The Impact of Intermittent Hypoxic Training on Aerobic Capacity and Biometric-Structural Indicators among Obese Women—A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants Characteristics
2.2. Study Protocol
2.3. Somatic Measurements
2.4. Graded Exercise Test
2.5. Training Program
2.6. Statistical Analysis
3. Results
3.1. Somatic Parameters
3.2. Metabolic Thresholds
3.3. Aerobic Capacity
4. Discussion
Strength and Limitation of the Pilot Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brończyk-Puzoń, A.; Koszowska, A.; Nowak, J.; Dittfeld, A.; Bieniek, J. Epidemiologia otyłości na świecie i w Polsce. Forum Zaburzeń Metab. 2014, 5, 1–5. [Google Scholar] [CrossRef]
- Flegal, K.M.; Carroll, M.D.; Ogden, C.L.; Curtin, L.R. Prevalence and trends in obesity among US adults, 1999–2008. JAMA 2010, 303, 235–241. [Google Scholar] [CrossRef]
- Ahima, R.S. Digging deeper into obesity. J. Clin. Investig. 2011, 121, 2076–2079. [Google Scholar] [CrossRef]
- Yanovski, S.Z.; Yanovski, J.A. Obesity Prevalence in the United States—Up, Down, or Sideways? N. Engl. J. Med. 2011, 364, 987. [Google Scholar] [CrossRef] [PubMed]
- Martinson, M.L.; Teitler, J.O.; Reichman, N.E. Health across the life span in the United States and England. Am. J. Epidemiol. 2011, 173, 858–865. [Google Scholar] [CrossRef] [PubMed]
- Who European Regional Obesity Report. 2022. Available online: https://www.who.int/europe/publications/i/item/9789289057738 (accessed on 10 October 2023).
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef]
- Chudek, J.; Adamczak, M.; Nieszporek, T.; Wiȩcek, A. The adipose tissue as an endocrine organ—A nephrologists’ perspective. Contrib. Nephrol. 2006, 151, 70–90. [Google Scholar] [CrossRef] [PubMed]
- Park, H.Y.; Lim, K. Effects of Hypoxic Training versus Normoxic Training on Exercise Performance in Competitive Swimmers. J. Sports Sci. Med. 2017, 16, 480. [Google Scholar]
- Verges, S.; Chacaroun, S.; Borowik, A.; Gonzalez, I.V.-E.Y.; Doutreleau, S.; Wuyam, B.; Belaidi, E.; Tamisier, R.; Pépin, J.-L.; Flore, P. Hypoxic training to improve exercise capacity in obesity: A randomized controlled trial. Eur. Respir. J. 2020, 56, 1929. [Google Scholar] [CrossRef]
- Chekroud, S.R.; Gueorguieva, R.; Zheutlin, A.B.; Paulus, M.; Krumholz, H.M.; Krystal, J.H.; Chekroud, A.M. Association between physical exercise and mental health in 1.2 million individuals in the USA between 2011 and 2015: A cross-sectional study. Lancet Psychiatry 2018, 5, 739–746. [Google Scholar] [CrossRef]
- Lipecki, K.; Rutowicz, B. The Impact Of Ten Weeks Of Bodyweight Training On The Level Of Physical Fitness And Selected Parameters Of Body Composition In Women Aged 21–23 Years. Pol. J. Sport Tour. 2015, 22, 64–68. [Google Scholar] [CrossRef]
- Dardzińska, J.; Chabaj-Kędroń, H.; Małgorzewicz, S. Osteoporosis as a social disease–prevention methods. Hygeia Public Health 2016, 51, 23–30. [Google Scholar]
- An, H.-Y.; Chen, W.; Wang, C.-W.; Yang, H.-F.; Huang, W.-T.; Fan, S.-Y. The Relationships between Physical Activity and Life Satisfaction and Happiness among Young, Middle-Aged, and Older Adults. Int. J. Environ. Res. Public Health 2020, 17, 4817. [Google Scholar] [CrossRef] [PubMed]
- McPhee, J.S.; French, D.P.; Jackson, D.; Nazroo, J.; Pendleton, N.; Degens, H. Physical activity in older age: Perspectives for healthy ageing and frailty. Biogerontology 2016, 17, 567–580. [Google Scholar] [CrossRef] [PubMed]
- Brocherie, F.; Millet, G.P.; D’Hulst, G.; Van Thienen, R.; Deldicque, L.; Girard, O. Repeated maximal-intensity hypoxic exercise superimposed to hypoxic residence boosts skeletal muscle transcriptional responses in elite team-sport athletes. Acta Physiol. 2018, 222, e12851. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-Y.; Lim, K. The Effects of Aerobic Exercise at Hypoxic Condition during 6 Weeks on Body Composition, Blood Pressure, Arterial Stiffness, and Blood Lipid Level in Obese Women. Int. J. Sports Sci. Med. 2017, 1, 1–5. [Google Scholar]
- Park, H.-Y.; Kim, J.; Park, M.-Y.; Chung, N.; Hwang, H.; Nam, S.-S.; Lim, K. Exposure and Exercise Training in Hypoxic Conditions as a New Obesity Therapeutic Modality: A Mini Review. J. Obes. Metab. Syndr. 2018, 27, 93. [Google Scholar] [CrossRef]
- Millet, G.P.; Debevec, T.; Brocherie, F.; Malatesta, D.; Girard, O. Therapeutic use of exercising in hypoxia: Promises and limitations. Front. Physiol. 2016, 7, 203338. [Google Scholar] [CrossRef]
- Lizamore, C.A.; Hamlin, M.J. The Use of Simulated Altitude Techniques for Beneficial Cardiovascular Health Outcomes in Nonathletic, Sedentary, and Clinical Populations: A Literature Review. High Alt. Med. Biol. 2017, 18, 305–321. [Google Scholar] [CrossRef]
- Grodecka, A.; Czerwińska-Ledwig, O.; Dzidek, A.; Lis, W.; Cwalińska, D.; Kozioł, W.; Teległów, A.; Pałka, T.; Piotrowska, A. Effect of the Hypoxic Chamber Training Series on Skin Characteristics of Overweight and Obese Women. Cosmetics 2023, 10, 128. [Google Scholar] [CrossRef]
- Ackland, T.; Lohman, T.G.; Sundgot-Borgen, J.; Maughan, R.J.; Meyer, N.L.; Stewart, A.; Müller, W.; Ackland, W.P.T.R. Current status of body composition assessment in sport: Review and position statement on behalf of the ad hoc research working group on body composition health and performance, under the auspices of the I.O.C. Medical Commission. Sports Med. 2012, 42, 227–249. [Google Scholar] [CrossRef] [PubMed]
- Bradley, T.D.; Floras, J.S. Obstructive sleep apnoea and its cardiovascular consequences. Lancet 2009, 373, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Trayhurn, P.; Alomar, S.Y. Oxygen deprivation and the cellular response to hypoxia in adipocytes—Perspectives on white and brown adipose tissues in obesity. Front. Endocrinol. 2015, 6, 132070. [Google Scholar] [CrossRef] [PubMed]
- Urdampilleta, A.; González-Muniesa, P.; Portillo, M.P.; Martínez, J.A. Usefulness of combining intermittent hypoxia and physical exercise in the treatment of obesity. J. Physiol. Biochem. 2012, 68, 289–304. [Google Scholar] [CrossRef]
- González-Muniesa, P.; Quintero, P.; De Andrés, J.; Martínez, J.A. Hypoxia: A consequence of obesity and also a tool to treat excessive weight loss. Sleep Breath. 2015, 19, 7–8. [Google Scholar] [CrossRef]
- Quintero, P.; Milagro, F.I.; Campión, J.; Martínez, J.A. Impact of oxygen availability on body weight management. Med. Hypotheses 2010, 74, 901–907. [Google Scholar] [CrossRef]
- Crovesy, L.; Rosado, E.L. Interaction between genes involved in energy intake regulation and diet in obesity. Nutrition 2019, 67–68, 110547. [Google Scholar] [CrossRef]
- Hill, J.O.; Wyatt, H.R.; Peters, J.C. The importance of energy balance. Eur. Endocrinol. 2013, 9, 111–115. [Google Scholar] [CrossRef]
- Kayser, B.; Verges, S. Hypoxia, energy balance and obesity: From pathophysiological mechanisms to new treatment strategies. Obes. Rev. 2013, 14, 579–592. [Google Scholar] [CrossRef]
- Ramos-Campo, D.J.; Girard, O.; Pérez, A.; Rubio-Arias, J. Additive stress of normobaric hypoxic conditioning to improve body mass loss and cardiometabolic markers in individuals with overweight or obesity: A systematic review and meta-analysis. Physiol. Behav. 2019, 207, 28–40. [Google Scholar] [CrossRef]
- Gaspar, J.M.; Velloso, L.A. Hypoxia inducible factor as a central regulator of metabolism ⇓ implications for the development of obesity. Front. Neurosci. 2018, 12, 422516. [Google Scholar] [CrossRef] [PubMed]
- Uranga, R.M.; Keller, J.N. The complex interactions between obesity, metabolism and the brain. Front. Neurosci. 2019, 13, 443886. [Google Scholar] [CrossRef] [PubMed]
- Sotornik, R.; Brassard, P.; Martin, E.; Yale, P.; Carpentier, A.C.; Ardilouze, J.-L.; Baillargeon, J.-P.; Gagnon-Auger, M.; Ménard, J.; Abreu-Vieira, G.; et al. Update on adipose tissue blood flow regulation. Am. J. Physiol. Endocrinol. Metab. 2012, 302, 1157–1170. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.-K.; Jun, J.C.; Bevans-Fonti, S.; Drager, L.F.; Polotsky, V.Y. Acute Hypoxia Induces Lipolysis Via Activation Of The Sympathetic Nervous System. Am. Thorac. Soc. 2011, 183, A2477. [Google Scholar] [CrossRef]
- Wood, I.S.; Wang, B.; Lorente-Cebrián, S.; Trayhurn, P. Hypoxia increases expression of selective facilitative glucose transporters (GLUT) and 2-deoxy-d-glucose uptake in human adipocytes. Biochem. Biophys. Res. Commun. 2007, 361, 468–473. [Google Scholar] [CrossRef]
- Donnelly, J.E.; Blair, S.N.; Jakicic, J.M.; Manore, M.M.; Rankin, J.W.; Smith, B.K. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med. Sci. Sports Exerc. 2009, 41, 459–471. [Google Scholar] [CrossRef]
- He, Z.; Qiang, L.; Liu, Y.; Gao, W.; Feng, T.; Li, Y.; Yan, B.; Girard, O. Effect of Hypoxia Conditioning on Body Composition in Middle-Aged and Older Adults: A Systematic Review and Meta-Analysis. Sports Med. Open 2023, 9, 89. [Google Scholar] [CrossRef]
- Gatterer, H.; Haacke, S.; Burtscher, M.; Faulhaber, M.; Melmer, A.; Ebenbichler, C.; Strohl, K.P.; Högel, J.; Netzer, N.C. Normobaric Intermittent Hypoxia over 8 Months Does Not Reduce Body Weight and Metabolic Risk Factors—A Randomized, Single Blind, Placebo-Controlled Study in Normobaric Hypoxia and Normobaric Sham Hypoxia. Obes. Facts 2015, 8, 200–209. [Google Scholar] [CrossRef]
- Menéndez, A.F.; Saudan, G.; Sperisen, L.; Hans, D.; Saubade, M.; Millet, G.P.; Malatesta, D. Effects of Short-Term Normobaric Hypoxic Walking Training on Energetics and Mechanics of Gait in Adults with Obesity. Obesity 2018, 26, 819–827. [Google Scholar] [CrossRef]
- Kong, Z.; Zang, Y.; Hu, Y. Normobaric hypoxia training causes more weight loss than normoxia training after a 4-week residential camp for obese young adults. Sleep Breath. 2014, 18, 591–597. [Google Scholar] [CrossRef]
- Wee, J.; Climstein, M. Hypoxic training: Clinical benefits on cardiometabolic risk factors. J. Sci. Med. Sport 2015, 18, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Kuki’c, F.K.; Heinrich, K.M.; Albertus-Cámara, I.; Ferrer-López, V.; Martínez-González-Moro, I. The Effect of Normobaric Hypoxia in Middle- and/or Long-Distance Runners: Systematic Review. Biology 2022, 11, 689. [Google Scholar] [CrossRef]
- Lukanova-Jakubowska, A.; Piechota, K.; Grzywacz, T.; Ambroży, T.; Rydzik, Ł.; Ozimek, M. The Impact of Four High-Altitude Training Camps on the Aerobic Capacity of a Short Track Pyeong Chang 2018 Olympian: A Case Study. Int. J. Environ. Res. Public Health 2022, 19, 3814. [Google Scholar] [CrossRef]
- Wiesner, S.; Haufe, S.; Engeli, S.; Mutschler, H.; Haas, U.; Luft, F.C.; Jordan, J. Influences of Normobaric Hypoxia Training on Physical Fitness and Metabolic Risk Markers in Overweight to Obese Subjects. Obesity 2010, 18, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Camacho-Cardenosa, A.; Camacho-Cardenosa, M.; Brazo-Sayavera, J.; Timón, R.; González-Custodio, A.; Olcina, G. Repeated sprint in hypoxia as a time-metabolic efficient strategy to improve physical fitness of obese women. Eur. J. Appl. Physiol. 2020, 120, 1051–1061. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Lei, O.K.; Sun, S.; Li, L.; Shi, Q.; Zhang, H.; Nie, J. Hypoxic repeated sprint interval training improves cardiorespiratory fitness in sedentary young women. J. Exerc. Sci. Fit. 2022, 20, 100–107. [Google Scholar] [CrossRef]
- Kong, Z.; Shi, Q.; Nie, J.; Tong, T.K.; Song, L.; Yi, L.; Hu, Y. High-intensity interval training in normobaric hypoxia improves cardiorespiratory fitness in overweight Chinese young women. Front. Physiol. 2017, 8, 230942. [Google Scholar] [CrossRef]
- Hobbins, L.; Hunter, S.; Gaoua, N.; Girard, O. Normobaric hypoxic conditioning to maximize weight loss and ameliorate cardio-metabolic health in obese populations: A systematic review. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 313, R251–R264. [Google Scholar] [CrossRef]
- Gonzalez-Muniesa, P.; Lopez-Pascual, A.; De Andrés, J.; Lasa, A.; Portillo, M.P.; Arós, F.; Egea, C.J.; Martinez, J.A. Impact of intermittent hypoxia and exercise on blood pressure and metabolic features from obese subjects suffering sleep apnea-hypopnea syndrome. J. Physiol. Biochem. 2015, 71, 589–599. [Google Scholar] [CrossRef]
- Smith-Ryan, A.E.; Trexler, E.T.; Wingfield, H.L.; Blue, M.N.M. Effects of high-intensity interval training on cardiometabolic risk factors in overweight/obese women. J. Sports Sci. 2016, 34, 2038–2046. [Google Scholar] [CrossRef]
- Larsen, F.J.; Schiffer, T.A.; Zinner, C.; Willis, S.J.; Morales-Alamo, D.; Calbet, J.A.; Boushel, R.; Holmberg, H. Mitochondrial oxygen affinity increases after sprint interval training and is related to the improvement in peak oxygen uptake. Acta Physiol. 2020, 229, e13463. [Google Scholar] [CrossRef] [PubMed]
- Fiorenza, M.; Lemminger, A.K.; Marker, M.; Eibye, K.; Iaia, F.M.; Bangsbo, J.; Hostrup, M. High-intensity exercise training enhances mitochondrial oxidative phosphorylation efficiency in a temperature-dependent manner in human skeletal muscle: Implications for exercise performance. FASEB J. 2019, 33, 8976–8989. [Google Scholar] [CrossRef] [PubMed]
- Brooks, G.A. Energy flux, lactate shuttling, mitochondrial dynamics, and hypoxia. Adv. Exp. Med. Biol. 2016, 903, 439–455. [Google Scholar] [PubMed]
- Pescador, N.; Villar, D.; Cifuentes, D.; Garcia-Rocha, M.; Ortiz-Barahona, A.; Vazquez, S.; Ordoñez, A.; Cuevas, Y.; Saez-Morales, D.; Garcia-Bermejo, M.L.; et al. Hypoxia promotes glycogen accumulation through hypoxia inducible factor (HIF)-mediated induction of glycogen synthase 1. PLoS ONE 2010, 5, e9644. [Google Scholar] [CrossRef] [PubMed]
- Mootha, V.K.; Lindgren, C.M.; Eriksson, K.-F.; Subramanian, A.; Sihag, S.; Lehar, J.; Puigserver, P.; Carlsson, E.; Ridderstråle, M.; Laurila, E.; et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 2003, 34, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Church, T. Exercise in Obesity, Metabolic Syndrome, and Diabetes. Prog. Cardiovasc. Dis. 2011, 53, 412–418. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Qie, R.; Shi, X.; Yang, Y.; Lu, J.; Hu, F.; Zhang, M.; Zhang, Z.; Hu, D.; Zhao, Y. Cardiorespiratory fitness and mortality from all causes, cardiovascular disease and cancer: Dose–response meta-analysis of cohort studies. Br. J. Sports Med. 2022, 56, 733–739. [Google Scholar] [CrossRef]
- Kraus, W.E.; Powell, K.E.; Haskell, W.L.; Janz, K.F.; Campbell, W.W.; Jakicic, J.M.; Troiano, R.P.; Sprow, K.; Torres, A.; Piercy, K.L.; et al. Physical Activity, All-Cause and Cardiovascular Mortality, and Cardiovascular Disease. Med. Sci. Sports Exerc. 2019, 51, 1270–1281. [Google Scholar] [CrossRef]
- Franklin, B.A.; Thompson, P.D.; Al-Zaiti, S.S.; Albert, C.M.; Hivert, M.-F.; Levine, B.D.; Lobelo, F.; Madan, K.; Sharrief, A.Z.; Eijsvogels, T.M.; et al. Exercise-Related Acute Cardiovascular Events and Potential Deleterious Adaptations Following Long-Term Exercise Training: Placing the Risks Into Perspective–An Update: A Scientific Statement From the American Heart Association. Circulation 2020, 141, E705–E736. [Google Scholar] [CrossRef]
- Girard, O.; Malatesta, D.; Millet, G.P. Walking in hypoxia: An efficient treatment to lessen mechanical constraints and improve health in obese individuals? Front. Physiol. 2017, 8, 240619. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
|
|
|
|
|
|
|
|
| |
| |
|
Condition | Indicator | Baseline | After Training | |||||
---|---|---|---|---|---|---|---|---|
M | SD | 95% CI | M | SD | 95% CI | |||
Control | Morphology | BH [m] | 1.66 | 0.07 | [1.60, 1.71] | - | - | - |
BM [kg] | 86.63 | 13.13 | [77.24, 96.02] | 87.25 | 13.94 | [77.27, 97.23] | ||
BMI [kg/m2] | 31.50 | 4.03 | [28.62, 34.38] | 31.71 | 4.18 | [28.71, 34.70] | ||
BF [%] | 38.74 | 3.26 | [36.41, 41.07] | 39.13 | 3.66 | [36.51, 41.75] | ||
FM [kg] | 34.11 | 7.64 | [28.64, 39.58] | 34.71 | 8.26 | [28.80, 40.62] | ||
LBM [kg] | 52.80 | 6.37 | [48.24, 57.36] | 52.91 | 6.33 | [48.38, 57.43] | ||
Metabolic thresholds | WL VT2 [W] | 127.63 | 29.15 | [106.78, 148.49] | 128.13 | 28.56 | [107.70, 148.57] | |
VO2 VT2 (mL/kg) | 19.73 | 4.57 | [16.46, 22.99] | 19.74 | 4.61 | [16.44, 23.03] | ||
%HRmax | 92.74 | 6.12 | [88.36, 97.11] | 92.69 | 6.13 | [88.31, 97.08] | ||
Aerobic capacity | WL [W] | 153.70 | 47.03 | [120.05, 187.35] | 155.60 | 45.13 | [123.32, 187.88] | |
VEmax [L/min] | 73.67 | 27.85 | [53.75, 93.59] | 75.07 | 25.28 | [56.99, 93.15] | ||
HRmax (bpm) | 163.00 | 25.89 | [144.48, 181.52] | 163.00 | 25.89 | [144.48, 181.52] | ||
VO2max [mL/min] | 1813.60 | 759.64 | [1270.19, 2357.01] | 1990.10 | 487.97 | [1641.02, 2339.18] | ||
VO2max [m/kg] | 22.67 | 4.72 | [19.30, 26.04] | 22.84 | 4.59 | [19.55, 26.12] | ||
Hypoxia | Morphology | BH [m] | 1.68 | 0.06 | [1.64, 1.72] | - | - | - |
BM [kg] | 83.07 | 10.78 | [75.36, 90.78] | 81.63 | 11.05 | [73.73, 89.53] | ||
BMI [kg/m2] | 29.50 | 3.45 | [27.03, 31.97] | 29.00 | 3.59 | [26.42, 31.57] | ||
BF [%] | 36.66 | 4.24 | [33.63, 39.69] | 35.80 | 4.63 | [32.49, 39.11] | ||
FM [kg] | 30.78 | 6.96 | [25.80, 35.75] | 29.58 | 7.11 | [24.49, 34.66] | ||
LBM [kg] | 52.26 | 6.37 | [48.24, 57.36] | 53.16 | 4.96 | [49.62, 56.71] | ||
Metabolic thresholds | WL VT2 [W] | 161.00 | 24.78 | [143.27, 178.83] | 170.00 | 19.18 | [156.28, 183.72] | |
VO2 VT2 (mL/kg) | 23.64 | 1.70 | [22.42, 24.86] | 25.47 | 4.27 | [22.41, 28.52] | ||
%HRmax | 94.80 | 1.68 | [93.60, 96.00] | 93.48 | 2.83 | [91.46, 95.50] | ||
Aerobic capacity | WL [W] | 176.50 | 22.46 | [160.43, 192.57] | 185.40 | 24.43 | [167.93, 202.87] | |
VEmax [L/min] | 90.05 | 16.38 | [78.33, 101.77] | 94.08 | 11.56 | [85.81, 102.35] | ||
HRmax (bpm) | 181.40 | 15.93 | [170.00, 192.80] | 185.10 | 9.05 | [178.63, 191.57] | ||
VO2max [mL/min] | 2275.00 | 414.60 | [1978.41, 2571.59] | 2453.90 | 330.26 | [2217.65, 2690.15] | ||
VO2max [mL/kg] | 27.35 | 2.90 | [25.28, 29.43] | 30.14 | 2.08 | [28.65, 31.63] | ||
Hypoxia and Exercise | Morphology | BH [m] | 1.68 | 0.07 | [1.63, 1.72] | - | - | - |
BM [kg] | 91.75 | 19.43 | [78.69, 104.80] | 86.59 | 17.67 | [74.72, 98.46] | ||
BMI [kg/m2] | 32.58 | 6.40 | [28.28, 36.88] | 30.75 | 5.78 | [26.87, 34.63] | ||
BF [%] | 39.92 | 6.57 | [35.50, 44.33] | 36.60 | 3.99 | [33.92, 39.28] | ||
FM [kg] | 40.65 | 18.20 | [28.42, 52.87] | 37.67 | 16.58 | [26.53, 48.81] | ||
LBM [kg] | 53.85 | 6.33 | [49.59, 58.10] | 55.87 | 6.40 | [51.57, 60.17] | ||
Metabolic thresholds | WL VT2 [W] | 137.27 | 26.46 | [119.50, 155.05] | 151.55 | 33.76 | [128.86, 174.23] | |
VO2 VT2 (mL/kg) | 19.18 | 5.53 | [14.47, 22.90] | 22.36 | 6.15 | [18.23, 26.50] | ||
%HRmax | 95.18 | 2.93 | [93.22, 97.15] | 92.45 | 3.14 | [90.34, 94.57] | ||
Aerobic capacity | WL [W] | 155.18 | 36.83 | [130.44, 179.92] | 168.18 | 34.89 | [144.74, 191.62] | |
VEmax [L/min] | 73.45 | 21.60 | [58.93, 87.96] | 83.00 | 19.37 | [69.99, 96.01] | ||
HRmax (bpm) | 156.82 | 23.25 | [141.20, 172.44] | 155.36 | 22.53 | [140.23, 170.50] | ||
VO2max [mL/min] | 1918.18 | 449.26 | [1616.36, 2220.00] | 2277.27 | 418.14 | [1996.36, 2558.18] | ||
VO2max [mL/kg] | 21.41 | 5.76 | [17.54, 25.28] | 25.45 | 5.82 | [21.54, 29.36] | ||
Exercise | Morphology | BH [m] | 1.66 | 0.04 | [1.63, 1.69] | - | - | - |
BM [kg] | 83.47 | 5.56 | [79.19, 87.74] | 79.69 | 5.38 | [75.56, 83.82] | ||
BMI [kg/m2] | 30.38 | 2.01 | [28.83, 31.92] | 29.00 | 2.01 | [27.46, 30.55] | ||
BF [%] | 35.68 | 3.68 | [32.85, 38.50] | 33.57 | 2.85 | [31.37, 35.76] | ||
FM [kg] | 27.49 | 6.05 | [22.84, 32.14] | 25.32 | 5.44 | [21.14, 29.50] | ||
LBM [kg] | 48.73 | 4.70 | [45.12, 52.35] | 50.22 | 4.56 | [46.72, 53.72] | ||
Metabolic thresholds | WL VT2 [W] | 131.33 | 32.24 | [106.55, 156.11] | 141.00 | 32.19 | [116.26, 165.74] | |
VO2 VT2 (mL/kg) | 22.11 | 5.35 | [18.00, 26.22] | 23.89 | 3.79 | [20.98, 26.80] | ||
%HRmax | 92.44 | 6.78 | [87.23, 97.66] | 91.11 | 6.17 | [86.37, 95.86] | ||
Aerobic capacity | WL [W] | 169.22 | 17.02 | [156.13, 182.13] | 180.67 | 17.48 | [167.23, 194.10] | |
VEmax [L/min] | 79.61 | 17.43 | [66.21, 93.01] | 86.13 | 13.44 | [75.80, 96.47] | ||
HRmax (bpm) | 174.22 | 13.45 | [163.88, 184.56] | 174.89 | 13.11 | [164.81, 184.97] | ||
VO2max [mL/min] | 1882.22 | 397.17 | [1576.93, 2187.51] | 2047.78 | 395.40 | [1743.84, 2351.71] | ||
VO2max [mL/kg] | 22.52 | 4.11 | [19.36, 25.68] | 25.70 | 4.50 | [22.24, 29.16] |
Indicator | Mean Square | F | (df) | p | η2p | Condition | Baseline vs. after Intrvention |
---|---|---|---|---|---|---|---|
BM [kg] | 33.414 | 18.70 | (3.37) | <0.001 | 0.603 | Control (n = 11) | d = −0.473, SE = 0.570, p = 0.412 |
Hypoxia (n = 10) | d = 1.440, SE = 0.598, p = 0.021 | ||||||
Hypoxia and Exercise (n = 11) | d = 5.155, SE = 0.570, p < 0.001 | ||||||
Exercise (n = 9) | d = 3.778, SE = 0.630, p < 0.001 | ||||||
BMI [kg/m2] | 4.189 | 18.615 | (3. 37) | <0.001 | 0.601 | Control (n = 11) | d = −0.151, SE = 0.202, p = 0.460 |
Hypoxia (n = 10) | d = 0.509, SE = 0.212, p = 0.022 | ||||||
Hypoxia and Exercise (n = 11) | d = 1.828, SE = 0.202, p < 0.001 | ||||||
Exercise (n = 9) | d = 1.372, SE = 0.224, p < 0.001 | ||||||
BF [%] | 13.006 | 6.740 | (3. 37) | <0.001 | 0.353 | Control (n = 11) | d = −0.264, SE = 0.592, p = 0.659 |
Hypoxia (n = 10) | d = 0.860, SE = 0.621, p = 0.175 | ||||||
Hypoxia and Exercise (n = 11) | d = 3.318, SE = 0.592, p < 0.001 | ||||||
Exercise (n = 9) | d = 2.111, SE = 0.655, p = 0.003 | ||||||
FM [kg] | 12.132 | 9.454 | (3. 36) | <0.001 | 0.441 | Control (n = 11) | d = −0.600, SE = 0.507, p = 0.244 |
Hypoxia (n = 10) | d = 1.197, SE = 0.507, p = 0.024 | ||||||
Hypoxia and Exercise (n = 11) | d = 2.973, SE = 0.483, p < 0.001 | ||||||
Exercise (n = 9) | d = 2.167, SE = 0.534, p < 0.001 | ||||||
LBM [kg] | 3.373 | 9.977 | (3. 37) | <0.001 | 0.447 | Control (n = 11) | d = −0.191, SE = 0.248, p = 0.446 |
Hypoxia (n = 10) | d = −0.900, SE = 0.260, p = 0.001 | ||||||
Hypoxia and Exercise (n = 11) | d = −2.027, SE = 0.248, p < 0.001 | ||||||
Exercise (n = 9) | d = −1.489, SE = 0.274, p < 0.001 |
Indicator | Mean Square | F | (df) | p | η2p | Condition | Baseline vs. after Intrvention |
---|---|---|---|---|---|---|---|
WL VT2 [W] | 181.857 | 2.356 | (3.37) | 0.088 | 0.160 | Control (n = 11) | d = −0.455, SE = 3.746, p = 0.904 |
Hypoxia (n = 10) | d = −9.000, SE = 3.929, p = 0.028 | ||||||
Hypoxia and Exercise (n = 11) | d = −14.273, SE = 3.746, p < 0.001 | ||||||
Exercise (n = 9) | d = −9.667, SE = 4.141, p = 0.025 | ||||||
VO2 VT2 (ml/kg) | 8.899 | 1.988 | (3.37) | 0.133 | 0.139 | Control (n = 11) | d = −0.075, SE = 0.902, p = 0.934 |
Hypoxia (n = 10) | d = −1. 827, SE = 0.946, p = 0.061 | ||||||
Hypoxia and Exercise (n = 11) | d = −3.182, SE = 0.902, p = 0.001 | ||||||
Exercise (n = 9) | d = −1.778, SE = 0.997, p = 0.083 | ||||||
% HRmax | 3.001 | 0.345 | (3.37) | 0.793 | 0.027 | Control (n = 11) | d = 1.106, SE = 1.258, p = 0.385 |
Hypoxia (n = 10) | d = 1.320, SE = 1.319, p = 0.323 | ||||||
Hypoxia and Exercise (n = 11) | d = 2.727, SE = 1.258, p = 0.037 | ||||||
Exercise (n = 9) | d = 1.333, SE = 1.390, p = 0.344 |
Indicator | Mean Square | F | (df) | p | η2p | Condition | Baseline vs. after Intrvention |
---|---|---|---|---|---|---|---|
WL [W] | 134.368 | 2.869 | (3.37) | =0.049 | 0.189 | Control (n = 11) | d = −1.727, SE = 2.918, p = 0.557 |
Hypoxia (n = 10) | d = −8.900, SE = 3.060, p = 0.006 | ||||||
Hypoxia and Exercise (n = 11) | d = −13.000, SE = 2.918, p < 0.001 | ||||||
Exercise (n = 9) | d = −11.444, SE = 3.226, p = 0.001 | ||||||
VEmax [L/min] | 67.846 | 2.322 | (3.37) | =0.091 | 0.158 | Control (n = 11) | d = −1.273, SE = 2.305, p = 0.584 |
Hypoxia (n = 10) | d = −4.030, SE = 2.417, p = 0.104 | ||||||
Hypoxia and Exercise (n = 11) | d = −9.555, SE = 2.305, p < 0.001 | ||||||
Exercise (n = 9) | d = −6.522, SE = 2.548, p = 0.015 | ||||||
HRmax [bpm] | 31.942 | 1.185 | (3.37) | =0.329 | 0.088 | Control (n = 11) | d = 1.636, SE = 2.214, p = 0.465 |
Hypoxia (n = 10) | d = −3.700, SE = 2.322, p = 0.120 | ||||||
Hypoxia and Exercise (n = 11) | d = 1.455, SE = 2.214, p = 0.515 | ||||||
Exercise (n = 9) | d = −0.667, SE = 2.448, p = 0.787 | ||||||
VO2max [mL/min] | 48347.6 | 1.151 | (3.37) | =0.341 | 0.085 | Control (n = 11) | d = −164.64, SE = 87.38, p = 0.067 |
Hypoxia (n = 10) | d = −178.90, SE = 91.65, p = 0.059 | ||||||
Hypoxia and Exercise (n = 11) | d = −359.09, SE = 87.38, p < 0.001 | ||||||
Exercise (n = 9) | d = −165.56, SE = 96.61, p = 0.095 | ||||||
VO2max [mL/kg] | 14.977 | 11.316 | (3.37) | <0.001 | 0.478 | Control (n = 11) | d = −0.194, SE = 0.491, p = 0.695 |
Hypoxia (n = 10) | d = −2.790, SE = 0.514, p < 0.001 | ||||||
Hypoxia and Exercise (n = 11) | d = −4.046, SE = 0.491, p < 0.001 | ||||||
Exercise (n = 9) | d = −3.184, SE = 0.542, p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagińska, M.; Kałuża, A.; Tota, Ł.; Piotrowska, A.; Maciejczyk, M.; Mucha, D.; Ouergui, I.; Kubacki, R.; Czerwińska-Ledwig, O.; Ambroży, D.; et al. The Impact of Intermittent Hypoxic Training on Aerobic Capacity and Biometric-Structural Indicators among Obese Women—A Pilot Study. J. Clin. Med. 2024, 13, 380. https://doi.org/10.3390/jcm13020380
Bagińska M, Kałuża A, Tota Ł, Piotrowska A, Maciejczyk M, Mucha D, Ouergui I, Kubacki R, Czerwińska-Ledwig O, Ambroży D, et al. The Impact of Intermittent Hypoxic Training on Aerobic Capacity and Biometric-Structural Indicators among Obese Women—A Pilot Study. Journal of Clinical Medicine. 2024; 13(2):380. https://doi.org/10.3390/jcm13020380
Chicago/Turabian StyleBagińska, Małgorzata, Anna Kałuża, Łukasz Tota, Anna Piotrowska, Marcin Maciejczyk, Dariusz Mucha, Ibrahim Ouergui, Rafał Kubacki, Olga Czerwińska-Ledwig, Dorota Ambroży, and et al. 2024. "The Impact of Intermittent Hypoxic Training on Aerobic Capacity and Biometric-Structural Indicators among Obese Women—A Pilot Study" Journal of Clinical Medicine 13, no. 2: 380. https://doi.org/10.3390/jcm13020380
APA StyleBagińska, M., Kałuża, A., Tota, Ł., Piotrowska, A., Maciejczyk, M., Mucha, D., Ouergui, I., Kubacki, R., Czerwińska-Ledwig, O., Ambroży, D., Witkowski, K., & Pałka, T. (2024). The Impact of Intermittent Hypoxic Training on Aerobic Capacity and Biometric-Structural Indicators among Obese Women—A Pilot Study. Journal of Clinical Medicine, 13(2), 380. https://doi.org/10.3390/jcm13020380