Journal of Clinical Medicine. 2024; 13(19):6000. https://doi.org/10.3390/jcm13196000
Chicago/Turabian StylePark, Se-Jun, Hyun-Jun Kim, Jin-Sung Park, Dong-Ho Kang, Minwook Kang, Kyunghun Jung, and Chong-Suh Lee. 2024. "Characterization of Patients with Poor Clinical Outcome after Adult Spinal Deformity Surgery: A Multivariate Analysis of Mean 8-Year Follow-Up Data" Journal of Clinical Medicine 13, no. 19: 6000. https://doi.org/10.3390/jcm13196000
APA StylePark, S. -J., Kim, H. -J., Park, J. -S., Kang, D. -H., Kang, M., Jung, K., & Lee, C. -S. (2024). Characterization of Patients with Poor Clinical Outcome after Adult Spinal Deformity Surgery: A Multivariate Analysis of Mean 8-Year Follow-Up Data. Journal of Clinical Medicine, 13(19), 6000. https://doi.org/10.3390/jcm13196000