Detection of Thrombosis Using Soluble C-Type Lectin-like Receptor-2 with D-Dimer Level and Platelet Count
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stevens, S.M.; Woller, S.C.; Baumann Kreuziger, L.; Doerschug, K.; Geersing, G.J.; Klok, F.A.; King, C.S.; Murin, S.; Vintch, J.R.E.; Wells, P.S.; et al. Antithrombotic Therapy for VTE Disease: Compendium and Review of CHEST Guidelines 2012-2021. Chest 2024, 166, 388–404. [Google Scholar] [CrossRef] [PubMed]
- Pizzi, R.; Cimini, L.A.; Ageno, W.; Becattini, C. Direct Oral Anticoagulants for Pulmonary Embolism. Hamostaseologie 2024, 44, 206–217. [Google Scholar] [CrossRef] [PubMed]
- Lutfi, A.; O’Rourke, E.; Crowley, M.; Craig, E.; Worrall, A.; Kevane, B.; O’Shaughnessy, F.; Donnelly, J.; Cleary, B.; Áinle, F.N. VTE risk assessment, prevention and diagnosis in pregnancy. Thromb. Res. 2024, 235, 164–174. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.H.; Spagnolo-Allende, A.; Yang, D.; Qiao, Y.; Gutierrez, J. Epidemiology, Pathophysiology, and Imaging of Atherosclerotic Intracranial Disease. Stroke 2024, 55, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Scheldeman, L.; Sinnaeve, P.; Albers, G.W.; Lemmens, R.; Van de Werf, F. Acute myocardial infarction and ischaemic stroke: Differences and similarities in reperfusion therapies-a review. Eur. Heart J. 2024, 45, 2735–2747. [Google Scholar] [CrossRef]
- Sohn, M.; Lim, S. The Role of Cilostazol, a Phosphodiesterase-3 Inhibitor, in the Development of Atherosclerosis and Vascular Biology: A Review with Meta-Analysis. Int. J. Mol. Sci. 2024, 25, 2593. [Google Scholar] [CrossRef]
- Tatsumi, K. The pathogenesis of cancer-associated thrombosis. Int. J. Hematol. 2024, 119, 495–504. [Google Scholar] [CrossRef]
- Khattak, S.; Townend, J.N.; Thomas, M.R. Impact of antiplatelet therapy on microvascular thrombosis during ST-elevation myocardial infarction. Front. Mol. Biosci. 2024, 11, 1287553. [Google Scholar] [CrossRef]
- Malte, A.L.; Højbjerg, J.A.; Larsen, J.B. Platelet Parameters as Biomarkers for Thrombosis Risk in Cancer: A Systematic Review and Meta-analysis. Semin. Thromb. Hemost. 2024, 50, 360–383. [Google Scholar] [CrossRef]
- Cadoni, M.P.L.; Coradduzza, D.; Congiargiu, A.; Sedda, S.; Zinellu, A.; Medici, S.; Nivoli, A.M.; Carru, C. Platelet Dynamics in Neurodegenerative Disorders: Investigating the Role of Platelets in Neurological Pathology. J. Clin. Med. 2024, 13, 2102. [Google Scholar] [CrossRef]
- Stanworth, S.J.; Mumford, A.D. How I diagnose and treat neonatal thrombocytopenia. Blood 2023, 141, 2685–2697. [Google Scholar] [CrossRef] [PubMed]
- González-López, T.J.; Provan, D.; Bárez, A.; Bernardo-Gutiérrez, A.; Bernat, S.; Martínez-Carballeira, D.; Jarque-Ramos, I.; Soto, I.; Jiménez-Bárcenas, R.; Fernández-Fuertes, F. Primary and secondary immune thrombocytopenia (ITP): Time for a rethink. Blood Rev. 2023, 61, 101112. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.R.; Scully, M. How I treat microangiopathic hemolytic anemia in patients with cancer. Blood 2021, 137, 1310–1317. [Google Scholar] [CrossRef] [PubMed]
- Orme, R.; Judge, H.M.; Storey, R.F. Monitoring Antiplatelet Therapy. Semin. Thromb. Hemost. 2017, 43, 311–319. [Google Scholar] [CrossRef]
- Capodanno, D.; Mehran, R.; Krucoff, M.W.; Baber, U.; Bhatt, D.L.; Capranzano, P.; Collet, J.P.; Cuisset, T.; De Luca, G.; De Luca, L.; et al. Defining Strategies of Modulation of Antiplatelet Therapy in Patients with Coronary Artery Disease: A Consensus Document from the Academic Research Consortium. Circulation 2023, 147, 1933–1944. [Google Scholar] [CrossRef]
- Matowicka-Karna, J. Markers of inflammation, activation of blood platelets and coagulation disorders in inflammatory bowel diseases. Postepy Hig. Med. Dosw. 2016, 70, 305–312. [Google Scholar] [CrossRef]
- Petito, E.; Franco, L.; Falcinelli, E.; Guglielmini, G.; Conti, C.; Vaudo, G.; Paliani, U.; Becattini, C.; Mencacci, A.; Tondi, F.; et al. COVID-19 infection-associated platelet and neutrophil activation is blunted by previous anti-SARS-CoV-2 vaccination. Br. J. Haematol. 2023, 201, 851–856. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, P.; Lv, Y.; Ming, J.; Wang, Z.; Yang, E.; Li, Y.; Wang, M.; Niu, J.; Zhang, Y.; et al. Proteomic-Based Platelet Activation-Associated Protein SELP May Be a Novel Biomarker for Coagulation and Prognostic in Essential Thrombocythemia. J. Clin. Med. 2023, 12, 1078. [Google Scholar] [CrossRef]
- Welch, E.L.; Crooks, M.G.; Hart, S.P. Agreement between blood draw techniques for assessing platelet activation by flow cytometry. Platelets 2019, 30, 530–534. [Google Scholar] [CrossRef]
- Lee, C.S.M.; Selvadurai, M.V.; Pasalic, L.; Yeung, J.; Konda, M.; Kershaw, G.W.; Favaloro, E.J.; Chen, V.M. Measurement of procoagulant platelets provides mechanistic insight and diagnostic potential in heparin-induced thrombocytopenia. J. Thromb. Haemost. 2022, 20, 975–988. [Google Scholar] [CrossRef]
- Perrella, G.; Nagy, M.; Watson, S.P.; Heemskerk, J.W.M. Platelet GPVI (Glycoprotein VI) and Thrombotic Complications in the Venous System. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 2681–2692. [Google Scholar] [CrossRef] [PubMed]
- Lahu, S.; Adler, K.; Mayer, K.; Hein-Rothweiler, R.; Bernlochner, I.; Ndrepepa, G.; Schüpke, S.; Holdenrieder, S.; Bongiovanni, D.; Laugwitz, K.L.; et al. Plasma Soluble Glycoprotein, V.I.; Platelet Function, Bleeding, and Ischemic Events in Patients Undergoing Elective Percutaneous Coronary Intervention. Thromb. Haemost. 2024, 124, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Suzuki-Inoue, K. Platelets and cancer-associated thrombosis: Focusing on the platelet activation receptor CLEC-2 and podoplanin. Blood 2019, 134, 1912–1918. [Google Scholar] [CrossRef] [PubMed]
- Suzuki-Inoue, K.; Tsukiji, N.; Shirai, T.; Osada, M.; Inoue, O.; Ozaki, Y. Platelet CLEC-2: Roles Beyond Hemostasis. Semin. Thromb. Hemost. 2018, 44, 126–134. [Google Scholar] [PubMed]
- Suzuki-Inoue, K.; Osada, M.; Ozaki, Y. Physiologic and pathophysiologic roles of interaction between C-type lectin-like receptor 2 and podoplanin: Partners from in utero to adulthood. J. Thromb. Hemost. 2017, 15, 219–229. [Google Scholar] [CrossRef]
- Tsukiji, N.; Inoue, O.; Morimoto, M.; Tatsumi, N.; Nagatomo, H.; Ueta, K.; Shirai, T.; Sasaki, T.; Otake, S.; Tamura, S.; et al. Platelets play an essential role in murine lung development through Clec-2/podoplanin interaction. Blood 2018, 132, 1167–1179. [Google Scholar] [CrossRef]
- Yamamoto, A.; Wada, H.; Ichkawa, Y.; Tanaka, M.; Tashiro, H.; Shiraki, K.; Shimpo, H.; Yamashita, Y.; Mastumoto, T.; Shimaoka, M.; et al. Soluble C-Type Lectin-Like Receptor 2 Is a Biomarker for Disseminated Intravascular Coagulation. J. Clin. Med. 2021, 10, 2860. [Google Scholar] [CrossRef]
- Yamashita, Y.; Suzuki, K.; Mastumoto, T.; Ikejiri, M.; Ohishi, K.; Katayama, N.; Suzuki-Inoue, K.; Wada, H. Elevated plasma levels of soluble C-type lectin-like receptor 2 (sCLEC-2) in patients with thrombotic microangiopathy. Thromb. Res. 2019, 178, 54–58. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, W.; Wu, X.; Li, H.; Zhang, C.; Huang, Z.; Shi, R.; You, T.; Shi, J.; Cao, Y. Prognostic significance of plasma CLEC-2 (C-Type Lectin Like Receptor 2) in patients with acute ischemic stroke. Stroke 2019, 50, 45–52. [Google Scholar] [CrossRef]
- Nishigaki, A.; Ichikawa, Y.; Ezaki, E.; Yamamoto, A.; Suzuki, K.; Tachibana, K.; Kamon, T.; Horie, S.; Masuda, J.; Makino, K.; et al. Soluble C-type lectin-like receptor 2 elevation in patients with acute cerebral infarction. J. Clin. Med. 2021, 10, 3408. [Google Scholar] [CrossRef]
- Inoue, O.; Osada, M.; Nakamura, J.; Kazama, F.; Shirai, T.; Tsukiji, N.; Sasaki, T.; Yokomichi, H.; Dohi, T.; Kaneko, M.; et al. Soluble CLEC-2 is generated independently of ADAM10 and is increased in plasma in acute coronary syndrome: Comparison with soluble GPVI. Int. J. Hematol. 2019, 110, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Fei, M.; Xiang, L.; Chai, X.; Jin, J.; You, T.; Zhao, Y.; Ruan, C.; Hao, Y.; Zhu, L. Plasma soluble C-type lectin-like receptor-2 is associated with the risk of coronary artery disease. Front. Med. 2020, 14, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Wada, H.; Ichikawa, Y.; Ezaki, M.; Yamamoto, A.; Tomida, M.; Yoshida, M.; Fukui, S.; Moritani, I.; Shiraki, K.; Shimaoka, M.; et al. Elevated Plasma Soluble C-Type Lectin-like Receptor 2 Is Associated with the Worsening of Coronavirus Disease 2019. J. Clin. Med. 2022, 11, 985. [Google Scholar] [CrossRef] [PubMed]
- Wada, H.; Shiraki, K.; Suzuki-Inoue, K. “Unconventional CD147-dependent platelet activation elicited by SARS-CoV-2 in COVID-19”: Comment from Wada et al. J. Thromb. Haemost. 2022, 20, 2159–2160. [Google Scholar] [CrossRef]
- Maugeri, N.; De Lorenzo, R.; Clementi, N.; Antonia Diotti, R.; Criscuolo, E.; Godino, C.; Tresoldi, C.; Bio Angels For Covid-BioB Study Group; Bonini, C.; Clementi, M.; et al. Unconventional CD147-dependent platelet activation elicited by SARS-CoV-2 in COVID-19. J. Thromb. Haemost. 2022, 20, 434–448. [Google Scholar] [CrossRef]
- Wauthier, L.; Favresse, J.; Hardy, M.; Douxfils, J.; Le Gal, G.; Roy, P.M.; van Es, N.; Ay, C.; Ten Cate, H.; Lecompte, T.; et al. D-dimer testing: A narrative review. Adv. Clin. Chem. 2023, 114, 151–223. [Google Scholar]
- Refaai, M.A.; Riley, P.; Mardovina, T.; Bell, P.D. The Clinical Significance of Fibrin Monomers. Thromb. Haemost. 2018, 118, 1856–1866. [Google Scholar] [CrossRef]
- Tritschler, T.; Kraaijpoel, N.; Le Gal, G.; Wells, P.S. Venous Thromboembolism: Advances in Diagnosis and Treatment. JAMA 2018, 320, 1583–1594. [Google Scholar] [CrossRef]
- Franchini, M.; Focosi, D.; Pezzo, M.P.; Mannucci, P.M. How we manage a high D-dimer. Haematologica 2024, 109, 1035–1045. [Google Scholar] [CrossRef]
- Ryu, J.A.; Bang, O.Y.; Lee, G.H. D-dimer levels and cerebral infarction in critically ill cancer patients. BMC Cancer 2017, 17, 591. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Liu, J.; Wang, Y.; Cai, H.; Wang, D.; Fang, S.; Yu, B. D-dimer and the incidence of heart failure and mortality after acute myocardial infarction. Heart 2021, 107, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Giustozzi, M.; Ehrlinder, H.; Bongiovanni, D.; Borovac, J.A.; Guerreiro, R.A.; Gąsecka, A.; Papakonstantinou, P.E.; Parker, W.A.E. Coagulopathy and sepsis: Pathophysiology, clinical manifestations and treatment. Blood Rev. 2021, 50, 100864. [Google Scholar] [CrossRef] [PubMed]
- Thompson, G.L.; Kavanagh, D. Diagnosis and treatment of thrombotic microangiopathy. Int. J. Lab. Hematol. 2022, 44 (Suppl. S1), 101–113. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, N.; Maekawa, T.; Takada, M.; Tanaka, H.; Gonmori, H. Criteria for diagnosis of DIC based on the analysis of clinical and laboratory findings in 345 DIC patients collected by the Research Committee on DIC in Japan. Bibl. Haematol. 1983, 265–275. [Google Scholar]
- Yamamoto, A.; Wada, H.; Tomida, M.; Ichikawa, Y.; Ezaki, M.; Shiraki, K.; Shimaoka, M.; Iba, T.; Suzuki-Inoue, K.; Kawamura, M.; et al. Super Formula for Diagnosing Disseminated Intravascular Coagulation Using Soluble C-Type Lectin-like Receptor 2. Diagnostics 2023, 13, 2299. [Google Scholar] [CrossRef]
- Kamon, T.; Wada, H.; Horie, S.; Inaba, T.; Okamoto, K.; Shiraki, K.; Ichikawa, Y.; Ezaki, M.; Shimaoka, M.; Nishigaki, A.; et al. Super Formula for Soluble C-Type Lectin-Like Receptor 2 × D-Dimer in Patients with Acute Cerebral Infarction. Clin. Appl. Thromb. Hemost. 2024, 30, 10760296241232858. [Google Scholar] [CrossRef]
- Ishikura, H.; Irie, Y.; Kawamura, M.; Hoshino, K.; Nakamura, Y.; Mizunuma, M.; Maruyama, J.; Nakashio, M.; Suzuki-Inoue, K.; Kitamura, T. Early recognition of sepsis-induced coagulopathy using the C2PAC index: A ratio of soluble type C lectin-like receptor 2 (sCLEC-2) level and platelet count. Platelets 2022, 33, 935–944. [Google Scholar] [CrossRef]
- Obayashi, S.; Kubota, T. Climacteric syndrome as indefinite complaints. J. Jpn. Soc. Psychosom. Obstet. gynecol 2009, 14, 183–189. [Google Scholar]
- Taylor, F.B., Jr.; Toh, C.H.; Hoots, K.; Wada, H.; Levi, M. Towards a definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb. Haemost. 2001, 86, 1327–1330. [Google Scholar] [CrossRef]
- Kazama, F.; Nakamura, J.; Osada, M.; Inoue, O.; Oosawa, M.; Tamura, S.; Tsukiji, N.; Aida, K.; Kawaguchi, A.; Takizawa, S.; et al. Measurement of soluble C-type lectin-like receptor 2 in human plasma. Platelets 2015, 26, 711–719. [Google Scholar] [CrossRef]
- Wada, H.; Shiraki, K.; Shimpo, H.; Shimaoka, M.; Iba, T.; Suzuki-Inoue, K. Thrombotic Mechanism Involving Platelet Activation, Hypercoagulability and Hypofibrinolysis in Coronavirus Disease 2019. Int. J. Mol. Sci. 2023, 24, 7975. [Google Scholar] [CrossRef] [PubMed]
- Etemad, M.; Christodoulou, F.; Uhlig, S.; Hassel, J.C.; Schrotz-King, P.; Brenner, H.; Ulrich, C.M.; Bieback, K.; Klüter, H.; Bugert, P. C-Type Lectin-like Receptor 2 Expression Is Decreased upon Platelet Activation and Is Lower in Most Tumor Entities Compared to Healthy Controls. Cancers 2023, 15, 5514. [Google Scholar] [CrossRef] [PubMed]
- Bussel, J.B.; Knightly, K.A. Immune thrombocytopenia (ITP) in pregnancy. Br. J. Haematol. 2024, 204, 1176–1177. [Google Scholar] [CrossRef] [PubMed]
- Paik, J. Fostamatinib: A Review in Chronic Immune Thrombocytopenia. Drugs 2021, 81, 935–943. [Google Scholar] [CrossRef]
- Ningtyas, D.C.; Leitner, F.; Sohail, H.; Thong, Y.L.; Hicks, S.M.; Ali, S.; Drew, M.; Javed, K.; Lee, J.; Kenangalem, E.; et al. Platelets mediate the clearance of senescent red blood cells by forming prophagocytic platelet-cell complexes. Blood 2024, 143, 535–547. [Google Scholar] [CrossRef]
- Provan, D.; Thachil, J.; Álvarez Román, M.T. Addressing thrombosis concerns in immune thrombocytopenia: The role of fostamatinib in immune thrombocytopenia management. Expert. Rev. Hematol. 2024, 17, 55–66. [Google Scholar] [CrossRef]
- Yoshida, N. Recent advances in the diagnosis and treatment of pediatric acquired aplastic anemia. Int. J. Hematol. 2024, 119, 240–247. [Google Scholar] [CrossRef]
- Madkhali, M.A. Recent advances in the management of immune thrombocytopenic purpura (ITP): A comprehensive review. Medicine 2024, 103, e36936. [Google Scholar] [CrossRef]
- George, J.N.; Nester, C.M. Syndromes of thrombotic microangiopathy. N. Engl. J. Med. 2014, 371, 654–666. [Google Scholar] [CrossRef]
- Fan, B.E.; Lippi, G.; Favaloro, E.J. D-dimer Levels for the exclusion of pulmonary embolism: Making sense of international guideline recommendations. J. Thromb. Haemost. 2024, 22, 604–608. [Google Scholar] [CrossRef]
- Huang, P.; He, X.Y.; Xu, M. Effect of Argatroban Injection on Clinical Efficacy in Patients with Acute Cerebral Infarction: Preliminary Findings. Eur. Neurol. 2021, 84, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Macha, K.; Marsch, A.; Siedler, G.; Breuer, L.; Strasser, E.F.; Engelhorn, T.; Schwab, S.; Kallmünzer, B. Cerebral Ischemia in Patients on Direct Oral Anticoagulants. Stroke 2019, 50, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Phipps, M.S.; Cronin, C.A. Management of acute ischemic stroke. BMJ 2020, 368, l6983. [Google Scholar] [CrossRef] [PubMed]
- Amarenco, P.; Denison, H.; Evans, S.R.; Himmelmann, A.; James, S.; Knutsson, M.; Ladenvall, P.; Molina, C.A.; Wang, Y.; Johnston, S.C.; et al. Ticagrelor Added to Aspirin in Acute Ischemic Stroke or Transient Ischemic Attack in Prevention of Disabling Stroke: A Randomized Clinical Trial. JAMA Neurol. 2020, 78, 1–9. [Google Scholar] [CrossRef] [PubMed]
Sample | Patient | Age (Years Old) | Sex (F:M) | sCLEC-2 (×10−9 g/L) | Platelet Count (×1010 PLT/L) | D-Dimer (×10−3 g/L) | |
---|---|---|---|---|---|---|---|
HV | 79 | 79 | 21 (20–24) | 39:40 | 92.2 (73.2–116) | 21.6 (19.2–23.6) | 0.20 (0.15–0.35) |
ICS | 52 | 52 | 57 (48–73) | 27:25 | 145 (126–220) *** | 21.0 (17.4–25.7) | 0.41 (0.28–0.61) *** |
ITP | 35 | 22 | 50 (36–70) | 15:7 | 77.0 (58.6–100) * | 4.8 (4.1–7.3) *** | 0.34 (0.24–0.52) ** |
CLD | 177 | 177 | 66 (53–73) | 90:87 | 113 (92.1–144) *** | 20.7 (17.7–25.2) | 0.43 (0.29–0.70) *** |
TH-, IFN- | 343 | 330 | 56 (31–71) | 171:159 | 110 (85.8–139) | 20.6 (17.0–24.4) | 0.37 (0.24–0.56) |
IFN | 141 | 141 | 76 (58–84) | 76:65 | 319 (233–477) *** | 22.9 (16.3–28.2) | 2.60 (1.20–5.05) *** |
MVT | 90 | 90 | 68 (52–79) | 34:56 | 435 (278–675) *** | 6.8 (2.6–12.4) *** | 16.1 (6.00–30.8) *** |
ATE | 92 | 92 | 72 (65–78) | 32:60 | 316 (234–388) *** | 23.0 (18.8–27.3) * | 0.95 (0.61–1.78) *** |
VTE | 36 | 22 | 69 (60–81) | 16:6 | 315 (234–467) *** | 18.9 (14.8–22.7) ** | 9.15 (2.95–18.4) *** |
sCLEC-2 Level (×10−9 g/L) | D-Dimer Level (×10−3 g/L) | Platelet Count (×1010 PLT/L) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AUC | Sen | COF | OR | AUC | Sen | COF | OR | AUC | Sen | COF | OR | |
IFN vs. TH-, IFN- | 0.973 | 90.8% | 200 | 95.7 | 0.930 | 84.9% | 0.8 | 4.35 | 0.579 | 58.8% | 21.3 | 1.60 |
MVT vs. TH-, IFN- | 0.977 | 93.0% | 212 | 186 | 0.988 | 94.4% | 1.1 | 17.0 | 0.836 | 81.1% | 14.7 | 18.7 |
ATE vs. TH-, IFN- | 0.979 | 91.5% | 204 | 128 | 0.839 | 76.4% | 0.6 | 3.23 | 0.628 | 60.2% | 21.9 | 2.4 |
VTE vs. TH-, IFN- | 0.967 | 91.7% | 205 | 119 | 0.929 | 81.5% | 0.7 | 4.88 | 0.563 | 58.1% | 19.6 | 1.93 |
MVT vs. IFN | 0.637 | 61.1% | 371 | 2.50 | 0.850 | 77.8% | 5.5 | 3.479 | 0.872 | 80.9% | 14.5 | 18.1 |
ATE vs. IFN | 0.520 | 50.5% | 317 | 1.04 | 0.731 | 68.8% | 1.5 | 2.13 | 0.535 | 50.8% | 23.0 | 1.07 |
VTE vs. IFN | 0.507 | 50.0% | 321 | 1.01 | 0.712 | 74.5% | 5.0 | 2.98 | 0.612 | 58.9% | 20.3 | 1.23 |
sCLEC-2/PLT (×10−19 g/PLT) | sCLEC-2xDD (×10−12 g/L) | sCLEC-2xDD/PLT (×10−3 g/L) | |
---|---|---|---|
HV | 4.30 (3.47–5.54) | 18.9 (12.8–32.4) | 0.94 (0.61–1.66) |
ICS | 7.82 (3.37–9.59) *** | 71.3 (36.5–117) *** | 3.54 (1.87–5.32) *** |
ITP | 17.2 (10.9–23.6) *** | 28.5 (14.6–56.0) | 7.06 (2.76–16.2) *** |
CLD | 5.29 (4.13–7.21) *** | 49.1 (31.0–84.8) *** | 2.28 (1.43–3.93) *** |
TH-, IFN- | 5.59 (4.20–8.03) | 41.6 (22.6–74.6) | 2.14 (1.13–4.08) |
IFN | 15.9 (11.1–23.4) *** | 844 (335–1875) *** | 42.3 (14.0–90.3) *** |
MVT | 63.1 (39.0–142) *** | 6095 (2591–14,009) *** | 943 (404–1821) *** |
ATE | 13.7 (10.8–19.1) *** | 305 (172–620) *** | 13.3 (7.79–27.9) *** |
VTE | 18.0 (12.2–26.0) *** | 2600 (498–10,712) *** | 141 (40.1–526) *** |
sCLEC-2/PLT (×10−19 g/PLT) | sCLEC-2xDD | sCLEC-2xDD/PLT | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
AUC | Sen | COF | OR | AUC | Sen | COF | OR | AUC | Sen | COF | OR | |
IFN vs. TH-, IFN- | 0.902 | 83.4% | 9.72 | 25.7 | 0.981 | 94.3% | 141 | 284 | 0.960 | 90.1% | 7.43 | 72.8 |
MVT vs. TH-, IFN- | 0.988 | 94.8% | 18.2 | 352 | 0.998 | 96.7% | 168 | 875 | 0.999 | 99.4% | 54.5 | 11424 |
ATE vs. TH-, IFN- | 0.899 | 83.7% | 9.87 | 26.7 | 0.971 | 92.5% | 134 | 156 | 0.934 | 87.0% | 6.11 | 44.1 |
VTE vs. TH-, IFN- | 0.930 | 86.1% | 10.6 | 39.0 | 0.983 | 91.7% | 131 | 124 | 0.965 | 87.5% | 6.34 | 48.8 |
MVT vs. IFN | 0.908 | 83.7% | 27.5 | 27.2 | 0.839 | 77.8% | 2000 | 12.4 | 0.941 | 85.3% | 163 | 35.1 |
ATE vs. IFN | 0.559 | 54.6% | 14.5 | 1.46 | 0.717 | 66.7% | 503 | 4.2 | 0.725 | 67.4% | 21.5 | 4.27 |
VTE vs. IFN | 0.557 | 54.6% | 17.1 | 1.34 | 0.680 | 66.7% | 1482 | 4.0 | 0.660 | 68.8% | 74.8 | 4.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wada, H.; Shiraki, K.; Yamamoto, A.; Kamon, T.; Masuda, J.; Ichikawa, Y.; Kawamura, M.; Shimaoka, M.; Simpo, H. Detection of Thrombosis Using Soluble C-Type Lectin-like Receptor-2 with D-Dimer Level and Platelet Count. J. Clin. Med. 2024, 13, 5980. https://doi.org/10.3390/jcm13195980
Wada H, Shiraki K, Yamamoto A, Kamon T, Masuda J, Ichikawa Y, Kawamura M, Shimaoka M, Simpo H. Detection of Thrombosis Using Soluble C-Type Lectin-like Receptor-2 with D-Dimer Level and Platelet Count. Journal of Clinical Medicine. 2024; 13(19):5980. https://doi.org/10.3390/jcm13195980
Chicago/Turabian StyleWada, Hideo, Katsuya Shiraki, Akitaka Yamamoto, Toshitaka Kamon, Jun Masuda, Yuhuko Ichikawa, Masahide Kawamura, Motomu Shimaoka, and Hideto Simpo. 2024. "Detection of Thrombosis Using Soluble C-Type Lectin-like Receptor-2 with D-Dimer Level and Platelet Count" Journal of Clinical Medicine 13, no. 19: 5980. https://doi.org/10.3390/jcm13195980
APA StyleWada, H., Shiraki, K., Yamamoto, A., Kamon, T., Masuda, J., Ichikawa, Y., Kawamura, M., Shimaoka, M., & Simpo, H. (2024). Detection of Thrombosis Using Soluble C-Type Lectin-like Receptor-2 with D-Dimer Level and Platelet Count. Journal of Clinical Medicine, 13(19), 5980. https://doi.org/10.3390/jcm13195980