Impact of Inhaled Nitric Oxide (iNO) on the Outcome of COVID-19 Associated ARDS
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Patients
2.3. Application of iNO
2.4. Ventilator Settings
2.5. Data Retrieval
2.6. Ethical Approval
2.7. Sample Size
2.8. Statistical Analysis
3. Results
3.1. Patients’ Demographics and Characteristics in the iNO vs. the Non-iNO Group
3.2. Patients’ Demographics and Characteristics in the iNO-Responder vs. Nonresponder Group
3.3. ABG Results before and after iNO
3.4. ABG Results before vs. 6 h after iNO Initiation in iNO-Responders versus -Nonresponders
3.4.1. ABG Results Pre-iNO and before Termination of iNO
3.4.2. Impact of iNO vs. Non-iNO on Oxygenation (PaO2/FiO2 (mmHg))
3.5. Ventilator Settings in the iNO vs. Non-iNO Group
3.6. Trend of Inflammatory Markers in the iNO and Non-iNO Group
3.7. Clinical Outcome Parameters iNO vs. Non-iNO Group
3.7.1. Length of Mechanical Ventilation (MV) and ICU and Hospital Stay
3.7.2. 30-Day Mortality
3.7.3. Renal Replacement Therapy
3.7.4. Thrombotic Events in the iNO versus Non-iNO Group
3.7.5. Outcome Parameters in the iNO-Responder vs. -Nonresponder Group
3.7.6. Signs of iNO Toxicity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nasrullah, A.; Virk, S.; Shah, A.; Jacobs, M.; Hamza, A.; Sheikh, A.B.; Javed, A.; Butt, M.A.; Sangli, S. Acute Respiratory Distress Syndrome and the Use of Inhaled Pulmonary Vasodilators in the COVID-19 Era: A Narrative Review. Life 2022, 12, 1766. [Google Scholar] [CrossRef] [PubMed]
- Gattinoni, L.; Chiumello, D.; Rossi, S. COVID-19 pneumonia: ARDS or not? Crit. Care 2020, 24, 154. [Google Scholar] [CrossRef]
- Zaid, Y.; Guessous, F.; Puhm, F.; Elhamdani, W.; Chentoufi, L.; Morris, A.C.; Cheikh, A.; Jalali, F.; Boilard, E.; Flamand, L. Platelet reactivity to thrombin differs between patients with COVID-19 and those with ARDS unrelated to COVID-19. Blood Adv. 2021, 5, 635–639. [Google Scholar] [CrossRef] [PubMed]
- Petersson, J.; Glenny, R.W. Gas exchange and ventilation-perfusion relationships in the lung. Eur. Respir. J. 2014, 44, 1023–1041. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.S.; Capstick, T.; Ahmed, R.; Kow, C.S.; Mazhar, F.; Merchant, H.A.; Zaidi, S.T.R. Mortality in COVID-19 patients with acute respiratory distress syndrome and corticosteroids use: A systematic review and meta-analysis. Expert Rev. Respir. Med. 2020, 14, 1149–1163. [Google Scholar] [CrossRef] [PubMed]
- Rossaint, R.; Falke, K.J.; Lopez, F.; Slama, K.; Pison, U.; Zapol, W.M. Inhaled nitric oxide for the adult respiratory distress syndrome. N. Engl. J. Med. 1993, 328, 399–405. [Google Scholar] [CrossRef]
- Gebistorf, F.; Karam, O.; Wetterslev, J.; Afshari, A. Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) in children and adults. Cochrane Database Syst. Rev. 2016, 2016, CD002787. [Google Scholar] [CrossRef]
- Monsalve-Naharro, J.A.; Domingo-Chiva, E.; Garcia Castillo, S.; Cuesta-Montero, P.; Jimenez-Vizuete, J.M. Inhaled nitric oxide in adult patients with acute respiratory distress syndrome. Farm. Hosp. 2017, 41, 292–312. [Google Scholar] [CrossRef]
- Chen, L.; Liu, P.; Gao, H.; Sun, B.; Chao, D.; Wang, F.; Zhu, Y.; Hedenstierna, G.; Wang, C.G. Inhalation of nitric oxide in the treatment of severe acute respiratory syndrome: A rescue trial in Beijing. Clin. Infect. Dis. 2004, 39, 1531–1535. [Google Scholar] [CrossRef]
- Hopkins, S.R.; Johnson, E.C.; Richardson, R.S.; Wagner, H.; De Rosa, M.; Wagner, P.D. Effects of inhaled nitric oxide on gas exchange in lungs with shunt or poorly ventilated areas. Am. J. Respir. Crit. Care Med. 1997, 156, 484–491. [Google Scholar] [CrossRef]
- Stefano, G.B.; Esch, T.; Kream, R.M. Potential Immunoregulatory and Antiviral/SARS-CoV-2 Activities of Nitric Oxide. Med. Sci. Monit. 2020, 26, e925679. [Google Scholar] [CrossRef] [PubMed]
- Adler, H.; Beland, J.L.; Del-Pan, N.C.; Kobzik, L.; Brewer, J.P.; Martin, T.R.; Rimm, I.J. Suppression of herpes simplex virus type 1 (HSV-1)-induced pneumonia in mice by inhibition of inducible nitric oxide synthase (iNOS, NOS2). J. Exp. Med. 1997, 185, 1533–1540. [Google Scholar] [CrossRef] [PubMed]
- Pope, M.; Marsden, P.A.; Cole, E.; Sloan, S.; Fung, L.S.; Ning, Q.; Ding, J.W.; Leibowitz, J.L.; Phillips, M.J.; Levy, G.A. Resistance to murine hepatitis virus strain 3 is dependent on production of nitric oxide. J. Virol. 1998, 72, 7084–7090. [Google Scholar] [CrossRef]
- Lane, T.E.; Paoletti, A.D.; Buchmeier, M.J. Disassociation between the in vitro and in vivo effects of nitric oxide on a neurotropic murine coronavirus. J. Virol. 1997, 71, 2202–2210. [Google Scholar] [CrossRef]
- Rimmelzwaan, G.F.; Baars, M.M.; de Lijster, P.; Fouchier, R.A.; Osterhaus, A.D. Inhibition of influenza virus replication by nitric oxide. J. Virol. 1999, 73, 8880–8883. [Google Scholar] [CrossRef]
- Karupiah, G.; Harris, N. Inhibition of viral replication by nitric oxide and its reversal by ferrous sulfate and tricarboxylic acid cycle metabolites. J. Exp. Med. 1995, 181, 2171–2179. [Google Scholar] [CrossRef] [PubMed]
- Akerstrom, S.; Mousavi-Jazi, M.; Klingstrom, J.; Leijon, M.; Lundkvist, A.; Mirazimi, A. Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. J. Virol. 2005, 79, 1966–1969. [Google Scholar] [CrossRef]
- Ricciardolo, F.L.M.; Bertolini, F.; Carriero, V.; Hogman, M. Nitric oxide’s physiologic effects and potential as a therapeutic agent against COVID-19. J. Breath Res. 2020, 15, 014001. [Google Scholar] [CrossRef]
- Everett, W.; Scurr, D.J.; Rammou, A.; Darbyshire, A.; Hamilton, G.; de Mel, A. A Material Conferring Hemocompatibility. Sci. Rep. 2016, 6, 26848. [Google Scholar] [CrossRef]
- Thachil, J. What do monitoring platelet counts in COVID-19 teach us? J. Thromb. Haemost. 2020, 18, 2071–2072. [Google Scholar] [CrossRef]
- Toolsie, O.; Gomceli, U.; Diaz-Fuentes, G. Inhaled Nitric Oxide as an Adjunct to Thrombolytic Therapy in a Patient with Submassive Pulmonary Embolism and Severe Hypoxemia. Case Rep. Crit. Care 2019, 2019, 5184702. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, N.D.; Fan, E.; Camporota, L.; Antonelli, M.; Anzueto, A.; Beale, R.; Brochard, L.; Brower, R.; Esteban, A.; Gattinoni, L.; et al. The Berlin definition of ARDS: An expanded rationale, justification, and supplementary material. Intensive Care Med. 2012, 38, 1573–1582. [Google Scholar] [CrossRef]
- The Acute Respiratory Distress Syndrome Network; Brower, R.G.; Matthay, M.A.; Morris, A.; Schoenfeld, D.; Thompson, B.T.; Wheeler, A. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 2000, 342, 1301–1308. [Google Scholar] [CrossRef]
- Guerin, C.; Reignier, J.; Richard, J.C.; Beuret, P.; Gacouin, A.; Boulain, T.; Mercier, E.; Badet, M.; Mercat, A.; Baudin, O.; et al. Prone positioning in severe acute respiratory distress syndrome. N. Engl. J. Med. 2013, 368, 2159–2168. [Google Scholar] [CrossRef] [PubMed]
- Group, R.C.; Horby, P.; Lim, W.S.; Emberson, J.R.; Mafham, M.; Bell, J.L.; Linsell, L.; Staplin, N.; Brightling, C.; Ustianowski, A.; et al. Dexamethasone in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Germann, P.; Braschi, A.; Della Rocca, G.; Dinh-Xuan, A.T.; Falke, K.; Frostell, C.; Gustafsson, L.E.; Herve, P.; Jolliet, P.; Kaisers, U.; et al. Inhaled nitric oxide therapy in adults: European expert recommendations. Intensive Care Med. 2005, 31, 1029–1041. [Google Scholar] [CrossRef] [PubMed]
- Redaelli, S.; Pozzi, M.; Giani, M.; Magliocca, A.; Fumagalli, R.; Foti, G.; Berra, L.; Rezoagli, E. Inhaled Nitric Oxide in Acute Respiratory Distress Syndrome Subsets: Rationale and Clinical Applications. J. Aerosol Med. Pulm. Drug Deliv. 2023, 36, 112–126. [Google Scholar] [CrossRef]
- Mekontso Dessap, A.; Papazian, L.; Schaller, M.; Nseir, S.; Megarbane, B.; Haudebourg, L.; Timsit, J.F.; Teboul, J.L.; Kuteifan, K.; Gainnier, M.; et al. Inhaled nitric oxide in patients with acute respiratory distress syndrome caused by COVID-19: Treatment modalities, clinical response, and outcomes. Ann. Intensive Care 2023, 13, 57. [Google Scholar] [CrossRef]
- Prakash, A.; Kaur, S.; Kaur, C.; Prabha, P.K.; Bhatacharya, A.; Sarma, P.; Medhi, B. Efficacy and safety of inhaled nitric oxide in the treatment of severe/critical COVID-19 patients: A systematic review. Indian. J. Pharmacol. 2021, 53, 236–243. [Google Scholar] [CrossRef]
- Al Sulaiman, K.; Korayem, G.B.; Altebainawi, A.F.; Al Harbi, S.; Alissa, A.; Alharthi, A.; Kensara, R.; Alfahed, A.; Vishwakarma, R.; Al Haji, H.; et al. Evaluation of inhaled nitric oxide (iNO) treatment for moderate-to-severe ARDS in critically ill patients with COVID-19: A multicenter cohort study. Crit. Care 2022, 26, 304. [Google Scholar] [CrossRef]
- Alhazzani, W.; Moller, M.H.; Arabi, Y.M.; Loeb, M.; Gong, M.N.; Fan, E.; Oczkowski, S.; Levy, M.M.; Derde, L.; Dzierba, A.; et al. Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19). Crit. Care Med. 2020, 48, e440–e469. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, R.; Chathambath, A.; Al-Sehemi, A.G.; Pannipara, M.; Unnikrishnan, M.K.; Aleya, L.; Raghavan, R.P.; Mathew, B. Critical role of nitric oxide in impeding COVID-19 transmission and prevention: A promising possibility. Environ. Sci. Pollut. Res. Int. 2022, 29, 38657–38672. [Google Scholar] [CrossRef] [PubMed]
- Alqahtani, J.S.; Aldhahir, A.M.; Al Ghamdi, S.S.; AlBahrani, S.; AlDraiwiesh, I.A.; Alqarni, A.A.; Latief, K.; Raya, R.P.; Oyelade, T. Inhaled Nitric Oxide for Clinical Management of COVID-19: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public. Health 2022, 19, 12803. [Google Scholar] [CrossRef] [PubMed]
- Adusumilli, N.C.; Zhang, D.; Friedman, J.M.; Friedman, A.J. Harnessing nitric oxide for preventing, limiting and treating the severe pulmonary consequences of COVID-19. Nitric Oxide 2020, 103, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, H.; Keh, D.; Semmerow, A.; Busch, T.; Lewandowski, K.; Pappert, D.M.; Rossaint, R.; Falke, K.J. Dose-response characteristics during long-term inhalation of nitric oxide in patients with severe acute respiratory distress syndrome: A prospective, randomized, controlled study. Am. J. Respir. Crit. Care Med. 2003, 167, 1008–1015. [Google Scholar] [CrossRef]
- Akaberi, D.; Krambrich, J.; Ling, J.; Luni, C.; Hedenstierna, G.; Jarhult, J.D.; Lennerstrand, J.; Lundkvist, A. Mitigation of the replication of SARS-CoV-2 by nitric oxide in vitro. Redox Biol. 2020, 37, 101734. [Google Scholar] [CrossRef]
- Srivastava, S.; Garg, I.; Hembrom, A.A.; Kumar, B. Assessment of nitric oxide (NO) potential to mitigate COVID-19 severity. Virusdisease 2021, 32, 589–594. [Google Scholar] [CrossRef] [PubMed]
- Herranz, L.; da Silveira, J.G.; Trocado, L.F.L.; Alvaraes, A.L.; Fittipaldi, J. Inhaled Nitric Oxide in Patients with Severe COVID-19 Infection at Intensive Care Unit—A Cross Sectional Study. J. Crit. Care Med. 2021, 7, 318–319. [Google Scholar] [CrossRef]
Variable | iNO-Group n= 19 | Non-iNO Group n = 37 | All Patients n = 56 | p- Value |
---|---|---|---|---|
Patients’ Demographics and Characteristics | ||||
Age (years) | 60.18 ± 15.37 | 66.44 ± 11.81 | 64.32 ± 13.33 | 0.10 |
Sex (male) | 13/19 (68.42%) | 26/37 (70.27%) | 39/56 (69.64) | 0.56 |
Body mass index (kg/m2) | 32.31 ± 7.06 | 29.66 ± 7.97 | 30.56 ± 7.71 | 0.23 |
SOFA-score on admission | 7.95 ± 3.95 | 7.97 ± 4.48 | 7.96 ± 4.27 | 0.98 |
APACHE II Score on admission | 24.53 ± 13.06 | 21.95 ± 8.83 | 22.82 ± 10.41 | 0.39 |
COVID variant | ||||
Wild type | 4/19 (21.05%) | 22/37 (59.46%) | 26/56 (46.43%) | <0.01 |
Alpha (United Kingdom) | 15/19 (78.95%) | 12/37 (32.43%) | 27/56 (48.21%) | |
Beta (South African) | - | 3/37 (8.11%) | 3/56 (5.36%) | |
Highest IL-6 level at admission (ng/L) | 77 (37.00–351.75) | 84.50 (43.25–180.50) | 81 (43.00–191.00) | 0.12 |
Highest IL-6 level during ICU-stay (ng/L) | 824.00 (240.75–10,852.50) | 377.00 (124.75–835.00) | 444.50 (142.00–1572.00) | 0.50 |
Dexamethasone (6 mg OD iv. for 10 days) | 17/19 (89.47%) | 32/37 (86.49%) | 49/56 (87.50%) | 0.75 |
Proning | 18/19 (94.74%) | 20/37 (54.05%) | 38/56 (67.86%) | <0.01 |
ABG-results | ||||
Highest PaO2/FiO2 ratio on admission day (mmHg) | 203.05 ± 92.85 | 183.04 ± 77.20 | 189.83 ± 82.55 | 0.40 |
Lowest PaO2/FiO2 ratio on admission day (mmHg) | 106.61 ± 34.10 | 119.57 ± 65.47 | 115.18 ± 56.79 | 0.42 |
Highest PaO2/FiO2 ratio during ICU-stay (mmHg) | 474.32 ± 208.37 | 507.16 ± 204.44 | 496.02 ± 204.49 | 0.57 |
Lowest PaO2/FiO2 ratio during ICU-stay (mmHg) | 68.85 ± 17.02 | 80.18 ± 24.63 | 76.34 ± 22.83 | 0.79 |
Highest estimated shunt fraction (ABG) during ICU-stay (%) | 41.25 ± 7.65 | 43.71 ± 36.82 | 42.87 ± 30.13 | 0.78 |
Mean estimated shunt fraction (ABG) during ICU-stay (%) | 26.53 ± 5.18 | 25.54 ± 5.24 | 25.88 ± 5.20 | 0.51 |
iNO-Responders | iNO-Nonresponder | |||||
---|---|---|---|---|---|---|
Variable: | Cumulated Pre-iNO ABG (Mean of 3 Baseline ABGs) n = 7 | ABG 6 h Post iNO n = 7 | p-Value | Cumulated Pre-iNO ABG (Mean of 3 Baseline ABGs) n = 12 | ABG 6 h Post iNO n = 12 | p-Value |
Cumulative FiO2 | 0.74 ± 0.19 | 0.58 ± 0.13 | 0.03 | 0.63 ± 0.16 | 0.59 ± 0.12 | 0.13 |
Cumulative SpO2 (%) | 94.8 + 2.96 | 96.70 ± 2.40 | 0.05 | 94.86 ± 2.80 | 93.13 ± 2.14 | 0.03 |
Cumulative PaO2 (mmHg) | 88.69 ± 27.27 | 117.94 ± 65.72 | 0.06 | 95.44 ± 25.86 | 72.27 ± 7.82 | <0.01 |
Cumulative PaCO2 (mmHg) | 51.16 ± 9.85 | 50.04 ± 9.70 | 0.39 | 64.76 ± 18.82 | 54.67 ± 15.36 | 0.05 |
Cumulative pH | 7.35 ± 0.07 | 7.36 ± 0.09 | 0.38 | 7.29 ± 0.11 | 7.36 + 0.11 | 0.04 |
Cumulative PaO2/FiO2 ratio (mmHg) | 127.19 + 47.52 | 207.71 ± 98.27 | 0.02 | 158.41 ± 46.93 | 126.30 ± 22.91 | 0.10 |
Cumulative estimated shunt (%) | 25.76 ± 6.70 | 16.77 ± 7.10 | <0.01 | 20.86 ± 5.56 | 24.51 ± 5.26 | 0.03 |
Variable | “Baseline” Cumulated ABG before Initiation of iNO (Mean of 3 Consecutive ABGs) n = 19 | “Endpoint” Cumulated ABG before Termination of iNO (Mean of 3 Consecutive ABGs) n = 19 | p-Value |
---|---|---|---|
Cumulative FiO2 | 0.66 ± 0.17 | 0.52 ± 0.17 | 0.012 |
Cumulative SpO2 (%) | 94.23 ± 1.58 | 95.36 ± 2.19 | 0.05 |
Cumulative PaO2 (mmHg) | 86.41 ± 11.80 | 89.91 ± 16.62 | 0.47 |
Cumulative PaCO2 (mmHg) | 59.19 ± 15.83 | 54.90 ± 8.67 | 0.29 |
Cumulative pH | 7.32 ± 0.10 | 7.37 ± 0.08 | 0.09 |
Cumulative PaO2/FiO2 ratio (mmHg) | 138.80 ± 32.50 | 183.97 ± 49.96 | 0.006 |
Cumulative estimated shunt (%) | 23.74 ± 4.52 | 18.20 ± 6.51 | 0.009 |
Outcome Parameters | iNO n = 19 | Non-iNO n = 37 | All n = 56 | p- Value |
---|---|---|---|---|
Length of Hospital stay (days) | 24.53 ± 17.70 | 22.86 ± 20.06 | 23.43 ± 19.15 | 0.76 |
Length of ICU stay (days) | 22.86 ± 16.54 | 15.49 ± 11.01 | 17.99 ± 13.47 | 0.051 |
Length of invasive ventilation (days) | 19.85 ± 14.31 | 10.54 ± 9.66 | 13.69 ± 12.12 | 0.006 |
Renal replacement therapy | 2/19 (10.53%) | 1/37 (2.79%) | 3/56 (5.36%) | 0.26 |
Thrombotic complications | 5/19 (26.31%) | 4/37 (10.81%) | 9/56 (16.07%) | 0.14 |
30-day mortality | 16/19 (84.21%) | 15/37 (40.54%) | 31/56 (55.36%) | 0.002 |
Variable | iNO | Non-iNO | All | p-Value |
---|---|---|---|---|
D-Dimer | N = Number/Median (Interquartile Range) Mean ± SD | |||
Day 1 | N = 11 2.09 ± 1.58 1.87 (0.75–3.12) | N = 29 7.50 ± 11.75 2.03 (1.08–6.76) | N = 40 6.01 ± 10.28 1.97 (0.78–5.38) | 0.14 |
Day 2 | N = 18 5.83 ± 10.83 1.96 (0.77–4.11) | N = 33 7.95 ± 12.30 1.86 (1.04–6.85) | N = 51 7.20 ± 11.74 1.97 (0.93–4.63) | 0.27 |
Day 3 | N = 16 5.49 ± 8.95 2.03 (0.77–4.11) | N = 33 8.68 ± 11.00 2.69 (1.25–14.22) | N = 49 7.64 ± 10.39 2.03 (1.25–11.15) | 0.16 |
Day 4 | N = 19 6.54 ± 10.49 1.99 (1.4–6.76) | N = 30 8.27 ± 10.75 2.14 (1.20–15.96) | N = 49 7.60 ± 10.57 1.99 (1.24–10.20) | 0.29 |
Day 5 | N = 19 6.13 ± 9.61 2.77 (1.24–6.14) | N = 30 5.99 ± 7.61 2.73 (1.18–9.01) | N = 49 6.04 ± 8.34 2.77 (1.23–7.06) | 0.48 |
Day 6 | N = 19 6.48 ± 9.28 2.89 (1.15–8.18) | N = 29 6.96 ± 10.11 2.33 (1.09–8.53) | N = 48 6.77 ± 9.69 2.73 (1.14–7.87) | 0.43 |
Day 7 | N = 17 5.79 ± 6.83 3.58 (1.73–7.20) | N = 28 7.68 ± 11.26 3.72 (1.16–6.54) | N = 45 6.97 ± 9.78 3.66 (1.4–6.71) | 0.27 |
Day 8 | N = 17 4.69 ± 4.55 2.55 (2.05–6.72) | N = 28 7.03 ± 9.75 3.33 (1.28–6.93) | N = 45 6.14 ± 8.19 2.60 (1.57–6.82) | 0.18 |
Day 9 | N = 15 7.18 ± 9.15 4.36 (2.10–8.54) | N = 26 7.54 ± 8.45 4.15 (1.94–9.01) | N = 41 7.41 ± 8.60 4.16 (2.06–8.21) | 0.45 |
Day 10 | N = 16 7.34 ± 8.60 4.99 (1.74–10.77) | N = 26 7.88 ± 10.05 4.04 (1.74–7.24) | N = 42 7.67 ± 9.42 4.19 (1.77–9.16) | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoll, S.E.; Böttiger, B.W.; Dusse, F.; Leister, N.; Leupold, T.; Menzel, C.; Overbeek, R.; Mathes, A. Impact of Inhaled Nitric Oxide (iNO) on the Outcome of COVID-19 Associated ARDS. J. Clin. Med. 2024, 13, 5981. https://doi.org/10.3390/jcm13195981
Stoll SE, Böttiger BW, Dusse F, Leister N, Leupold T, Menzel C, Overbeek R, Mathes A. Impact of Inhaled Nitric Oxide (iNO) on the Outcome of COVID-19 Associated ARDS. Journal of Clinical Medicine. 2024; 13(19):5981. https://doi.org/10.3390/jcm13195981
Chicago/Turabian StyleStoll, Sandra Emily, Bernd W. Böttiger, Fabian Dusse, Nicolas Leister, Tobias Leupold, Christoph Menzel, Remco Overbeek, and Alexander Mathes. 2024. "Impact of Inhaled Nitric Oxide (iNO) on the Outcome of COVID-19 Associated ARDS" Journal of Clinical Medicine 13, no. 19: 5981. https://doi.org/10.3390/jcm13195981
APA StyleStoll, S. E., Böttiger, B. W., Dusse, F., Leister, N., Leupold, T., Menzel, C., Overbeek, R., & Mathes, A. (2024). Impact of Inhaled Nitric Oxide (iNO) on the Outcome of COVID-19 Associated ARDS. Journal of Clinical Medicine, 13(19), 5981. https://doi.org/10.3390/jcm13195981